; .6 .al." ’ ’: '~: -
4& ,J‘ v. -‘- >

..'v \ | ~.“.' (.. ‘\:
3 . »\ xv .- y % x.1 ,.‘:’-a' ’ / \\\',! "
: _\
o “ 2
. Y 3 '.\‘"
‘_. f \‘-'I '. M." . .' ‘ ; ‘ \“-\« :
4.‘

%0 b . ,_’ N T
B at
’\"_

..\ . A '\ .a
.\\._ bl' 4- (

‘/a\ ~' t

\

..l'\. a
2/
' AN
;.

\. . 5 ,'.-‘ |t \\ . Wy

‘f
N T ’$ 'V . 2 T
G 5.' “ g 55 ?§Aﬁ\' (i
. L) 4 :

('\\.' -/ .f"l.

J‘ Sy

VA case f’ ,sr pervaswe*ca‘us‘al bl

- . . ’) .\ ‘.) N “1‘ . ‘ g (. i : ‘ -l'.'.' d ..."-.'. - \ "\
“SSmetadata i fS'.tI'.I.bu.tEd S
:. ‘-.‘1 l.. y > - “ J‘l - ‘.w - ’ \l' :f?. .-._ v .-"’ by - T..,-‘
rv 1S -, N ! ‘u"" 7 '.-} o ""."“ \‘\‘\

a
. “;\
y ‘..,

Q.

Who

I’m an assistant professor at Brown
University

interested in Networking, Operating
Systems, Distributed Systems

www.cs.brown.edu/~rfonseca

Much of this work with George Porter, Jonathan Mace, Raja Sambasivan, Ryan
Roelke, Jonathan Leavitt, Sandy Riza, and many others.

In the beginning...

... life was simple
— Activity happening in one thread ~ meaningful
— Hardware support for understanding execution
« Stack hugely helpful (e.g. profiling, debugging)

— Single-machine systems
« OS had global view
« Timestamps in logs made sense

« gprof, gdb, dtrace, strace, top, ...

-
2N

i Source: Anthropology: Nelson, Gilbert, Wong, Miller, Price (2012)

But then things got complicated

* Within a node
— Threadpools, queues (e.g., SEDA), multi-core

— Single-threaded event loops, callbacks,
continuations

* Across multiple nodes
— SOA, Ajax, Microservices, Dunghill
— Complex software stacks

« Stack traces, thread ids, thread local

storage, logs all telling a small part of the
story

Dynamic dependencies

.
€ e

[commrt 19

2w sz B

Netflix “Death Star” Microservices Dependencie%bme_m_wong

Hadoop Stack

__

Data Lifecycle &
Governance

Falcon
Atlas

Data Workflow

Sqoop
Flume
Kafka

NFS
WebHDFS

A
g

Il
9

4= [E]
= Eky

Batch Script NoSQL Stream Search In-Mem Others...
MapReduce Pig Hive HBase Storm Solr Spark ISV Engines
Accumulo ;‘ﬁ‘;
Phoenix -
[Sicer JNSN Siicer | 5/1

YARN: Data Operating System

HDFS Hadoop Distributed File System

DATA MANAGEMENT

Administration
Authentication

Authorization Auditing

Data Protection

Ranger
Knox
Atlas
HDFS Encryption

Provisioning, Managing,
& Monitoring

Ambari
Cloudbreak
ZooKeeper

Scheduling

Oozie

Source: Hortonworks

Callback Hell

1 [function hell (win) {

return function () ¢
loadLink(win, REMOTE_SRC+'/asset ‘ function () {
loadScript(win, REMOTE_SRC+ | : tion () {
loadScript(win, REMOTE_SRC+ yXDM , function () {
loadScript(win, REMOTE_SRC+ : , function () {
loadScript(win, REMOTE_SRC+ 1b/u ‘ , function ()
loadScript(win, REMOTE_SRC+'/l: q] , function ()
loadScript(win, REMOTE_SRC+'/dey v , function () {
loadScript(win, REMOTE_SRC+ ey function () {
loadScript(win, REMOTE_SRC+ ' +win. loader_path+ fer
async.eachSeries(SCRIPTS, function (src, callback) (
loadScript(win, BASE_URL+src, callback);
});
1

"
L
'3
{

L

function () {

[[ix}
d CZ http://seajones.co.uk/content/images/2014/12/callback-hell.png

End-to-End Tracing

« Capture the flow of execution back

— Through non-trivial concurrency/deferral
structures

— Across components
— Across machines

End-to-End Tracing

Revalidate to
origin

Not Found
in cache

\
Start HTTP DSHT Timeouts Finish HTTP
Request Lookup Request

Source: X-Trace, 2008

End-to-End Tracing

v App Server Timeling 16 calls over 71 ms |
0 0 LY
v~ Pl » ™ N~ 0 "o Tom

o

N IR
'3~ 20 20 »8 o % 00 ~e 0™
9 cals 0 % apen
C Plssece '- (V] soacne M clest = 4] e ey |-- [1] set e | o me
1= 087 ma 200 ma 208 ma 19 m.
|o: [1) el |~ [¥] remt_clent_speng | Rl |o: 2 omeat
1= 107 ma 17 = 027 ma

A

\ENE]H

> Source: AppNeta

/BlE|

Revalidate to

origin
in cache | -- - P,
Start HTTP DSHT Timéouts Finish HTTP
Request Lookup Request
-nd-to-End Tracing
N < n O N~ o AN o < LN
O © O © o — — — — —
S 6 O &6 & o o o o o
N N AN N N N N N N
[N] >
NN < Twitter
. \(’\&' C)Q Q/$Ib 60") ((,/\$ QQ/ ’b('e \(? (,\QQO .
AN ¢ ‘® & R 2 QA SoundCloud
S S0 & QNS
<2 ey AR L HDFS, Hbase,
¥ ev Accumulo, Phoenix
Q
N Google
vAcCScr.mva:rjlmcIscah(‘/-i::? ms = 3 - 5:~° o 1 0 App N eta Ba id u
e — ApprnamiCS PNetf_ll:IXI
e
= NewRElic vota
— Uber
——
Coursera
[B N |
s N ——— - Facebook
GBS] avacre |.- V] apache_ M clest 14] e mysy - (1] setamp me
=L E e eE e Etsy
] [

End-to-End Tracing

* Propagate metadata along with the
execution®
— Usually a request or task id
— Plus some link to the past (forming DAG, or call
chain)
» Successful
— Debugging
— Performance tuning
— Profiling
— Root-cause analysis

* Except for Magpie

 Propagate metadata along with the
execution

Causal Metadata Propagation

Can be extremely useful and valuable
But...
requires instrumenting your system

(which we repeatedly have found to be doable)

Of course, you may not want to
do this

You will find IDs that already go part of the
way
You will use your existing logs
— Which are a pain to gather in one place
— A bigger pain to join on these IDs
— Especially because the clocks of your machines are
slightly out of sync

Then maybe you will sprinkle a few IDs
where things break

You will try to infer causality by using
incomplete information

“10t Rule of Distributed System
Monitoring™*”

“Any sufficiently complicated distributed
system contains an ad-hoc, informally-
specified, siloed implementation of causal
metadata propagation.”

*This is, of course, inspired by Greenspun’s 10t Rule of Programming

Causal Metadata Propagation
* End-to-End tracing

— Similar, but incompatible contents
« Same propagation
— Flow along thread while working on same activity

— Store and retrieve when deferred (queues,
callbacks)

— Copy when forking, merge when joining
— Serialize and send with messages
— Deserialize and set when receiving messages

Causal Metadata Propagation

Not hard, but subtle sometimes

Requires commitment, touches many
places in the code

Difficult to completely automate

— Sometimes the causality is at a layer above the
one being instrumented

You will want to do this only once...

Causal Metadata Propagation

... or you won’t have another chance

Modeling the Parallel Execution of Black-Box
Services. Mann et al., HotCloud 2011 (Google)

9 |+ 18 | 19 20
\
|

=]

User
request

14 P 15 > 16

Y

N 17 > return D

The Dapper Span model doesn'’t natively distinguish the causal
dependencies among siblings

Causal Metadata Propagation

* Propagation currently coupled with the data
model

* Multiple different uses for causal metadata

A few more (different) examples

Timecard — Ravindranath et al., SOSP’13
TaintDroid — Enck at al., OSDI’10

Pervasive measurement Y
.........................._.1..‘.....) E
14 | |Re 5
= it ©
O BH b
Retro - e /=
‘ e o
(®)
HEks [:
v e ©
G (G (G -

Distributed enforcement ~—

&—3 Workflows ‘ Resources O Control points

* Propagates TenantlD across a system for
real-time resource management

* Instrumented most of the Hadoop stack

* Allows several policies — e.g., DRF,
LatencySLO

* Treats background / foreground tasks
- dniformly

Jonathan Mace, Peter Bodik, Madanlal Musuvathi, and Rodrigo Fonseca. Retro:
targeted resource management in multi-tenant distributed systems. In NSD/ '15

Pivot Tracing

3

—3 Execution path () Baggage propagation
Tracepoint . Tracepoint w/ advice

* Dynamic instrumentation + Causal
Tra?jm'QFr In DataNodeMetrics.incrBytesRead

In First(ClientProtocols) On cl -> incr
GroupBy cl.procName
Select cl.procName SUM(incr.delta)

* Queries 2 Dynamic Instrumentation -
Query-specific metadata - Results

Implemented generic metadata layer,
which we called baggage

Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca. Pivot Tracing: Dynamic
Causal Monitoring for Distributed Systems. SOSP 2015

So, where are we?

Multiple interesting uses of causal
metadata

Multiple incompatible instrumentations
— Coupling propagation with content

Systems that increasingly talk to each
other

— c.f. Death Star

A g S
b

[

IP

Packet switching had been proven
— ARPANET, X.25, NPL, ...

Multiple incompatible networks in
operation

TCPI/IP designed to connect all of them
IP as the “narrow waist”

— Common format

— (Later) minimal assumptions, no unnecessary
burden on upper layers

Obligatory ugly hourglass picture

Applications

TCP, UDP, ...

Access Technologies

A
S

0
’l

=] Elbi

=] E

“Meta-applications”*

Debugging
Dependehcy Tracking
Anomaly Detection

Data Provenance Monitorin Performance/Guarantees
Consistent updates Distributed QoS . .
“+O- i Taint Trackin
Consistent snapshots End-to end\tracmg Accounti DIFC J
pectorClocks —— Causality tracking Resource Tracing Security
\ Y 4
Instrumented Queues,

Causal Metadata propagation Thread, Messaging libs

Instrumented
Applications

*Causeway (Chanda et al., Middleware 2005) used this term

Proposal: Baggage

API and guidelines for causal metadata
propagation

Separate propagation from semantics of data

Instrument systems once, “baggage
compliant”

Allow multiple meta-applications

Why now?

 We are losing track...
 Huge momentum (Zipkin, HTrace, ...

Baggage API

* PACK, UNPACK

— Data is key-value pairs

 SERIALIZE, DESERIALIZE

— Uses protocol buffers for serialization
« SPLIT, JOIN
— Apply when forking / joining
— Use Interval Tree Clocks to correctly keep track of data

E‘.I:II':I Paulo Sergio Almeida, Carlos Baquero, and Victor Fonte. Interval tree clocks: a logical
allo) clock for dynamic systems. In Opodis ‘08.

Big Open Questions

* |s this feasible?

— |Is the propagation logic the same for all/most of
the meta applications?

— Can fork/join logic be data-agnostic? Use
helpers?
* This is not just an API
— How to formalize the rules of propagation?
— How to distinguish bugs in the application vs
bugs in the propagation?
 How to get broad support?

Example Split / Join

B=[10,20]
read 20k
B =10 B = [10,5] B=[10,20,5] B=[10,20,5,8]
read 10k read 5k read 8k

 We use Interval Tree Clocks for an
efficient implementation

: Paulo Sérgio Almeida, Carlos Baquero, and Victor Fonte. Interval tree clocks: a logical
clock for dynamic systems. In Opodis '08.

