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Shared-tenant cloud services

Processes service requests from multiple clients

v/ Great for cost and efficiency
X Performance is a challenge

Aggressive tenants and system maintenance tasks

\

Resource starvation and bottlenecks

\

Degraded performance, Violated SLOs, system outages



Shared-tenant cloud services

Ideally
manage resources to provide end-to-end guarantees and isolation

Challenge

OS/hypervisor mechanisms insufficient
X Shared threads & processes
X Application-level resource bottlenecks (locks, queues)
X Resources across multiple processes and machines

Today
lack of guarantees, isolation
some ad-hoc solutions



This paper

5 design principles for resource policies in shared-
tenant systems

* Retro — prototype for principled resource
management

* Preliminary demonstration of Retro in HDFS



Hadoop Distributed File System (HDFS)
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Hadoop Distributed File System (HDFS)
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Principle 1: Consider all resources and request types

* Fine-grained resources within processes
* Resources shared between processes (disk, network)
 Many different API calls

* Bottlenecks can crop up in many places
hardware resources: disk, network, cpu, ...
software resources: locks, queues, ...
data structures: transaction logs, shared batches, ...
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Principle 2: Distinguish between tenants

e Tenants might send different types of

requests

e Tenants might be utilizing different

machines

* |f a policy is efficient, it should be able
to target the cause of contention

e.g.,

if a tenant is causing contention, throttle
otherwise leave the tenant alone
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Admission Control
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Admission Control
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while (!Thread.isInterrupted()) {
sendPacket () ;

}
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Resource Management Design
Principles

Consider all request types and all resources
Distinguish between tenants

Treat foreground and background tasks uniformly
Estimate resource usage at runtime

CE

Schedule early, schedule often

Retro — prototype for principled resource management in
shared-tenant systems
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Retro: end-to-end tracing
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Retro: end-to-end tracing
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Retro: application-level resource interception
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Retro: aggregation and centralized reporting

S E S EE NI EE NN NI NN NI NN NN e NN NN NN N NI NN RN NN NN EEJEE g EgEJESmEEEEEEE R
4+

) N x & & & &N
= = = = = = o= mom

[ Retro Controller API]

——= Tenants . Resources



e

Retro: application-level enforcement
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Retro: distributed scheduling
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Retro: distributed scheduling
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Thus far:
e Per-tenant identification
e Resource measurements
* Schedule enforcement

Retrospective

Next steps:
* Abstractions for writing simplified high-level policies
* Low-level enforcement mechanisms

 Policies to monitor system, find bottlenecks, provide
guarantees
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