Towaro
ResoL

s General-Purpose
rce Management

in Sha

red Cloud Services

Jonathan Mace, Brown University
Peter Bodik, MSR Redmond
Rodrigo Fonseca, Brown University
Madanlal Musuvathi, MSR Redmond

Shared-tenant cloud services

Processes service requests from multiple clients

v/ Great for cost and efficiency
X Performance is a challenge

Aggressive tenants and system maintenance tasks

\

Resource starvation and bottlenecks

\

Degraded performance, Violated SLOs, system outages

Shared-tenant cloud services

Ideally
manage resources to provide end-to-end guarantees and isolation

Challenge

OS/hypervisor mechanisms insufficient
X Shared threads & processes
X Application-level resource bottlenecks (locks, queues)
X Resources across multiple processes and machines

Today
lack of guarantees, isolation
some ad-hoc solutions

This paper

5 design principles for resource policies in shared-
tenant systems

* Retro — prototype for principled resource
management

* Preliminary demonstration of Retro in HDFS

Hadoop Distributed File System (HDFS)

___HDFS DataNode _|
HDFS NameNode | HDE%EgtDé‘Eﬁg'C\llide | |

HDFS DataNode |

\ \

Filesystem metadata Replicated block storage

5

Hadoop Distributed File System (HDFS)

6\

____HDFS DataNode |
HDFS NameNode | HDE%E;‘S;\Itgﬁlide g

HDFS DataNode

\ \

Filesystem metadata Replicated block storage

6

®
e N

500
request
latency [ms] g

request
latency [ms]

disk op
latency [ms]

5001

0:
127

01

4 ds
a
.. o €% AN ¥ N 7
ao™ & (@ndo™ ' '
(a®

5007

request i

latency [ms] (]

127

disk op]
latency [ms]] e - — _

HDFS DataNode
HDFS DataNode
HDFS DataNode

HDFS NameNode | m

. (ec’go\‘\l T

o)
1\
(a00° 5001
request i
latency [ms] (]

127
disk op]
latency [ms]

5007
queue]
latency [ms] g

HDFS NameNode | @

HDFS DataNode
HDFS DataNode

HDFS DataNode

1U

o)
1\
(a00° 5001
request i
latency [ms] (]

127
disk op]
latency [ms]

5007
queue]
latency [ms] g

5007
lock

latency [ms]]

HDFS NameNode | m

HDFS DataNode
HDFS DataNode

HDFS DataNode

glmals

Principle 1: Consider all resources and request types

* Fine-grained resources within processes
* Resources shared between processes (disk, network)
 Many different API calls

* Bottlenecks can crop up in many places
hardware resources: disk, network, cpu, ...
software resources: locks, queues, ...
data structures: transaction logs, shared batches, ...

12

HDFS DataNode

HDFS NameNode | m

HDFS DataNode
HDFS DataNode

13

HDFS DataNode
HDFS DataNode

HDFS DataNode

HDFS NameNode | @

14

latency [sec] &,

o

hp latency
— —t1 thr'put
= = =2 thr'put

1
o
o

0

thr'put [reg/s]

0 60 120 180

time [sec]

240

o

300

15 - - 500
o P ——< - -)
D =
z) - 8
& ~ =
E;. hp latency _&
© |=— —t1 thr'put <
- = = t2 thr'put ~
0 0

0 60 120

180 240 300

time [sec]

HDFS DataNode

HDFS DataNode
HDFS DataNode

15

latency [sec] &,

o

7 - 500

~ MW &

~ « 9

-~ [S—1

~ -—

S

hp latency o a

— —t1 thr'put = £

= = =2 thr'put ~

0

0 60 120 180

time [sec]

240 300

HDFS NameNode | @

— e o e e e e — 'a'

o &

z) ~ e

& N =

E;. hp latency o

© |=— —t1 thr'put <
- = = t2 thr'put ~

D ¥ T ¥ T ¥ T ¥ T ¥ D

0 60 120 180 240 300

time [sec]

HDFS DataNode
HDFS DataNode
HDFS DataNode

—l) ‘

[=

16

Principle 2: Distinguish between tenants

e Tenants might send different types of

requests

e Tenants might be utilizing different

machines

* |f a policy is efficient, it should be able
to target the cause of contention

e.g.,

if a tenant is causing contention, throttle
otherwise leave the tenant alone

latency [sec] &, o latency [sec] &,

o

——— hp latency ~
— — 11 thr'put ~

\

= = = {2 thr'put ~

1
m
o

0 60 120 180 240 300

time [sec]

——— hp latency
— —t1 thr'put

- — —i2 thr'put N

0 60 120 180 240 300

time [sec]

17

0

thr'put [reg/s]

o

- 500

thr'put [reg/s]

o

HDES DataNode —C I
HDFS DataNode | —'IX

HDFS NameNode | @

HDFS Data
8

18

Admission Control

HDFS NameNode | @

HDFS DataNode

—)

HDFS DataNode | —=% X

HDFS Data

19

Admission Control

HDFS NameNode | @

HDFS DataNode |

HDFS DataNode | —2 I\,
HDFS DataNode | ~—X"\X

{0

while (!Thread.isInterrupted()) {
sendPacket () ;

}

20

HDFS NameNode | @

Principle 5:

g i ('Thfead. Jslnterrupted()) {
Schedule early, iié;‘;?” | :

: } .
Schedule Often L s EEEEEEE NN NN NN NN EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEd

Resource Management Design
Principles

Consider all request types and all resources
Distinguish between tenants

Treat foreground and background tasks uniformly
Estimate resource usage at runtime

CE

Schedule early, schedule often

Retro — prototype for principled resource management in
shared-tenant systems

22

Retro: end-to-end tracing

| o 4
&2 Tenants

Retro: end-to-end tracing

| o
&= TJenants

e

Retro: application-level resource interception

——= Tenants . Resources

e

Retro: aggregation and centralized reporting

S E S EE NI EE NN NI NN NI NN NN e NN NN NN N NI NN RN NN NN EEJEE g EgEJESmEEEEEEE R
4+

) N x & & & &N
= = = = = = o= mom

[Retro Controller API]

——= Tenants . Resources

e

Retro: application-level enforcement

Pervas:ve measurement

[Retro Controller API]

——= Tenants . Resources O Control points

e

Retro: distributed scheduling

............. P ews:veweasurnt)

: =

" . <

| -

@

Ie)

=

C

O

@)

O

=

(¢))

_ - \ - \\ \ \\\ <« D:
Distributed enforcement ~—

——= Tenants . Resources O Control points

e

Retro: distributed scheduling

Pe

+

rvasive measurement

NI e NI NN EE RN NI NN EEEEAEE R ER RN EmSE SRR RS

C—=>2
&= Tenants

Distributed enforcement

Retro Controller API
Policy I Policy I Policy

. Resources O Control points

=
N
I |

Normalized Latency

=

Early Results

Open

Read |mm—

Create

Rename

Delete

=
b

Normalized Throughput

0.9

CIHDFS

m HDFS w/ Retro

©
©
v
oc

Open

Create

Rename

Delete

HDFS NNBench

benchmark
0.01% to 2%
average overhead
on end-to-end
latency, throughput

30

latency [sec]

o

&

- 500

—
o
]

- 500
________ @ — === @
~ “g 8 - N -‘g‘"
- =, 2D, N .g.
= >
5 O = =
hp latency = 5 hp latency N _3_
— —1t1 thr'iput = © 1 E =
. = © |— —1t1thr'put ~ S
— — —t2 thr'put N 0 - - -12 thr'put s
0O 60 120 180 240 300 O P
time [sec] ° % t}ﬁ?e [;gg] o

HDFS DataNode
HDFS DataNode
HDFS DataNode

—=L My
=

I

[=

HDFS NameNode | @

Fy |

—i
(&)
J

o

—_—
(4
]

M [500

latency [sec]

- 500
R T z = R At B
L » N 3
N oy — “o = 15 - - 500
hp latenc a o R =
— —t1pthr'puty = ﬁ hp latency S 2 E
— — —t2 thr'put N = o |— —1t1 thr'put =8 = O =
— .p. ———— ———r 0 = = =12 thr'put ~ Ly g
0 60 120 180 240 300 0 — T T T T T 0 = =
time [sec] 0O 60 120 180 240 300 c 3
time [sec] Q =
@ hp latency c
- — —t1 thrput =
0 === 12 tlhr'plut . 0
0 60 120 180 240 300
time [sec]
HDFS NameNode | | HDFS DataNode | _——
HDFS DataNode | ——\ |
s HDFES DataNOde —

32

=

Thus far:
e Per-tenant identification
e Resource measurements
* Schedule enforcement

Retrospective

Next steps:
* Abstractions for writing simplified high-level policies
* Low-level enforcement mechanisms

 Policies to monitor system, find bottlenecks, provide
guarantees

33

