HyperDrive: Exploring Hyperparameters with POP Scheduling

Jeff Rasley

Brown University

Olatunji Ruwase
Microsoft

Abstract

The quality of machine learning (ML) and deep learning (DL) mod-
els are very sensitive to many different adjustable parameters that
are set before training even begins, commonly called hyperparame-
ters. Efficient hyperparameter exploration is of great importance
to practitioners in order to find high-quality models with afford-
able time and cost. This is however a challenging process due to
a huge search space, expensive training runtime, sparsity of good
configurations, and scarcity of time and resources. We develop a
scheduling algorithm POP that quickly identifies among promising,
opportunistic and poor configurations of hyperparameters. It infuses
probabilistic model-based classification with dynamic scheduling
and early termination to jointly optimize quality and cost. We also
build a comprehensive hyperparameter exploration infrastructure,
HyperDrive, to support existing and future scheduling algorithms
for a wide range of usage scenarios across different ML/DL frame-
works and learning domains. We evaluate POP and HyperDrive
using complex and deep models. The results show that we speedup
the training process by up to 6.7x compared with basic approaches
like random/grid search and up to 2.1x compared with state-of-the-
art approaches while achieving similar model quality compared
with prior work.

CCS Concepts + Computer systems organization — Cloud
computing; « Computing methodologies — Machine learn-
ing approaches;

Keywords Hyperparameter exploration, cluster scheduling

ACM Reference format:

Jeff Rasley, Yuxiong He, Feng Yan, Olatunji Ruwase, and Rodrigo Fonseca.
2017. HyperDrive: Exploring Hyperparameters with POP Scheduling. In
Proceedings of Middleware ’17, Las Vegas, NV, USA, December 11-15, 2017,
13 pages.

DOI: 10.1145/3135974.3135994

1 Introduction

In recent years many machine-learning frameworks have been
introduced to help developers build and train machine learning
models for solving different artificial intelligence tasks across su-
pervised, unsupervised, and reinforcement learning domains [3,
6, 9, 10, 15, 31]. The task performance of trained models is very

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Middleware ’17, Las Vegas, NV, USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-4720-4/17/12...$15.00

DOI: 10.1145/3135974.3135994

Yuxiong He
Microsoft

Feng Yan

University of Nevada, Reno

Rodrigo Fonseca
Brown University

0.8 ~

0.6
gO.S
§0.4
<03
02
0.1 == =

0 L. | I 1 1 1 1 L |

0 15 30 45 60 75 90 105 120
Iterations Over Training Set

Figure 1. Performance of 50 randomly selected supervised-learning
hyperparameter configurations.

sensitive to many different adjustable parameters, called hyperpa-
rameters, which are configured prior to training a model. Examples
of these hyperparameters include learning rate (in many models),
number and size of hidden layers in a deep neural network, number
of clusters in k-means clustering, and many more. Hyperparameter
exploration searches across different configurations of a model,
where each configuration represents a specific set of hyperparam-
eter values. Its goal is to find good configurations that optimize
the model performance (e.g., high accuracy, low loss, high reward)
with affordable time and cost. This exploration involves two related
problems: generating candidate configurations from the large space
of hyperparameter settings, and actually scheduling and running
these configurations.

Efficient hyperparameter exploration is of great importance to
practitioners in order to improve model performance, reduce train-
ing time, and optimize resource usage. This is especially critical
when training modern deep and complex learning models with
billions of parameters and millions of training samples on cloud
resources. To reach a desired training target, efficient hyperpa-
rameter exploration means shorter training time, lower resource
consumption, and thus lower training costs.

However, it is challenging to design effective scheduling frame-
works and algorithms that efficiently explore hyperparameter val-
ues while obtaining high model performance and optimizing time
and resource costs. The first key reason is the size of the hyperpa-
rameter search space and the expensive training process for each
individual configuration. Figure 1 shows the model performance
(task accuracy) of 50 configurations as a function of iterations over
a training dataset for a moderate-size image classification appli-
cation CIFAR-10 [20] (detailed experimental setup is presented in
§6). Each line in the plot represents a unique configuration. Here
we present only 50 configurations in the plot for clear presenta-
tion. Each configuration needs to run about 120 iterations with
each iteration taking about one minute. To fully explore only 50
configurations, we need over 4 days of computing. Commonly,
models require exploring many more configurations to find high

Middleware *17, December 11-15, 2017, Las Vegas, NV, USA

performing hyperparameters. For example, our CIFAR-10 model
has 14 hyperparameters (such as learning rate, momentum, and
weight decay) and most have a continuous range to explore, which
results in hundreds or thousands (or more) possible configurations
to explore. This problem is even worse when considering larger
training models and datasets, for example, prior work has shown
that a high-quality ImageNet22k image classification model can
take up to ten days to train to convergence using 62 machines [8].
Therefore exhaustive search is simply not practical.

A second reason is that, for many models in practice, only few
configurations lead to high performance while a majority of config-
urations perform very poorly. The results in Figure 1, for example,
show that only three configurations are able to exceed 75% accuracy
(which is considered reasonable accuracy for this type of simple
CIFAR-10 model that doesn’t do any data augmentation and/or in-
tensive preprocessing steps), while the majority of configurations
are not able to exceed 20% accuracy. Therefore, simple and popular
approaches such as grid and random hyperparameter generation
bet heavily on luck, which results in very inefficient discovery of
high performing configurations under reasonable cost and time
constraints.

Furthermore, optimizing hyperparameter tuning involves many
other factors, such as incorporating different application domain
goals (e.g., supervised, unsupervised, and reinforcement learning)
and applicability to different DL/ML frameworks (e.g., Tensorflow,
Caffe, and CNTK). It is challenging to design an effective framework
to support such a wide range of usage scenarios.

Recent work [7, 14, 24] has moved beyond grid-based hyper-
parameter generation with adaptive techniques using Bayesian
optimization, which assigns higher probability to areas of the hy-
perparameter space that contain likely-good or unknown config-
urations. These works do not, however, address how to run these
configurations. For example, how long should each configuration
run? Prior work [7, 14, 18, 24, 28] executes each configuration to
the same maximum iteration (which can be a large number of iter-
ations), typically ignoring the fact that some configurations could
have shown their intrinsic value much earlier. As shown in Fig-
ure 1, with basic domain knowledge, one can quickly tell that many
configurations do not learn at all, with accuracy similar to random
(10% accuracy in this case), which can be identified within few
training iterations and terminated early to save resources. In addi-
tion, should all running configurations take the same amount of
resources? Clearly, that is not the best way to assign resources since
the execution progress of the configurations could have offered
many insights on how well the configurations are likely to perform,
thus deserving different amounts of resources. This scheduling
problem of how to effectively map different configurations across
the time and space dimension of resources is largely unattended by
prior work.

Our work focuses on designing an efficient scheduling algorithm
and an effective system framework for hyperparameter exploration.
Our scheduling algorithm, POP, dynamically classifies configura-
tions into three categories: Promising, Opportunistic, and Poor,
and uses these in two major ways. First, along the time dimension,
we quickly identify and terminate poor configurations that are
not learning, incorporating application-specific input from model
owners. For example, classification tasks have known non-learning

http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.
html

Rasley et al.

random performance values which can be used to prune jobs. Sec-
ond, along the space dimension, we use an explore-exploit strategy.
We classify promising configurations that are more likely to lead to
high task accuracy and prioritize them with more resources while
giving configurations that are still only potentially promising some
chances to run — these are what we call opportunistic configurations.
Unlike prior work [25] that uses instantaneous accuracy only to
identify a fixed set of promising configurations, we incorporate the
trajectory of full learning curves and leverage a probabilistic model
to predict expected accuracy improvement over time as well as pre-
diction confidence [11]. The classification and resource allocation
between promising and opportunistic configurations is dynamic,
adjusting the ratio of exploration and exploitation when we observe
more predicted and measured results. At the early stage of training,
when there is little history information and prediction confidence
is typically low, allocating more resources for exploration helps
training efficiency. Conversely, at later stages, confidence is higher,
and allocating more resources for exploitation can yield higher
rewards.

We also design a framework, HyperDrive, which serves as a
generic framework for hyperparameter exploration. HyperDrive
largely decouples the scheduling policy for candidate configura-
tions from the type of model and/or framework. It provides an API
that supports not only our POP scheduling algorithm, but also ex-
isting and new ones. It also supports different learning frameworks,
such as Caffe [15], CNTK [31], and TensorFlow [3], and learning
domains, such as supervised and reinforcement learning. Lastly,
it supports model-owner-defined metrics and inputs to improve
scheduling efficiency.

This paper makes the following contributions:

o We develop an efficient scheduling algorithm that infuses
probabilistic model-based configuration classification with
dynamic scheduling and early termination (§2 and §3).

o We develop an effective system framework, we call Hy-
perDrive, that not only facilitates our proposed scheduling
algorithm, but supports existing and future scheduling al-
gorithms, and works with different domains and machine
learning frameworks (§4 and §5).

e We present extensive evaluation of our scheduling algo-
rithm and framework using workloads from both super-
vised and reinforcement learning domains. We show our
proposed approach outperforms the basic approaches like
random/grid search by up to 6.7x and outperforms state-of-
the-art scheduling techniques by up to 2.1x and that our
framework is practical (§6 and §7).

2 Design Principles of Scheduling Algorithm

Hyperparameter exploration is challenging as there are many con-
figurations but often much less time and fewer resources. For deep
and complex models, it is common that only a small number of
configuration choices lead to high quality results. Thus, significant
amounts of time and resources could be wasted in searching for
good configurations if considerable attention is not paid to search
efficiency. To enable efficient model exploration and scheduling,
we follow three key design principles: i. early identification and
termination of poor configurations that are either not learning or
learning very slowly; ii. early classification of promising configura-
tions that are more likely to lead to high task performance among

http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html

HyperDrive: Exploring Hyperparameters with POP Scheduling

Middleware *17, December 11-15, 2017, Las Vegas, NV, USA

0 01 02 03 04 05 06 07 08

Final Accuracy

(a) Final validation accuracy distribution of 90

randomly selected CIFAR-10 configurations. figurations A and B.

1 7 08 - 08
g.g 07 — 0.7
‘ — 06
8‘2 - 506 70
E o8 L 205 £0.5 o
Oy e g 5
04— s 304 / 804 —
8; 03 03
ol 02 Job A —— 02 4 Job A ——
0 0 1 J(\’b]\3 L L J(\)b 1\3 1 1

T 000 B YYD 7,
Epoch Epoch

0.1
O D000 % VY 97,7,

(b) Final learning curves for two different con- (c) A has higher predicted accuracy but lower

confidence, while B has better final accuracy.

Figure 2. CIFAR-10 validation accuracy distribution, along with learning curves for two configurations A and B.

the remaining group of opportunistic configurations; iii. prioritized
execution of promising configurations by devoting more resources
to them without starving opportunistic configurations; striking a
desired balance between exploitation of promising configurations
and exploration of opportunistic configurations. Our search algo-
rithm POP achieves these design principles by solving the following
three challenges.

2.1 Identify poor configurations early

Early detection of configurations with poor learning performance
can reduce wasted resources during model search. Figure 1 shows
that in the search for high-quality CIFAR-10 models a significant
portion of possible model configurations either do not learn or
learn very slowly during the entire training process. We present the
final validation accuracy distribution of different configurations in
Figure 2c. The red circle shows the percentile of configurations that
achieve below the random validation accuracy of 10%> We can see
there are 32% of configurations with poor validation accuracy, i.e.,
at or below random validation accuracy. Such a significant amount
of configurations with poor validation accuracy demonstrates the
importance of identifying and terminating poor configurations as
early as possible to reduce wasted time and resources.

An efficient way to identify poor configurations early is to in-
corporate domain knowledge from the model owner. For example,
in many supervised-learning tasks it is common for poor hyper-
parameter values to result in models that only achieve “random”
validation accuracy (which is defined by the task), an example of
this can be seen in Figure 1, where the task is forced to choose a la-
bel from 10 categories, therefore many configurations only achieve
random validation accuracy around 10%. The search algorithm
can incorporate this knowledge to improve search by terminating
configurations early if they fail to escape this “random” validation
accuracy threshold after a few iterations. Similarly, a user can incor-
porate early termination for many reinforcement-learning models
due to a common “not learning” range which can be determined
based on the environment being trained on. In addition it is com-
mon for reinforcement-learning tasks to also have unique “solved”
conditions that can be incorporated into a search algorithm, for
example a task may only be considered “solved” when it sustains a
certain reward for some number of iterations.

2.2 Classify promising configurations early and
judiciously

To classify promising configuration early and judiciously, one ef-

fective way is to develop an accurate methodology for predicting

2Random accuracy is defined as 10% here due to CIFAR-10 having 10 categories, thus
a random guess yields a 10% chance of being correct.

future task performance. There are three important questions to
answer for developing an accurate prediction methodology.

a) Would the most recent performance alone be sufficient?
As an example, Figure 2b shows full validation accuracy curves for
two configurations A and B. At the early stage, i.e., before the 50th
epoch, A’s validation accuracy is higher than B’s. However, the final
validation accuracy of B is higher than A, thus B overtakes A. If we
simply rely on the most recent performance, we will not discover
that B is the most promising configuration until after the 50th
epoch and thus waste a lot of resources. We observe this overtake
phenomenon sometimes can even be more pronounced than seen
in Figure 2b. Therefore, in order to classify promising configuration
early, the most recent performance alone, as used in prior work
[25], is not enough. In order to make effective predictions, we use
a probabilistic model to predict expected future task performance
by incorporating partial task performance history, i.e., the task’s
learning curve.

b) Would predicting expected future task performance
alone be sufficient? We answer the question by showing an ex-
ample using Figure 2c. The dotted lines show A and B’s expected
validation accuracy and the solid lines show the measured valida-
tion accuracy. The results indicate A’s expected validation accuracy
is higher than B at epoch 10 but with much larger variance and
lower confidence than B (the shadow represents the confidence
intervals). However, in the final validation accuracy, B is actually
higher than A, which indicates expected future validation accu-
racy alone can be misleading and we need to assess the quality of
the prediction. To quantify the prediction quality, we calculate the
confidence of the prediction.

c) Would a static threshold be sufficient to decide a promis-
ing configuration? One way to classify promising configurations
is by using a static threshold for the probability of achieving target
task performance, e.g., if the probability is higher than the thresh-
old, the configuration is promising. However, the problem with
this approach is if the threshold is too high, it becomes difficult
to identify promising configurations early in the training process.
On the other hand, if the threshold is too low, we may classify too
many configurations as promising and results in an ineffective way
to allocate resources. Therefore, when determining the threshold,
we need to take into consideration both the characteristics of the
model and the available resources.

2.3 Resource allocation between promising and
opportunistic configurations

The key insight here is that static resource allocation between
promising and opportunistic configurations is insufficient as con-
figurations can change status between promising, opportunistic,
and poor over time. Figure 3 gives an example of the prediction

Middleware *17, December 11-15, 2017, Las Vegas, NV, USA Rasley et al.
0.8 08 0.8
0.7] 07 = 0.7 e —
06 06 s 06 /T
> 0 5, 0.6 — 5 0.
g 05 Sos(205
3 2 3 I s S
é 04 804 - 3 04 / e
03 Hfooo < 03 - <03 f =
02 P JCIeET e 02 02
0.1 p 1 | | 0.1 ’ | 0.1 1 | | 1 1 | |
0 10 20 30 40 50 60 70 80 90 100 110 120 0 10 20 30 40 50 60 70 80 90 100 110 120 0 10 20 30 40 50 60 70 80 90 100110 120
Epoch Epoch Epoch

(a) Prediction at the 10th epoch.

(b) Prediction at the 30th epoch.

(c) Final validation accuracy curves.

Figure 3. Predicted and measured validation accuracy curves of multiple configurations varying over time.

confidence at three different stages during training. For example,
at the beginning stage Figure 3a, there is little trajectory infor-
mation and thus low confidence to differentiate configurations:
all active configurations are classified as opportunistic and all re-
sources are designated opportunistic. As training progresses, more
promising configurations emerge thus we allocate more resources
for promising configurations. At later stages, it is possible that one
or several configurations have very high confidence to achieve
their target, therefore we can allocate resources to them in a much
more aggressive way or even use an “all-in” strategy. Therefore,
the configuration classification and resource allocation should be
coordinated based on the progress of training.

3 Scheduling Algorithm POP

The search for high-quality models, from a candidate set of model
configurations, typically involves multiple iterations of training
each model configuration with a training dataset and evaluating
model performance against a validation dataset. The objective of
POP is to improve the efficiency of discovering high performing
model configurations: minimize the time to find a configuration
satisfying a target performance. It can also be used for finding con-
figurations with the best performance within a time budget, which
is a corresponding dual problem. To achieve efficient search and
scheduling, we need to promptly and accurately identify config-
urations that are more likely to result in high-quality models i.e.,
promising configurations (§3.1). In addition, we need an efficient
resource allocation strategy that prioritizes promising configura-
tions. Here we develop an infused methodology incorporating both
configuration classification and scheduling (§3.2).

3.1 Configuration Classification

As discussed in §2, in order to classify configurations, POP needs to
consider both the expected final task performance and the quality
of prediction based on performance history information. Recall that
the objective is to minimize the time to find a configuration that
achieves a target performance. Therefore, at any point of time in
training, the configurations with the smallest expected remaining
time to achieve the target performance and with high prediction
quality are considered promising configurations. To classify con-
figurations accurately and promptly, an accurate estimation model
of the expected remaining time and a methodology to evaluate the
prediction quality is key.

3.1.1 Expected Remaining Time Estimation

We develop a probabilistic approach for estimating the expected
remaining time for a given configuration.

In many learning domains it is common to periodically evaluate
a model’s performance (e.g., validation accuracy in supervised-
learning). The frequency at which a model’s performance is eval-
uated is often at the end of a training epoch, so to compute the
expected remaining time, we can first compute the expected num-
ber of remaining epochs and then multiply with the average epoch
duration®. The idea is to compute the probability of achieving the
target performance at future epochs and then use a probability mass
function to estimate the expected number of remaining epochs.

Problem formulation: We define the problem as predicting
the expected remaining time for a given configuration to achieve
the target accuracy. The following parameters are required from
users as input parameters4:

® Tiayx: the maximum experiment time a user can tolerate;
® Yiarger: a target model performance;

These two parameters are based on the user’s domain knowledge,
therefore values provided by experts should ideally lower estima-
tion overheads and improve search efficiency compared to values
provided by beginners. As we first do prediction based on epochs,
we compute the maximum number of remaining epochs M; for a
given configuration i as M; = (Tyuax — Tpass)/ Epoch;, where Tpqss is
the measured time duration that has passed from the beginning of
the experiment, and Epoch; is the measured average epoch duration.
We define p1,p2, ..., pm, ..., Ppr as the probability that the target
performance can be reached in 1st, 2nd, ..., Mth epoch and p as the
prediction confidence, which is defined as the probability that a
configuration can achieve the target performance within Ty, i.€.,
p=pl+p2+..+pm+ ..+ Py The prediction model output is
the expected remaining time ERT; for configuration i to achieve
target accuracy Ytarget-

Model performance prediction: To predict future model per-
formance, we rely on the configuration’s learning curve. More
specifically, we compute the probability P(m); of configuration i
reaching a model performance y after epoch m in the future based
on the observed validation performance history of the configura-
tion, as follows:

P(m); = P(y(m); = yly(1: m - 1);), (0

where y(m); is the predicted performance after epoch m for config-
uration i and y(1 : m — 1);) represents the observed performance
of configuration i from epoch 1 to m — 1. We leverage a probabilis-
tic learning curve model proposed in prior work [11] to compute
P(y(m)i = yly(1: m—1);).

The learning curve prediction model we use relies on a weighted
combination of 11 different parametric models (e.g., vapor pressure,
Weibull, Janoschek) and uses Markov Chain Monte Carlo (MCMC)

3 An epoch represents training over an entire training data set once. Epoch durations
are assumed to be roughly constant, see §9 for more details.
4See §9 for a discussion on these user parameters.

HyperDrive: Exploring Hyperparameters with POP Scheduling

inference to predict possible values of these weights based on the
observed partial performance curve. This probabilistic model is
then used to compute the probability P(m); of each configuration
periodically online, which allows the scheduling policy to see a
global view of performance across all active configurations. Due
to the non-deterministic nature of MCMC inference, we define
a prediction accuracy PA to be the standard deviation across all
MCMC samples. Further discussion of our implementation and
optimization of the learning curve prediction model is discussed
later in §5.2.

Modeling expected remaining time and prediction confi-
dence: To model the expected remaining training epochs x; for
configuration i to achieve the target performance yqarger, we com-
pute the probability that the target performance can be reached
at the 1st, 2nd, ..., mth, ..., Mth epoch respectivelys. According to
the definition of the probability mass function defined based on
accumulative distribution, we have:
pl=Py(1); > ytarget)a
p2=Py(2)i = ytarget) = P(y(1); > ytarget),

Pm = P(y(m)i > Ytarget) — P(y(m — 1)i > Ytarger),

oy = PY(M)i = Yrarget) = P(y(M — 1)i = Yrarget)-
Thus the expected number of remaining epochs x; for configuration
i can be estimated as:

Xi=1%pl+2%p2+ .. +m*pm+...+Mxpy 2

Therefore the expected remaining training time ERT; for configu-
ration i is:
ERT; = x; * Epoch;
=(Lspl+2=p2+...+mxpy + ... (3)
+ M = ppr) * Epoch;

Ideally, the probability p1,p2, ..., pm, ..., Ppr should sum to 100%
M
(i.e., Y, (pm) = 1). But in reality, we do not need to sum further if
m=1

the expected remaining training time is larger than the maximum
experiment time duration that user can tolerate, i.e., ERT; > Tpygx —
Tpass. In other words, we stop summing further for p,, and set
ERT; = Tax — Tpass since the search algorithm will not run further
than Tingx — Tpass- Therefore, the probability p1,p2, ..., pm, ..., Pm

M
may not sum up to 100% (i.e., Y, (pm) < 1). Here we define the
m=1

probability sum as the prediction confidence p as the higher the
probability sum, the more certain the expected remaining training
time®.

Classify configurations: We define py,.4 as a threshold for
prediction confidence of classifying promising configurations: if
D = Pihred> then the configuration is classified as a promising config-
uration, otherwise the configuration is classified as an opportunistic
configuration or poor configuration. To distinguish between oppor-
tunistic configuration and poor configuration, we rely on the domain
knowledge as explained in §2. The remaining question is how to
determine the classification threshold ps,.4? As explained in §2,
a static threshold is insufficient and must consider available re-
sources to determine the threshold value. Next, we develop an

SNote M is actually M; because it is configuration-specific. We omit i here for ease of presentation.
®Note p is actually p; because it is configuration-specific. We omit i here for ease of presentation.

Middleware *17, December 11-15, 2017, Las Vegas, NV, USA

infused methodology for determining the threshold and making
judicious scheduling decisions.

3.2 Infused Classification & Scheduling Methodology

Ideally, if we could perfectly predict future model performance
and expected remaining time of model configurations, we could
allocate all resources to the most promising configuration(s) (i.e.,
with shortest expected remaining time). However, in practice, since
predication cannot be 100% accurate, we need to allocate resources
based on the prediction quality as well as the available resources.
The proposed search algorithm employs both an exploration and ex-
ploitation approach for resource allocation. We allocate dedicated
resources to exploit promising configurations as they are more
likely to produce high quality results; we also reserve resources
for exploring the opportunistic configurations as when more in-
formation is available, i.e., after more epochs of execution, they
may become promising. Therefore, the available resources are di-
vided into two pools accordingly: a promising resource pool and an
opportunistic resource pool (we do not allocate resources for poor
configurations). We dynamically adjust the resource division based
on the computed prediction confidence and measured prediction
accuracy. In other words, during training, we adjust the ratio of re-
sources dedicated for exploitation versus exploration as we observe
more predicted and measured results.

Assume S is the total number of slots (e.g., machines, GPUs),
which is typically much smaller than the total number of configu-
rations. Let Nygisfying(p) denote the number of configurations with
confidence p that can achieve the target performance within the
maximum experiment time that the user can tolerate, or equivalent
to {i|ERT;(p) < Tpax}, where ERT;(p) is the expected remaining
training time for configuration i to achieve the target performance
with confidence p (an extended definition of the expected remain-
ing training time ERT;). Naturally, a large Nogisfying(p) value under
the same confidence p corresponds to a large number of promising
configurations. Also, high values of confidence p typically results
in small values of Nyguisfying (P)-

To decide the effective number of slots Sefesive for promising con-
figurations, we look at the problem from two angles, their desired
number of slots S g and the deserved number of slots Syeeerved-
For any given confidence p, we consider those configurations satis-
fying the confidence as promising, i.e., the number of promising
configurations is Nygisfying(p). Assume each promising configu-
ration gets a dedicated number of slots k. For example, if a slot
represents a machine, a sequential execution of a configuration has
k = 1 What does a sequential execution of a config mean?. The
desired number of slots for promising configurations Sgesireq(p) is
equal to Nygrisfying (p) X k. On the other hand, the total number of
slots is limited by resource availability, and the number of slots
promising jobs deserve is related to the confidence p — the higher
the confidence, the more resources they shall get. We calculate the
desired number of slots as Sgeserved(p) = S X p. The actual resources
that promising jobs shall receive must be both desired and deserved,
and thus Seffective(p) = min(Sgesired(p) Sdeserved (P))-

Among all p values, we choose the one that maximizes Segective(P),
i.e., the number of slots for promising configurations is equal to
Spromising = argmaxp (Seffective(P))- These slots are assigned to run
promising configurations with dedicated resources. The remaining

Middleware *17, December 11-15, 2017, Las Vegas, NV, USA Rasley et al.

80 » 16 : 209
270 Desired Slots c 14 Desired Slots <08 [Tl
@ 60 Deserved Slots @ 12 Deserved Slots 207 |
B 30 g 10 306 J
— 40 5 8 <05]
3 30 s 6 w04 V4
£ 20 E 4 £03 7
3 10 N 5 9 ‘g 0.2
Z 0 — Z 0 5 0.1 e

£ 0
0 0102030405060.70809 0 0.1020.3040.50.60.70.809 1 0 20 40 60 80 100 120 140
p p Experiment Duration (min)

(a) Desired slots are low early on due to low

confidence. confidence.

(b) Desired slots are high later on due to higher

(c) Ratio of promising slots increases over time.

Figure 4. Allocation of resources over an experiment’s lifetime.

slots are allocated to the opportunistic resource pool, where the re-
sources are equally shared between opportunistic configurations,
e.g., in a round robin manner.

Figure 4a and Figure 4b show the number of desired slots and
deserved slots under different prediction confidence values p. Fig-
ure 4a shows a snapshot taken in the early stage of an experiment
(after about 20 min) when most of the p values are very small due
to limited history information available. Figure 4b is a snapshot
taken at a later stage of the experiment (after almost 2 hrs). From
both figures, we can see that: (1) Sgeireq(p) is @ monotonically non-
increasing function of p, since when p increases, Nygisfying(p) Will
not increase and can only decrease. (2) Sgeserved(P) is @ monoton-
ically increasing function of p, since higher p deserves more re-
sources. The cross point of the desired slot and deserved slot curves
maximizes Seffectives Which corresponds to the number of slots given
to promising configurations Spromising-

To further understand how our resource allocations change over
time, consider Figure 4c which shows how the ratio of resources
allocated for exploitation (the promising resource pool) versus re-
sources for exploration (the opportunistic resource pool) change over
the experiment’s lifetime. It is clear that at the early stage a higher
share of resources are used for exploration, however later the share
of exploitation resources increase significantly as we improve our
overall prediction quality.

4 HyperDrive Design

In designing the POP scheduling algorithm, two things became
clear: first, the concerns of the policy are largely independent of the
exact learning domain or framework, provided the scheduler can
extract the right information from the tasks; second, to efficiently
schedule the learning tasks, we needed a slightly richer interface
than that of traditional task schedulers such as YARN or Spark.
For example, we needed the ability to suspend and resume tasks
to effect resource allocation, and to convey to the policy model-
owner-defined metrics.

Our HyperDrive framework addresses these observations, and
is a step towards providing a separation between hyperparameter
search algorithms and their runtime environment.

4.1 Design Considerations

We designed HyperDrive with the following goals in mind:
Support and enable reuse of existing and future search and
scheduling algorithms. As there will be new or customized hy-
perparameter optimization methodologies, the scheduling frame-
work shall be flexible enough to allow users to swap in and out
different search and scheduling algorithms.

______ (3)

]

) G | Hyperparameter | [Aspsiat || Scheduling |
| | H . .

I I - Generator '|_ DB 1 Algorithm Policy |

Experiment
Runner
Worker
Nodes

Figure 5. HyperDrive architecture

Monitor and report job status to support dynamic resource
adjustment and early termination. To support judicious sched-
uling decisions, such as dynamic resource adjustment and early
termination, the framework should be able to monitor and report
current and history job status.

Support different learning domains by allowing inputs from
model owners. The scheduling framework should support differ-
ent learning domains (e.g., supervised, unsupervised, reinforcement
learning) by allowing model owners to specify domain specific re-
quirements.

Support different learning frameworks. There are many differ-
ent learning frameworks in use today, such as CNTK, TensorFlow,
Theano, Caffe, MXNet, etc. The scheduling framework should be
learning framework agnostic, i.e., not bound to a specific one.

4.2 HyperDrive Framework

Figure 5 shows HyperDrive architecture, which is described below.
Numbers in circles correspond to the components in the figure.

Job and Resource Management The core job and resource man-
agement components of HyperDrive (®) provide the basic ability
of executing jobs on remote machines.

The Resource Management (RM) component is responsible for
keeping track of currently allocated and idle resources (e.g., ma-
chines, GPUs). We leave its description short for brevity and its
simplicity. However, if executing HyperDrive in a cloud environ-
ment this piece is customized for the specific environment (e.g.,
reserve an Azure/AWS instance). The RM provides a simple API to
other components:

e reserveldleMachine() — machineld
o releaseMachine(machineld)

The Job Manager (JM) provides the ability to start, resume, sus-
pend, and terminate jobs on specific machines obtained from the
RM. It keeps track of each job’s state based on the actions performed
on it. The JM provides the following API to other components:

o getldleJob() — jobID
e startJob(jobID, machinelD)

HyperDrive: Exploring Hyperparameters with POP Scheduling

resume_Job(jobID, machinelD)
suspend Job(jobID, machinelD)
terminateJob(jobID, machinelD)
label Job(jobID, < float> priority)

Suspend and resume support is used to enable flexible scheduling
of jobs, which means that the framework must be able to train a
model for an unspecified amount of time, suspend training, and
then resume training later on any machine associated with the
experiment. Suspend and resume requires that training state is
saved and synchronized with the AppStat database (®), which
allows any machine to recieve the state and resume training. The
JM also provides the ability to label a job with a priority value,
which the JM uses to order idle jobs. Priority ordering is especially
important when adding a suspended job to the list of idle jobs. If no
priority is given then idle jobs are ordered according to FIFO order.

Node Agent The Node Agent (®) is daemon running on a worker
machine responsible for job execution and acting as an intermediary
between the HyperDrive scheduler and the training application
(@). All Job Manager calls from HyperDrive that deal with job
execution are received and executed by a Node Agent. In addition
all application statistics reported by the training application are
sent to its local Node Agent and then forwarded to the HyperDrive
scheduler.

Scheduling Algorithm Policy A user-provided Scheduling Algo-
rithm Policy (SAP) (®) is written in an imperative style using the
following three HyperDrive up-call events:

e Allocatejobs()
o ApplicationStat(jobEvent)
e OnlterationFinish(jobEvent)

Allocation]obs is triggered on detection of an idle resource to allow
the SAP to schedule a new job on that resource. ApplicationStat
is triggered on receiving application stats (e.g., accuracy) from
the training job to enable the SAP to store or process the data as
appropriate. Lastly, OnlterationFinish is triggered when a training
iteration finishes to allow the SAP to decide whether to continue,
suspend, or terminate the job, or collect additional statistics (e.g.,
iteration timings). We find that these simple scheduling primitives
allow us to write a diverse collection of SAPs that cover some prior
work and our own scheduling algorithm as described in §2.

A SAP is notified when a job finishes an iteration. Then it makes a

decision whether to continue training the job or terminate/suspend
the job. By default, HyperDrive uses a schedule-as-it-goes approach
to maximize resource usage since configurations with short epoch
durations do not need to wait for those with long durations. Hy-
perDrive also supports barrier-like epoch scheduling, which some
SAPs may prefer as it can help explore job configurations in a
breadth-first-style (i.e., executing many jobs for a short period of
time in each round). Barrier-like epoch scheduling can be achieved
by allowing the SAP to suspend jobs at every epoch boundary.
Default SAP The default SAP simply greedily allocates idle jobs
to idle machines, which is implemented by starting as many idle
jobs (via start Job) as there are idle machines. This policy ignores
all application statistics and iteration finish up-calls, but provides a
simple base for more advanced SAPs.
Hyperparameter Generator The Hyperparameter Generator (@,
HGQG) is responsible for generating specific parameter values within
ranges specified by the experiment runner. The generator imple-
mentation is pluggable as long as it provides the following API:

Middleware *17, December 11-15, 2017, Las Vegas, NV, USA

e createJob() — (jobID, hyperparameters)

o reportFinalPer formance(jobID, per formance)
We consider the use of several different HG techniques, which are
built separate from HyperDrive itself. Along with more complicated
approaches we have built simple random and grid search techniques
as HGs, where a user-provides the parameter names and search
ranges. The HG then selects new random or grid values upon each
call to create Job. In these approaches the reportFinalPer f ormance
call is not used.

Adapative techniques (e.g., Bayesian optimization) are popular
alternatives to random and grid search and used in in frameworks
like HyperOpt [18], Auto-WEKA [28], Spearmint [24], and GPy-
Opt [5]. These frameworks generate new hyperparameter values
based on the observed performance of previous values. These type
of approaches can be plugged into HyperDrive with the use of a
shim that exposes the HG APL
AppStat Database The application statistics database (AppStatDB
®) is used to store and retrieve model-generated application sta-
tistics such as performance stats (e.g., accuracy, reward), epoch
duration, etc. In addition the AppStatDB stores model state used
to enable suspend and resume training across machines. The App-
StatDB is used to sharea state between the SAP, Hyperparameter
Generator, and training job itself.

Experiment Runner (Client) The Experiment Runner (®) is re-
sponsible for specifying the following items when running an ex-
periment with HyperDrive:
e Search Algorithm Policy to use (with any SAP specific pa-
rameters)
e Hyperparameter generation technique along with parame-
ter names and search ranges
e Model training files to run on remote machines
e Total number of machines

5 HyperDrive Implementation

We implemented a HyperDrive prototype based on the compo-
nents described in §4 in Python. All communication between the
scheduler, node agents, and applications is done via GRPC [1]. We
implemented two HyperDrive application libraries in Python and
C++ that we use to support Theano, Keras, TensorFlow, and Caffe.

5.1 Suspend & Resume Support

The ability to suspend and resume training jobs is an important
feature of HyperDrive. Typical learning frameworks provide func-
tionality to snapshot and restore training job state, which simplifies
implementing suspend and resume in HyperDrive. However, if a
model uses state external to the underlying framework (e.g., Python
models using TensorFlow/Theano) it can be difficult to snapshot all
framework and model state together for simple suspend/resume.
In this case, of mixed state utilize CRIU [2], a tool for snapshotting
and restoring arbitrary application state, to implement suspend and
resume.

5.2 Learning Curve Prediction

We implemented the learning curve prediction model by adapting
a public implementation 7 of the model from [11]. The overhead
of running the unmodified learning curve prediction model for a
single learning curve can time consuming (several minutes). We

"https://github.com/automl/pylearningcurvepredictor

Middleware *17, December 11-15, 2017, Las Vegas, NV, USA

identify three optimizations for performing parallel learning curve
prediction in HyperDrive.

Reduce total MCMC samples. At its core the learning curve
prediction module uses a computationally expensive Markov Chain
Monte Carlo (MCMC) inference technique to predict future training
performance. In order to reduce the total time to create the learning
curve prediction model we reduced the total number of MCMC
samples from 250,000 (nwalkers=100, nsamples=2500) to 70,000
(nwalkers=100, nsamples=700). This reduced our learning curve
prediction time by over 2x without significant degradation in our
policy’s performance.

Distributed Curve Prediction. A simple implementation of Hy-
perDrive would run all learning curve prediction at the central
scheduler. However, this approach does not scale as the number
of Node Agents increases since training jobs may require simul-
taneous curve predictions. Instead we push the learning curve
prediction to the Node Agents. The Node Agents keep track of the
curve history for each job they are responsible for and report to
the central scheduler the results of a prediction. If a training job is
suspended and resumed on different machines the learning curve
history is sent to the new Node Agent when the job is resumed.
Overlap training and prediction. A simple prediction implemen-
tation would block training while the prediction is computed. In-
stead, as soon as the Node Agent detects that prediction should be
started it does so in parallel to training. We have found, and our
evaluation shows, that the end-to-end performance gains outweigh
any slowdown that the training may experience due to resource con-
tention. Although a similar approach was taken by [11], resource
contention was not an issue since training was done exclusively on
GPUs and prediction on CPUs. Our evaluation covers both CPU
and GPU-based training using this strategy.

5.3 Scheduling Policies

We now describe how we use HyperDrive to implement three sched-
uling policies used in our evaluation: the POP policy from §3 and
two state-of-the-art policies from prior work: a bandit allocation
policy from [25], and an early termination policy from [11].

POP We implement the POP algorithm as described in §3. When
OnlterationFinish is called the policy checks to see if the current
iteration (n) is on an evaluation boundary (b), if so we perform
several steps. We first compute the expected number of iterations
the job has remaining (k) Then compute our p value for the job as
described in §3. In order to calculate our desired and deserved slots
we compute the tail distribution across all currently active (non-
terminated) job’s p values. Then compute our dynamic pspyeshold-
Then compare our threshold to all active jobs and determine if they
are in our promising resource pool or not, we label each promising
job (using label Job) with a priority value of p. Lastly, if the job is
opportunistic we suspend it and start a new job.

We now discuss domain and task-level knowledge we incorpo-
rate into POP to prune poor configurations. Before computing any
learning prediction we first check to see if the job’s performance
has passed a user-defined kill-threshold based on the specific learn-
ing task. For example, in the CIFAR-10 task (discussed in §6.1) it
is known that random non-learning validation accuracy is 10%,
therefore we set the kill-threshold to a value slightly over random
accuracy at 15%. In our LunarLander reinforcement-learning task
(discussed in §6.1) we know that non-learning performance is -100

Rasley et al.

therefore we set our kill-threshold to -100. In addition, in order to
prune off jobs that are unlikely to achieve our target, we compare a
job’s p value against a lower-bound threshold, if it is less than 0.05
we terminate it. Lastly, we set b to 10 for supervised-learning and
to 2,000 for reinforcement-learning.

Bandit Our Bandit policy is based on the action elimination algo-
rithm [12] used by TuPAQ [25] in their bandit allocation strategy.
We extend the Default SAP described in §4. Model performance
stats are sent to the policy every epoch, the SAP keeps track of
the global best model performance (globalBest) along with the best
model performance per job (jobBest). When OnlterationFinish is
called the SAP checks to see if the current iteration is on an evalua-
tion boundary (b), if so it checks if jobBest * (1 + €) > globalBest.
If true, the job continues training, if false the policy terminates the
job. Based on prior work [25], € is set to 0.50 and b is set to 10 for
supervised-learning. Prior work focused on supervised-learning,
therefore we have no guidance on setting an evaluation boundary
for reinforcement-learning. Thus, we use the same value as our
POP policy (i.e., 2,000 iterations).

EarlyTerm The EarlyTerm policy is a parallel version of prior
work [11] that introduced the learning curve prediction model
used in our POP policy, we use the same optimizations here as
described in §5.2. Like Bandit, we extend the default SAP. The
EarlyTerm policy implements the “predictive termination criterion”
described in [11]. Model performance stats are sent to the policy
where it keeps track of the full history of performance across each
job, along with § which is the global best model performance seen.
When OnlterationFinish is called the policy checks if the current
iteration (n) is on an evaluation boundary (b), if so it computes
Poal = P(Ym = 9ly1:n) using its probabilistic model. If p,,,; <
then the job is immediately terminated. The value of m is set to
the max epoch set for the training jobs. We use the same b value
of 30 and § to 0.05 as [11]. Similar to the Bandit policy, prior work
provides no guidance on b values for reinforcement-learning, thus
we use the same value as our POP policy (i.e., 2,000 iterations).

6 Evaluation

We evaluate the effectiveness of our proposed POP scheduling
algorithm and HyperDrive framework in two different domains:
supervised-learning (§6.2) and reinforcement-learning (§6.3).

6.1 Experimental Setup

Scheduling Policies. In each learning domain, we compare POP
against three baseline approaches: (1) Default, (2) Bandit, and (3)
EarlyTerm. The Default policy (see §4) schedules jobs greedily on
idle machines and runs them until completion (i.e., a max number
of epochs). Bandit and EarlyTerm are based on prior work and their
implementation is described in §5.3.

Workloads. For supervised learning, we use a popular image clas-
sification task, CIFAR-10 [20], that classifies 32x32 images into 10
categories (e.g., cat, truck). We use a convolutional neural network
(CNN) based on the layers-18pct configuration from Krizhevsky’s
cuda-convnet [19]. Even though this model does not have state-of-
the-art accuracy, it is a popular version coming with Caffe. State-of-
the-art models often employ data augmentation and/or intensive
preprocessing steps, which are orthogonal to hyperparameter explo-
ration that our work focuses on. We follow the standard approach

HyperDrive: Exploring Hyperparameters with POP Scheduling

of training on 50k images and evaluating model performance on a
validation dataset of 10k images.

For reinforcement learning, we use a model for a popular task
from the OpenAl Gym [17] called “LunarLander”. LunarLander
comes from a game where an agent has control over a lander to do
four discrete actions: do nothing, fire left engine, fire main engine,
or fire right engine. The environment rewards the agent based on
how efficiently it uses its resources to successfully land between two
goal posts (without crashing). The problem is considered “solved”
if the agent consistently achieves an average reward of 200 over
100 consecutive trials. If the lander crashes it receives a reward of
-100 and the trial ends. We use a model written in Keras [9] and
Theano [6] provided by the authors of [4]. Different than supervised-
learning that uses validation accuracy as its performance metric,
reinforcement-learning uses reward.

Hyperparameter Sets. To ensure fair comparison, we use the
same set of hyperparameters for evaluation, i.e., using the same
random search Hyperparameter Generator with the same initial
random seed. The hyperparameter set consists of 100 configura-
tions for both supervised and reinforcement learning experiments.
Specifically, we explore up to 14 different hyperparameters for
CIFAR-10 with the same hyperparameters and value ranges as in
Table 3 of [11]. We explore 11 different hyperparameters for ‘Lu-
narLander” and we use ranges and values provided by the authors
of the model [4].

Testbed. We conduct live GPU experiments for supervised-learning
on a private 4-machine GPU cluster that we refer to as private-
cluster. We co-locate the HyperDrive scheduler with one of the
training machines in the cluster. Each machine is equipped with an
Intel Xeon E5-2680 v2 2.80GHz CPU, 128 GB of memory, 10 Gbps
network connectivity, and one Tesla K40m GPU. We use Ubuntu
14.04.5 LTS with Python 2.7.6, CUDA v8.0.44, and the CuDNN
library v5.1.10. We use a version of Caffe 1.0.0-rc3 that we modified
to report application metrics (e.g., accuracy) to a local Node Agent
running on the same machine.

We conduct reinforcement-learning experiments on AWS. We
use 15 c4.xlarge instances for training and a single m4.xlarge in-
stance for running the HyperDrive scheduler. Each training ma-
chine uses Ubuntu 16.04.02 LTS, Python 2.7.12, Theano 0.9.0, and
Keras 1.1.0. For suspending and resuming a configuration, we in-
corporate CRIU 2.6 into HyperDrive.

Non-Determinism. A challenge with evaluating scheduling algo-
rithms for hyperparameter exploration is non-determinism that

comes from the asynchronous nature of model training algorithms [22].

We observe that this non-determinism could vary model perfor-
mance at a given epoch by up to 2%. To reduce the effect of this
non-determinism, we run each experiment multiple times: 10 times
for supervised learning and 5 times for reinforcement learning.

6.2 Supervised-Learning
6.2.1 Job Execution Duration

Figure 6 shows the distribution of job execution durations for POP,
Bandit, and EarlyTerm. POP spends considerably less time across
all jobs than the other policies, this is especially the case when
looking at longer running jobs. Particularly we see that Bandit and
EarlyTerm spend around 30 min or more on almost 15% of jobs,
where POP spends 30 min or more on only 5% of jobs. We see in

Middleware *17, December 11-15, 2017, Las Vegas, NV, USA

! —
08 - "
0.7 —f
= 0.6 [}
8035
o 04 - POP ——
03 - Bandit
0.6 ‘ ‘Ear}yTe‘rm)

0 10 20 30 40 50 60 70 80 90 100
Job Execution Duration (min)

Figure 6. Job execution duration distribution comparing different
scheduling policies with supervised-learning workload.

(=]
(=]

(=
(=]

[«
(=]

E]

= D W B WU R
(= (=
S (=]

(=]
(=]

(=]

Time to Reach Target (min)

POP Bandit
Figure 7. Time to reach target validation accuracy (CIFAR-10).

EarlyTerm

the following section that by spending less time overall executing
less-promising jobs we are able to achieve improved performance.

6.2.2 Scheduling Performance Comparison

We evaluate the performance of different policies by comparing
the training time to reach a given target accuracy using the same
cluster. We select a target accuracy of 77% based on the domain
knowledge of our CIFAR-10 model [19], which is close to the best
accuracy reported for this model. Our choice of this model is dis-
cussed in §6.1. For each policy, we repeat the experiment 10 times.
The results are presented in Figure 7 as box plots showing the dif-
ferent quartiles for achieving the target accuracy under each policy.
On average POP reached the target accuracy in only 2.8 hours,
whereas Bandit took 4.5 hours and EarlyTerm took 6.1 hours. POP
outperforms Bandit by 1.6x and outperforms EarlyTerm by 2.1x.
In addition, the difference between the minimum and maximum
training times using POP is much smaller (around 2x) than Bandit
and EarlyTerm. Even the worst performing run of POP is faster
than the best case of the Bandit and EarlyTerm. This indicates that
POP is not only faster in reaching target accuracy, but also offers
more stable performance, thanks to its judicious classification and
scheduling. We experimented with different training accuracy tar-
gets and different variations of CIFAR-10 and the observations are
consistent. In the interest of space, we omit the results here.

6.2.3 Scheduling Overhead

The advantages of HyperDrive with POP are at the cost of extra
scheduling overhead compared to other approaches. The cost of sus-
pending & resuming training jobs can incur higher overhead than
other scheduling algorithms. Suspending training jobs involves cap-
turing model state that enables later resumption of training. The
captured model state of different jobs are sent to HyperDrive for
storage and dissemination. Therefore, the overhead includes sus-
pend/resume time and storage costs for model state. In this study
we measure suspend latency, which measures the time between
when the scheduler sends a suspend request to the Node Agent
until the scheduler finishes stored the model state. For brevity we
omit additional figures, and instead summarize our findings here.

Middleware *17, December 11-15, 2017, Las Vegas, NV, USA

300
200 jo
100 NTNM‘ Y i
0 - 4 A
-100 - w&mﬁm
2200 o
-300
-400
-500
-600

Reward

0 2 4 6 8 10 12 14 16 18 20
Episode Trials (1k)

Figure 8. Performance of 15 randomly selected LunarLander model
configurations over 20,000 episode trials.

On average this latency is only 157.69 ms with a standard devia-
tion of 72 ms. We observe the 95th percentile latency to be 219 ms
and a maximum of 1.12 sec. In terms of the model state size we
observe an average total size of 357.67 KB with a standard devia-
tion of 122.46 KB. We observe the 95th percentile to be 685.26 KB
and a maximum of 686.06 KB. We find in practice and show in our
end-to-end evaluation results that these overheads show negligible
impact on scheduling and training performance.

6.3 Reinforcement-Learning

Figure 8 shows the performance of 15 randomly selected LunarLan-
der configurations. Unlike supervised-learning, we observe that
many jobs learn for some period of time and then experience what
we call a “learning-crash”, in which the reward falls and remains at
or below a non-learning value. In the plot, the non-learning value
is -100, which is related to the negative reward given by the en-
vironment when the lander crashes. We observe that over 50% of
jobs are non-learning and should not be fully executed.

Reward values in the LunarLander task generally range between
-500 and 300, in order for any scheduling policy to compare rela-
tive performance between configurations, we normalize all reward
values using min-max scaling. We transform every reward value r
as follows:

Tnorm = M, 4
"max — "'min

In our experiments, we use i, = —500 and rpyex = 300. The upper-
bound range (rmqx) is determined by the environment and task
while the lower bound range (rn) is determined empirically (we
use this method) by observing a small number of poor performing
runs or can by calculated the time allowed per episode and the
maximum number of actions allowed.

6.3.1 Scheduling Performance Comparison

A priori target performance is common in many reinforcement-
learning tasks. In LunarLander, the environment explicitly sets a
“solved” condition that can be used as our target, i.e., an average
reward of 200 over 100 consecutive trials.

Figure 9 presents the time to reach target results for each policy.
We repeat the same experiment five times for each policy. We ob-
serve POP achieves a median time to target 2.07x faster than Bandit
and 1.26x faster than EarlyTerm. Again, training time variations
are much lower for POP compared to Bandit (9.7x smaller) and Ear-
lyTerm (3.5x smaller) policies. These results show that compared
to state-of-the-art approaches, HyperDrive with POP is faster in
reaching target accuracy, and also more stable performance-wise
for reinforcement learning.

Rasley et al.

250
200

|
I

—_
(=3
(=}

wn
(=}

Time to Reach Target (min)

o

POP Bandit EarlyTerm
Figure 9. Time to reach target reward (LunarLander).

0.8 08
E 0.6 = 06
o
O 04 O 04
0.2 02
0 | 1 | | I 0 | | | | |
4 8 12 16 20 24 24 28 32 36 40 44

Suspend Latency (sec) Model Snapshot Size (MB)

Figure 10. Suspend latency (left) and snapshot size (right) distri-
butions for LunarLander workload.

6.3.2 Scheduling Overhead

We use CRIU to assist suspending/resuming training jobs. When a
training job is suspended, all of its processes state is snapshotted
and transferred back to HyperDrive. Instead of adding save/resume
support to our model we use a more general approach using CRIU
to snapshot the entire process state. We recognize that this method
may incur higher overhead than a custom solution for our model.
This study measures the overhead of suspending our LunarLander
training job from the perspective of HyperDrive. Figure 10 presents
the distributions of both suspend latency and model snapshot size.
We see that model size does not exceed 43.75 MB and latency does
not exceed a maximum of 22.36 sec, which is considerably small
compared with job training time.

In summary, POP is faster in reaching target performance and
more stable for different learning domains compared to state-of-
the-art approaches such as Bandit and EarlyTerm.

7 Sensitivity Analysis

In this section, we perform sensitivity analysis relating to the re-
source capacity and configuration order for both supervised and
reinforcement learning using different polices. Due resource con-
straints, we opt for developing a simulator to perform sensitivity
analysis. To ensure accurate simulation, we feed the simulator with
traces collected from live system experiments.

7.1 Simulator

Our goal is to compare the scheduling efficiency (i.e., time to reach
target accuracy) between different policies under different resource
capacities and configuration orders. We develop a trace-driven
simulator consisting of the following three main components, see
Figure 11:

e Trace Generator collects the traces from live system ex-
periments and creates a replayable workload that contains
iteration timing and performance metrics. In addition, the
Trace Generator can create traces by changing the configu-
ration orders. This feature is useful to conduct sensitivity
analysis of configuration orders.

HyperDrive: Exploring Hyperparameters with POP Scheduling

e Simulator Engine is a trace-driven discrete event simula-
tor that accurately emulates the execution process of Hy-
perDrive, i.e., the order of configurations and the resource
management logic.

e Pluggable Scheduling Policy dictates the scheduling de-
cisions on configuration ordering and the resources allo-
cated to different configurations over time.

To validate the accuracy of our simulator, we compare the simu-
lation results with the live system results using different policies
in Figure 12a, which shows the time to reach target accuracy for
LunarLander using 15 machines. We see the simulation results are
quite accurate, i.e., compared to the live system results, the max
error of simulation is only 13%, which is well below the error bar
of live system results.

Live System
Experiments

Accuracy | Node D | ...
14840 1 29 min 0.28 3

Simulator Engine

Figure 11. Simulator Design.

7.2 Supervised-Learning

All simulator traces for supervised-learning are collected from live
AWS runs using 4 g2.2xlarge instances (one K520 GPU each)® for
training and one m4.xlarge instance for the HyperDrive scheduler.

7.2.1 Sensitivity Analysis of Resource Capacity

We study the sensitivity of resource capacity (i.e., total number
of machines) by comparing the time it takes to reach our target
validation accuracy (77%) for different policies using CIFAR-10.
Figure 12b presents the results of simulation experiments. As we
would expect, the time to achieve our target improves with more
machines across all of our scheduling policies. POP always outper-
forms other policies under different resource capacities. In addition,
with larger resource capacities, POP shows even more performance
improvement to the second best policy. These results verify the
effectiveness of our POP policy when using different amounts of
resources.

7.2.2 Sensitivity Analysis of Configuration Order

The configuration order that a scheduling policy sees can heavily
impact experiment performance. For example, since configurations
are generated randomly it’s possible an exhaustive search tech-
nique could “luckily” pick the optimal configuration as the first
configuration (or in the first batch of configurations) to explore, its
performance can be as good as or even better than any sophisticated
policies. In order to understand the sensitivity of configuration or-
der for different policies, we run simulation experiments with 25
random configuration orders on 5 machines. The results presented
in Figure 12c demonstrate the distribution of time to reach target
validation accuracy under different polices. It is clear that POP
yields much better performance in all percentiles. In addition, it is
also more consistent in performance than other policies, e.g., POP

8The K520 GPU is slower than the K40m GPU used in our private-cluster.

Middleware *17, December 11-15, 2017, Las Vegas, NV, USA

has a maximum difference in completion time of 4.05 hours com-
pared to Bandit with 8.33 hours, EarlyTerm with 8.50 hours, and
Default with a staggering difference of 25.74 hours. These results
suggest POP is less sensitive to configuration order and therefore
is more reliable.

7.3 Reinforcement-Learning

We collected traces for reinforcement-learning experiments from
running live experiments on AWS using 15 c4.xlarge instances
for training and a single m4.xlarge instance for the HyperDrive
scheduler. We conduct the same sensitivity analysis of resource
capacity and configuration order for reinforcement-learning as for
supervised-learning. We observe similar results as in supervised-
learning. In the interest of space, we omit the results and detailed
discussion here.

8 Related Work

We discuss related hyperparameter optimization work for ML/DL models.
Learning Curve Prediction. Several pieces of related work present
learning curve prediction models [11, 16, 26]. This prior work could
be used as a drop-in replacement for the learning curve predic-
tion model in our POP algorithm, we currently employ [11]. This
line of work is complementary to POP, where we focus on how to
effectively use them for classification and resource management.
Hyperparameter Generation. Several pieces of prior work [5, 14,
18, 24, 28] have moved beyond grid/random-based hyperparameter
generation towards exploiting Bayesian optimization. Based on
the accuracy of the configurations that have executed, they assign
higher probability to exploit the areas of the hyperparameter space
that contain likely-good or unknown configurations. This line of
work is complementary to POP, where we can plug in different
hyperparameter generation techniques. Our focus is to decide how
much resources to map to the current set of configurations.
Sequential Search Algorithms. HyperBand [21] uses a multi-
armed bandit approach for hyperparameter exploration. They use
random search hyperparameter generation along with an aggres-
sive bandit-based pruning technique. Swersky et al. [26] propose
to suspend and resume uncompleted training jobs during model
search, incorporating partial training information with learning
curve prediction. Their prediction model does not seem to work
well for deep neural networks as discussed in [11]. In comparison,
both prior work focus on using a sequential execution of models
while POP is designed for speeding up model exploration using
multiple machines and exploiting resource usage along the spatial
dimension.
Parallel Search System. Recently, distributed computing frame-
works such as YARN [27] and Spark [30] have recognized the im-
portance of parallel hyperparameter exploration [13]. The proposed
approaches enable parallel job execution for grid and random search.
They do not support active monitoring of job metrics, early termi-
nation and dynamic resource allocation among configurations.
TuPAQ [25] is closely related, we present an overview of its
bandit algorithm in §5.3. POP employs job execution history for
improved prediction and uses the predicted accuracy and confi-
dence to enhance scheduling decision, while TuPAQ looks at the
instantaneous accuracy of jobs when deciding who to terminate.
In terms of system framework, TuPAQ focuses on a single learning
domain (supervised) and computation framework (MLBase), while

Middleware *17, December 11-15, 2017, Las Vegas, NV, USA Rasley et al.
- = 1600
= 250 T | T 1
E Live System B2 Simulator =28 £ 1400 POP m— 09 ’ r‘_'
< 200 T g, 1200 Bandit == 08 -~
g, 2 EarlyTerm & 07 I
1000 Default D)} |
5 e 2 0.6 !
£ 150 5 800 805 -
= .
S 100 g 600 Co4 —f POP ——
2 % 400 f 03— Bandit
2 5 5 200 ﬂ L 8% Earlny:rm
g E 0 - L mE Iﬂ o 0 L I | D‘efdul‘t
E 0 5 10 15 20 0 200 400 600 800 1000 1200 1400 1600
POP Bandit EarlyTerm Total Machine Budget Time to Reach Target (min)

(a) Simulator validation (LunarLander).

(b) Resource capacities (CIFAR-10).

(c) Random job orderings (CIFAR-10).

Figure 12. Sensitivity analysis via simulation.

HyperDrive is designed as a comprehensive framework supporting
different algorithms across frameworks and domains. For perfor-
mance, our evaluation results (in §6 and §7) show POP consistently
out-performs our Bandit policy, which is based on TuPAQ.

9 Discussion

Epoch durations. Our POP policy assumes epoch durations re-
main relatively constant during training (see §3.1.1). Epoch dura-
tions may differ between unique sets of hyperparameter values
but for a specific configuration this duration remains relatively
constant. This behavior is common in learning domains evaluated
in this work (supervised and reinforcement), however we leave
evaluating other domains that may experience non-constant epoch
durations (e.g., genetic algorithms) to future work.

Learning curve prediction. Our POP policy relies on a learning
curve prediction model. In this paper, we choose the model pro-
posed in prior work [11] (which has been studied with extensive
evaluation) for this component, we have found it to work well for
the workloads we are using. In addition, we design the learning
curve prediction module as a pluggable component of HyperDrive,
so users can easily switch to other prediction methods as preferred.
Learning curve prediction is an active area of research [11, 16, 26]
and we foresee no issue using different approaches as research
advances in this area.

User inputs. Our POP policy aims to achieve a training goal within
specific time/resource constraints, therefore it requires as input a
maximum experiment time (T,4x) and target performance (yYsarget)-
Specifying Tpqx requires some knowledge related to typical configu-
ration training time, since a too small T4y may result in insufficient
time to finish model training. Setting yyarger is natural for domains
with known goals, such as our LunarLander task (see §6.3). How-
ever, if a ytgrger is unknown we have successfully used a dynamic
target approach to automatically adjust ytarger by gradually increas-
ing the target once it is reached. In the interest of space, we leave
the details and evaluation of this approach to future work. In our
work with practitioners we have found that before starting hyper-
parameter exploration for their model they have a good idea about
both of POP’s required inputs.

POP, Bandit, and EarlyTerm policies all require a user-defined
evaluation boundary (b) to be specified. Setting this value is a
common problem in the space of early-termination policies. Like
in prior work, b is model/domain specific and should reflect the
time it takes to compute model performance and how long a user
is willing to let a configuration execute before possible termination.
We have found success with a heuristic of setting b to be between
5-10% of the max epoch for a job. We leave automatically setting
this parameter to future work.

Ongoing Work. HyperDrive enables model owners to schedule
resources based on monitored application-level metrics. Typically
there is a primary metric being optimized (e.g., accuracy) which is
what POP utilizes. However, additional metrics of concern can be im-
pacted by hyperparameter choices as well, such as inference/serving
latencies, model sparsity/compressibility, etc.

We have seen promising early results exploring hyperparameters
specific to models that use Long Short-Term Memory (LSTM) units.
We are working together with authors of recent work on improv-
ing CNN model sparsity [29]. The work aims to reduce the size of
LSTMs structurally, for both storage saving and computation time
saving, without perplexity loss (the primary metric for our task).
This is done through the use of group Lasso regularization [32],
which adds enforcement on each group of a model’s weights. The
method uses a new hyperparameter (i.e., A) which makes a trade-off
between sparsity and model perplexity. We have evaluated several
state-of-the-art models from recent work [23, 33] with a new Hyper-
Drive policy, exploring A values (plus other hyperparameters) while
monitoring both perplexity and a sparsity-related metric. We have
seen significantly reduced training times by enabling user-defined
global termination criteria through HyperDrive’s SAP APL

Lastly, we are working with Microsoft engineers to produc-
tize HyperDrive internally, which will continue improving Hy-
perDrive’s usability, scalability, and effectiveness. Hyperparameter
exploration will continue to be an active research area but currently
there are limited options to develop/evaluate parallel approaches
that incorporate techniques along both hyperparameter generation
and scheduling (e.g., early termination, suspend/resume).

10 Conclusion

This paper presents an approach for improving the efficiency of
developing machine learning models by optimizing hyperparame-
ter exploration. Our approach includes two techniques: (i) the POP
scheduling algorithm and (ii) the HyperDrive framework. POP em-
ploys dynamic classification of model configurations and prioritized
resource scheduling to discover high-quality models faster than
state-of-the-art approaches. HyperDrive is a flexible framework
that enables convenient evaluation of different hyperparameter
exploration algorithms to improve the productivity of practitioners.
We present experimental results that demonstrate the performance
benefits of using POP and HyperDrive to develop high-quality
models in supervised and reinforcement learning domains.

Acknowledgements: We thank our shepherd, Marco Canini, and
anonymous reviewers for their valuable comments; those at Mi-
crosoft helping to productize HyperDrive, Radu Kopetz, Prasanth
Pulavarthi, Sherlock Huang, Yue-Sheng Liu; Kavosh Asadi for provid-
ing the RL model; early HyperDrive users Minjia Zhang and Wei Wen;
Trishul Chilimbi for supporting the initial effort and brainstorming.

HyperDrive: Exploring Hyperparameters with POP Scheduling

References

(1]
(2]
(3]

(71

[12]

[13]

[14]

[15]

[16]

[17]

2017. A high performance, open-source universal RPC framework. https://grpc.io.
(2017).

2017. Checkpoint/Restore In Userspace (CRIU). https://criu.org/. (2017). Accessed:
2017-09-13.

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jef-
frey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Is-
ard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G.
Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-
Scale Machine Learning. In 12th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 16). USENIX Association, GA, 265-283. https:
//www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
Kavosh Asadi and Jason D. Williams. 2016. Sample-efficient Deep Reinforcement
Learning for Dialog Control. CoRR abs/1612.06000 (2016). http://arxiv.org/abs/
1612.06000

The GPyOpt authors. 2016. GPyOpt: A Bayesian Optimization framework in
python. http://github.com/SheffieldML/GPyOpt. (2016).

James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pas-
canu, Guillaume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua
Bengio. 2010. Theano: A CPU and GPU Math Compiler in Python . In Proceedings
of the 9th Python in Science Conference, Stéfan van der Walt and Jarrod Millman
(Eds.). 3 - 10.

J. Bergstra, D. Yamins, and D. D. Cox. 2013. Making a Science of Model Search:
Hyperparameter Optimization in Hundreds of Dimensions for Vision Archi-
tectures. In Proceedings of the 30th International Conference on International
Conference on Machine Learning - Volume 28 (ICML’13). JMLR.org, I-115-1-123.
http://dl.acm.org/citation.cfm?id=3042817.3042832

Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman.
2014. Project Adam: Building an Efficient and Scalable Deep Learning Training
System. In 11th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 14). USENIX Association, Broomfield, CO, 571-582. https:
//www.usenix.org/conference/osdi14/technical-sessions/presentation/chilimbi
Frangois Chollet. 2015. Keras. https://github.com/fchollet/keras. (2015).

] Ronan Collobert, Samy Bengio, and Johnny Mariéthoz. 2002. Torch: A Modular

Machine Learning Software Library. Idiap-RR Idiap-RR-46-2002. IDIAP.

Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. 2015. Speed-
ing Up Automatic Hyperparameter Optimization of Deep Neural Networks
by Extrapolation of Learning Curves. In Proceedings of the 24th International
Conference on Artificial Intelligence (IJCAI'15). AAAI Press, 3460-3468. http:
//dl.acm.org/citation.cfm?id=2832581.2832731

Eyal Even-Dar, Shie Mannor, and Yishay Mansour. 2006. Action Elimination and
Stopping Conditions for the Multi-Armed Bandit and Reinforcement Learning
Problems. Journal of machine learning research 7, Jun (2006), 1079-1105.

Tim Hunter. 2016. Deep Learning with Apache Spark
and TensorFlow. https://databricks.com/blog/2016/01/25/
deep-learning-with-apache-spark-and-tensorflow.html. (January 2016).

F. Hutter, H. H. Hoos, and K. Leyton-Brown. 2011. Sequential Model-Based Opti-
mization for General Algorithm Configuration. In Proc. of LION-5. 5074A$523.
Yanggqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Caffe: Convolutional
Architecture for Fast Feature Embedding. arXiv preprint arXiv:1408.5093 (2014).
Aaron Klein, Stefan Falkner, Jost Tobias Springenberg, and Frank Hutter. 2017.
Learning curve prediction with Bayesian neural networks. Proc. of ICLR 17
(2017).

Oleg Klimov. 2017.
LunarLander-v2. (2017).

LunarLander-v2. https://gym.openai.com/envs/

[19

[20]

[21

[22]

[24

[25]

[26]

[27]

(28]

[30]

[31

(32]

[33

Middleware *17, December 11-15, 2017, Las Vegas, NV, USA

Brent Komer, James Bergstra, and Chris Eliasmith. 2014. Hyperopt-sklearn:
automatic hyperparameter configuration for scikit-learn. In ICML workshop on
AutoML.

Alex Krizhevsky. 2017. cuda-convnet. https://code.google.com/p/cuda-convnet/.
(2017).

Alex Krizhevsky and Geoffrey Hinton. 2009. Learning multiple layers of features
from tiny images. (2009). Technical report, University of Toronto.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet
Talwalkar. 2017. Hyperband: Bandit-based Configuration Evaluation for Hyper-
parameter Optimization. Proc. of ICLR 17 (2017).

Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. 2011. Hogwild:
A Lock-Free Approach to Parallelizing Stochastic Gradient Descent. In Advances
in Neural Information Processing Systems 24,]. Shawe-Taylor, R. S. Zemel, P. L.
Bartlett, F. Pereira, and K. Q. Weinberger (Eds.). Curran Associates, Inc., 693-701.
Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi.
2016. Bidirectional Attention Flow for Machine Comprehension. arXiv CoRR
abs/1611.01603 (2016). http://arxiv.org/abs/1611.01603

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. 2012. Practical bayesian
optimization of machine learning algorithms. In Advances in neural information
processing systems. 2951-2959.

Evan R. Sparks, Ameet Talwalkar, Daniel Haas, Michael J. Franklin, Michael L.
Jordan, and Tim Kraska. Automating Model Search for Large Scale Machine

Learning. In Proceedings of the Sixth ACM Symposium on Cloud Computing (SoCC
2015). 13. DOI: https://doi.org/10.1145/2806777.2806945

Kevin Swersky, Jasper Snoek, and Ryan Prescott Adams. 2014. Freeze-Thaw
Bayesian Optimization. arXiv preprint arXiv:1406.3896 (2014).

Wangda Tan and Vinod Kumar Vavilapalli. 2017. Distributed Tensor-
Flow Assembly on Apache Hadoop YARN. https://hortonworks.com/blog/
distributed-tensorflow-assembly-hadoop-yarn/. (March 2017).

Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2013.
Auto-WEKA: Combined Selection and Hyperparameter Optimization of Clas-
sification Algorithms. In Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD ’13). ACM, New York,
NY, USA, 847-855. DOI: https://doi.org/10.1145/2487575.2487629

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. 2016. Learning
Structured Sparsity in Deep Neural Networks. In Advances in Neural Information
Processing Systems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and
R. Garnett (Eds.). Curran Associates, Inc., 2074-2082. http://papers.nips.cc/
paper/6504-learning-structured-sparsity-in-deep-neural-networks.pdf

Lee Yang, Jun Shi, Bobbie Chern, and Andy Feng. 2017. Open
Sourcing TensorFlowOnSpark: Distributed Deep Learning on Big-
Data Clusters. http://yahoohadoop.tumblr.com/post/157196317141/
open-sourcing-tensorflowonspark-distributed-deep. (February 2017).

Dong Yu, Adam Eversole, Mike Seltzer, Kaisheng Yao, Oleksii Kuchaiev, Yu
Zhang, Frank Seide, Zhiheng Huang, Brian Guenter, Huaming Wang, Jasha
Droppo, Geoffrey Zweig, Chris Rossbach, Jie Gao, Andreas Stolcke, Jon Currey,
Malcolm Slaney, Guoguo Chen, Amit Agarwal, Chris Basoglu, Marko Padmilac,
Alexey Kamenev, Vladimir Ivanov, Scott Cypher, Hari Parthasarathi, Bhaskar
Mitra, Baolin Peng, and Xuedong Huang. 2014. An Introduction to Computational
Networks and the Computational Network Toolkit. Technical Report.

Ming Yuan and Yi Lin. 2006. Model selection and estimation in regression with
grouped variables. Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 68, 1 (2006), 49-67.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. 2014. Recurrent Neural
Network Regularization. arXiv CoRR abs/1409.2329 (2014). http://arxiv.org/abs/
1409.2329

https://grpc.io
https://criu.org/
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
http://arxiv.org/abs/1612.06000
http://arxiv.org/abs/1612.06000
http://github.com/SheffieldML/GPyOpt
http://dl.acm.org/citation.cfm?id=3042817.3042832
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/chilimbi
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/chilimbi
https://github.com/fchollet/keras
http://dl.acm.org/citation.cfm?id=2832581.2832731
http://dl.acm.org/citation.cfm?id=2832581.2832731
https://databricks.com/blog/2016/01/25/deep-learning-with-apache-spark-and-tensorflow.html
https://databricks.com/blog/2016/01/25/deep-learning-with-apache-spark-and-tensorflow.html
https://gym.openai.com/envs/LunarLander-v2
https://gym.openai.com/envs/LunarLander-v2
https://code.google.com/p/cuda-convnet/
http://arxiv.org/abs/1611.01603
https://doi.org/10.1145/2806777.2806945
https://hortonworks.com/blog/distributed-tensorflow-assembly-hadoop-yarn/
https://hortonworks.com/blog/distributed-tensorflow-assembly-hadoop-yarn/
https://doi.org/10.1145/2487575.2487629
http://papers.nips.cc/paper/6504-learning-structured-sparsity-in-deep-neural-networks.pdf
http://papers.nips.cc/paper/6504-learning-structured-sparsity-in-deep-neural-networks.pdf
http://yahoohadoop.tumblr.com/post/157196317141/open-sourcing-tensorflowonspark-distributed-deep
http://yahoohadoop.tumblr.com/post/157196317141/open-sourcing-tensorflowonspark-distributed-deep
http://arxiv.org/abs/1409.2329
http://arxiv.org/abs/1409.2329

	Abstract
	1 Introduction
	2 Design Principles of Scheduling Algorithm
	2.1 Identify poor configurations early
	2.2 Classify promising configurations early and judiciously
	2.3 Resource allocation between promising and opportunistic configurations

	3 Scheduling Algorithm POP
	3.1 Configuration Classification
	3.2 Infused Classification & Scheduling Methodology

	4 HyperDrive Design
	4.1 Design Considerations
	4.2 HyperDrive Framework

	5 HyperDrive Implementation
	5.1 Suspend & Resume Support
	5.2 Learning Curve Prediction
	5.3 Scheduling Policies

	6 Evaluation
	6.1 Experimental Setup
	6.2 Supervised-Learning
	6.3 Reinforcement-Learning

	7 Sensitivity Analysis
	7.1 Simulator
	7.2 Supervised-Learning
	7.3 Reinforcement-Learning

	8 Related Work
	9 Discussion
	10 Conclusion
	References

