
Retaining Sandbox Containment Despite Bugs in
Privileged Memory-Safe Code

Justin Cappos, Armon Dadgar, Jeff Rasley, Justin Samuel, Ivan Beschastnikh,
Cosmin Barsan, Arvind Krishnamurthy, Thomas Anderson

Department of Computer Science and Engineering
University of Washington

Seattle, WA 98195
{justinc,armond,jeffra45,jsamuel,ivan,cosminb,arvind,tom}@cs.washington.edu

Abstract
Flaws in the standard libraries of secure sandboxes represent
a major security threat to billions of devices worldwide. The
standard libraries are hard to secure because they frequently
need to perform low-level operations that are forbidden in
untrusted application code. Existing designs have a single,
large trusted computing base that contains security checks
at the boundaries between trusted and untrusted code. Un-
fortunately, flaws in the standard library often allow an at-
tacker to escape the security protections of the sandbox.

In this work, we construct a Python-based sandbox that
has a small, security-isolated kernel. Using a mechanism
called a security layer, we migrate privileged functionality
into memory-safe code on top of the sandbox kernel while re-
taining isolation. For example, significant portions of mod-
ule import, file I/O, serialization, and network communica-
tion routines can be provided in security layers. By moving
these routines out of the kernel, we prevent attackers from
leveraging bugs in these routines to evade sandbox contain-
ment. We demonstrate the effectiveness of our approach by
studying past bugs in Java’s standard libraries and show
that most of these bugs would likely be contained in our
sandbox.

Categories and Subject Descriptors
C.20 [General]: Security; D.4.6 [Security and Protec-
tion]: Security kernels

General Terms
Security, Languages

Keywords
Sandbox, Layering, Containment

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’10, October 4–8, 2010, Chicago, Illinois, USA.
Copyright 2010 ACM 978-1-4503-0244-9/10/10 ...$10.00.

1. INTRODUCTION
Programming language sandboxes, such as Java, Sil-

verlight, JavaScript, and Flash, are ubiquitous. Such sand-
boxes have gained widespread adoption with web browsers,
within which they are used for untrusted code execution, to
safely host plug-ins, and to control application behavior on
closed platforms such as mobile phones. Despite the fact
that program containment is their primary goal, flaws in
these sandboxes represent a major risk to computer secu-
rity [23].

A sandbox is divided into three components: the core lan-
guage interpreter, the standard libraries, and the untrusted
application code. The standard libraries contain routines
to perform file I/O, network communication, cryptography,
math, serialization, and other common functionality. These
libraries need to contain some native code, usually written
in C or C++, but many sandboxes follow security best prac-
tices [33] and implement the bulk of their standard libraries
in a memory-safe language like Java or C#. While flaws
in native code pose an obvious risk [35, 54], many flaws in
memory-safe code are also a threat [18, 12, 46, 47].

For example, in Java 1.4.2, the serialization methods of
the Calendar object had a security bug which was caused by
instantiating an object of a broader type than intended [12,
32]. This mistake allowed an attacker to deserialize a new se-
curity policy and use it to permanently elevate all privileges.
Despite the flaw residing entirely in memory-safe code, this
allowed a malicious party to escape the sandbox and per-
form malicious actions, such as installing malware. This is
not an isolated incident; many major security vulnerabili-
ties in Java have been found in Java code instead of native
code [42].

In this work, we mitigate the impact of a bug in memory-
safe privileged standard libraries by isolating libraries from
each other and from the interpreter. Instead of relying on
a single monolithic trusted computing base (TCB), we con-
struct a small, self-contained sandbox kernel and place sensi-
tive portions of the standard libraries in isolated components
on top of it. For example, in our system the serialization li-
brary runs in an isolated component that has the same per-
missions as application code. Flaws in this library will not
help an attacker escape the sandbox.

Specifically, we construct standard libraries as a set of
isolated and contained security layers. Each security layer
is untrusted by its ancestor security layers, but is trusted
by its descendant security layers. The lowest security layer

(with no ancestors) is called the sandbox kernel and is the
only portion of the libraries where a flaw may allow an at-
tacker to escape the sandbox. At a high level, security layers
are similar to well-tested layering techniques used in prior
systems [19, 31]. This technique, however, has not gener-
ally been used in widely used web-based execution environ-
ments. In the development of our sandbox, we created a
language called Repy, which is a subset of Python version
2.5.4. Repy provides isolation restrictions which are sim-
ilar to an object-capability language. In addition to the
usual restrictions imposed by an object-capability language,
the boundary between two security layers is monitored by
an encasement library, which verifies interface semantics at
runtime. This verification prevents capability leaks and min-
imizes the risk of time-of-check-to-time-of-use (TOCTTOU)
bugs. As a result, security layers provide similar protection
to separate processes that communicate using remote pro-
cedure calls (RPC). However, the performance of a security
layer call is significantly better than a local RPC invocation.

The contributions of this work are as follows:

• We design and implement an appropriate set of ab-
stractions for constructing strong, yet flexible security
layers.

• We identify functionality that can be migrated out of
the kernel into higher security layers, thus reducing the
security impact of a bug in the sandbox code.

• We describe how a security layer is a natural mecha-
nism for adding customized security policies that are
transparent to an application.

• We evaluate the security and performance implications
of using security layers and discuss limitations and op-
timizations.

The remainder of this paper is organized as follows. Sec-
tion 2 illustrates flaws and limitations of the standard li-
brary implementations in existing sandboxes in more detail.
In Section 3, we discuss the goals of our system and give
a brief overview of the architecture. Section 4 discusses
the construction of security layer functionality. Following
this, Section 5 describes how the functionality in standard
libraries is divided between the sandbox kernel and security
layers. In Section 6, we present different applications for
security layers based on our experience with a live deploy-
ment. We evaluate the performance of our security layer
implementation in Section 7. Relevant prior work is dis-
cussed in Section 8, and Section 9 concludes. Appendix A
details the Repy language that underlies this work.

2. BACKGROUND
In this section, we describe our threat model and examine

the popular Java sandbox execution environment in detail.
Our sandbox environment is constructed on top of Python
and thus is not directly comparable to Java. However, it is
useful to motivate the construction of a new sandbox by ex-
amining the techniques other sandboxes use to isolate priv-
ileged standard library code. As Java’s primary implemen-
tation is open source, we examine it in detail. Further, we
also found that Silverlight, and its open source implementa-
tion Moonlight, possess similar features including a single,
large TCB. Our work does not address faults in JavaScript,
Adobe Flash, or Google Native Client since their standard
library implementations are not memory-safe.

User Code

Standard
Libraries

TCB Boundary
Security
Policy

1 2 3

Figure 1: Java’s architecture, especially the stan-
dard libraries and their relationship to its single
TCB. There is no clearly defined boundary between
the privileged and untrusted portions of the stan-
dard libraries. Dotted lines indicate possible call-
paths from user code into the TCB. From left to
right: (1) user code may directly call privileged li-
brary code in the TCB; (2) user code may call un-
privileged library code which may then call into the
TCB; (3) user calls may be subject to security pol-
icy, as determined by the invoked standard library
code in the TCB.

2.1 Threat Model
A process has a set of privileges provided by the operating

system, usually exposed as system calls. The primary secu-
rity goal of a sandbox is to restrict a program to some subset
of privileges, usually by exposing a set of functions that me-
diate access to the underlying operating system privileges.
The attacker’s goal is to obtain access to privileges that were
not intentionally exposed by the sandbox, thus escaping the
sandbox.

To attack a sandbox, we assume an attacker may run mul-
tiple programs in different sandboxes on the same machine.
In addition, the attacker may use multiple threads to mod-
ify visible state or issue concurrent requests in an attempt
to trigger a race condition. An attacker may submit arbi-
trary code for execution and may pass data of any type the
interpreter allows to any visible calls. Once the code begins
executing, the attacker’s program can manipulate any object
in its namespace in any way that the interpreter allows.

Given the large amount of code in the standard library
for each sandbox, we assume that an attacker may have
knowledge of flaws in this code. Our goal is to prevent bugs
in this code from allowing an attacker to escape the sandbox.

2.2 Learning from Java
Java developers implemented various security mechanisms

to allow the Java Virtual Machine (JVM) to be run as a
secure sandbox. For instance, Java code cannot perform
unsafe operations, such as modifying arbitrary memory lo-
cations, due to restrictions placed on it by the Bytecode
Verifier [41] and the JVM. Java programs can, if allowed,
call directly into native C code, which may perform unsafe
operations, such as call system calls and modify arbitrary
memory locations, on their behalf. To provide isolation,
Java does not grant untrusted code with unmediated access
to native C code. Instead, the sandboxed code is typically
allowed to call some subset of the pre-existing native code
that is part of the standard libraries. Sensitive native func-
tions are often scoped to be less than public, and access to
them is mediated by public Java wrapper functions. Such

wrapper functions will verify access and enforce a security
policy for its standard libraries, using a variety of security
components, such as the ClassLoader, SecurityManager, and
AccessController. Figure 1 overviews Java’s architecture.

However, Java’s TCB is much larger than native code and
the security policy. All of the Java code which mediates ac-
cess to sensitive native calls is also clearly a security risk.
However, the visibility of sensitive native calls extends much
further than functions that wrap calls. Java’s standard li-
braries are organized into packages that the programmer
may choose to import. The code is organized by function-
ality type, rather than privilege, so privileged code is con-
tained across many different packages. Objects may contain
a mixture of privileged and unprivileged methods and data
members. The scope of an object’s data members, however,
must extend to at least the containing file (and sometimes
extends to the entire package). This grants untrusted code
direct access to sensitive native functions. To get an idea
of the scope of native code intermingling, we examined all
Java objects in Java 1.6.18 and found that there are about
1800 native method calls spread around 500 objects. Out of
the Java objects that have at least one native call, approx-
imately 350 restrict scope to at least one native method by
setting the visibility to private. This means that large por-
tions of Java’s standard libraries may perform actions that
should be restricted for security reasons.

To summarize, Java’s security model is such that a very
large amount of Java code must be correct in order to main-
tain security. This extends to complex components like
the ClassLoader, AccessController, and SecurityManager.
Based upon the scope of sensitive native code, the TCB
also extends to portions well beyond just the wrapping func-
tions in the standard libraries. Experience has shown that
if any of these pieces has a security flaw, all of the protec-
tions of the sandbox may be compromised [48, 42]. Flaws in
the standard libraries of Java pose a significant risk to 4.5
billion devices worldwide [30] despite considerable security
focus from both industry and academia.

3. GOALS AND OVERVIEW
The goal of this work is to ensure that a security failure in

the standard library code has minimal security impact. To
achieve this, our sandbox provides the vast majority of its
functionality in memory-safe library code where faults will
not result in an attacker escaping the sandbox. Of course,
it is unavoidable for our sandbox to have at least some priv-
ileged code to allow access to the operating system, but it
is possible to minimize the quantity and complexity of this
code. To realize this goal, we want to construct and organize
a set of libraries such that:

• The risk of compromise is minimized by moving library
functionality out of the kernel to the maximum prac-
tical extent.

• Custom security policy functionality exists entirely
outside of the kernel.

• It is trivial for a developer to prevent common bugs
such as capability leaks and race conditions.

• With our changes, libraries remain easy to develop and
to use.

As a basic building block for isolation, we constructed a
custom subset of Python called Repy that is similar to an
object-capability language (described in Appendix A). Our
sandbox is comprised of a small, trusted kernel, a set of re-
quired libraries, standard libraries, and user code as shown
in Figure 2. Each security layer obtains a set of capabili-
ties when it is instantiated by the security layer beneath it.
A security layer is isolated and may only interact through
the security-verified set of capabilities it is provided. A vul-
nerability in a security layer can at most allow the compro-
mise of the security layers it instantiated. Through such a
compromise the attacker cannot gain any capabilities that
are stronger than those already granted to the compromised
security layer. Since the sandbox kernel maintains contain-
ment over its descendants, only a vulnerability in the sand-
box kernel may lead to escape of the sandbox.

Our design allows much of the functionality that languages
usually provide to be executed with the same capabilities as
the untrusted user code. As we will describe in Section 5, we
can build significant portions of functionality usually found
in the TCB, such as module import, in untrusted user code.

Over the past 20 months, we have used the described sand-
box as part of a network research testbed [49]. The testbed
is built using donated resources from end user machines, in
a manner similar to BOINC [11] and SETI@Home [3]. How-
ever, since this is a network testbed, the use model is closer
to PlanetLab [43]. Typical use cases of our testbed include
network measurement, peer-to-peer applications, web mea-
surement, and distributed hash tables.

As the size of our testbed grew into the thousands, ma-
chine owners began requesting increasingly more complex
functionality. There were requests to control the local IP or
interface used, the source or destination of network traffic,
different resource restrictions based on the system location,
and other functionality. This motivated us to add required
security layers as a general mechanism to help facilitate these
requests. Unlike in Java, the standard library programmer
does not need to remember to add security policy checks in
the appropriate portions of the standard libraries. In our
model, a security layer that wishes to enforce a policy, such
as the same origin policy enforced by web browsers, may
simply interpose on the network capabilities that are per-
mitted to the security layer it instantiates. As we discuss
in Section 6, this is a common way to interpose required se-
curity functionality without bloating the TCB or breaking
compatibility with existing code.

4. SECURITY LAYER DESIGN
This section describes how the sandbox provides security

layer functionality within our architecture. First, we de-
scribe virtual namespaces, which are provided by the kernel
for loading and executing code. We then describe the en-
casement library, which is implemented above the TCB and
uses virtual namespaces to implement the security layer ab-
straction.

4.1 Virtual Namespace
To support code loading and execution, the sandbox ker-

nel supports two virtual namespace calls. The first call val-
idates the safety of code. It takes a string that contains the
program source and ensures that the string only contains
language constructs permitted by our Repy language (see
Appendix A for more details).

Required Lib 1

Required Lib 2

Required Lib K

Sandbox Kernel

User Code

TCB Boundary
Sec. Layer 0

Sec. Layer 1

Sec. Layer 2

...
Sec. Layer K

Standard
Libraries

Sec. Layer K+1

Encasement Library

...

Figure 2: Architecture of our sandbox with a min-
imal sandbox kernel comprising the TCB. Each re-
quired library is isolated in its own security layer (in-
dicated with horizontal dashed lines), and standard
or optional libraries are located in the same secu-
rity layer as user code (top layer). There is a clearly
defined boundary between each security layer. The
bottommost security layer contains the encasement
library, which enforces security layer isolation. The
vertical dotted line indicates the only possible call-
path from user code into the sandbox TCB.

The second virtual namespace call executes validated code
with the provided capability mapping. The namespace will
not contain capabilities from the sandbox kernel or the
namespace of the creating module unless these are explicitly
listed in the provided capability mapping. For example, if
module foo with capabilities listfiles, safe_removefile,
and removefile were to instantiate a module bar with
a capability mapping {‘listfiles’:listfiles, ‘remove-

file’:safe_removefile}, the module bar would have ac-
cess to foo.listfiles via the name listfiles and to
foo.safe_removefile via the name removefile. The mod-
ule would be unable to access foo.removefile.

4.2 Encasement Library
The virtual namespace abstraction is useful for loading

code dynamically, but does not provide adequate security for
use as an isolation boundary. A created virtual namespace
will share objects with the creator and may be missing even
basic verification such as type checking.

The encasement library implements the security layer ab-
straction, which provides strong isolation between virtual
namespaces. The call to create a new security layer takes
three arguments: the code to isolate in a security layer, a
capability mapping, and a contract that specifies capability
semantics. Security layers do not share objects or functions.
The encasement library copies all objects that are passed
between security layers.

Each function call that can be called by other security
layers is wrapped in a verification function. The verifica-
tion function uses the contract for a function to verify its
behavior. A contract specifies the set of behaviors that a
verification function should have. The verification function
and contract are conceptually similar to system call filtering

mechanisms [24, 9, 28, 1], in that they mediate access to a
sensitive interface. For example, since Python is a dynami-
cally typed language, it is useful to type check a function’s
arguments, exceptions, and return values. The contract lists
the number and types of arguments, the exceptions which
can be legally raised by the function, and the return type of
the function.

A contract is represented as a Python dictionary which
is a hash table with keys and values. As an example, if the
module foo wanted to create a contract that would map
listfiles and safe_removefile into a new namespace,
the contract would be: {‘listfiles’:{‘type’:‘func’,

‘args’:None, ‘exceptions’:None, ‘return’:list,

‘target’:listfiles}, ‘removefile’:{‘type’:‘func’,

‘args’:str, ‘exceptions’: (RepyArgumentError,

FileNotFoundError, FileInUseError), ‘return’: None,

‘target’:safe_removefile}}. Note that the symbols listed
in the contract come from foo’s namespace. Thus the target
for the ‘listfiles’ in the contract is the foo.listfiles

capability. Similarly, the target for the ‘removefile’ in the
contract is the foo.safe_removefile capability.

The verification function uses the contract to perform
type-checking whenever a capability is used. If the verifi-
cation function detects a semantic violation, the program
is terminated. In addition to type checking, the verifica-
tion function copies arguments and return values of muta-
ble types to prevent time-of-check-to-time-of-use bugs. Since
mutable types are copied, the caller cannot cause a race con-
dition by modifying objects.

4.3 Security Layer Instantiation
Each security layer call provides the encasement library

with a contract to instantiate the next security layer. Even-
tually the final security layer starts the user program with
the appropriate set of capabilities. This instantiation pro-
cess is helpful when a developer wants to implement a se-
curity layer that interposes on a specific capability. This is
done by substituting a version of the function that enforces
a given policy. All security layers loaded after this layer will
have access to the version of the function which enforces this
new policy. Since every layer above the interposition layer
has access only to the new version of the function, the user’s
program is forced to use the new policy.

From start to finish, the entire process proceeds as fol-
lows. The sandbox kernel obtains a list of command-line ar-
guments, the first of which must be the encasement library.
The kernel reads in the encasement library code and uses
the virtual namespace abstraction to execute the code with
the exported kernel capabilities1. The encasement library
uses its security layer creation call to instantiate the next
security layer. To do this, the encasement library creates
a capability mapping that contains the kernel’s exported
capabilities, the security layer instantiation call, and the re-
maining command-line arguments. The newly instantiated
security layer repeats this process using the encasement li-
brary’s security layer creation call to instantiate the next
security layer with a potentially updated contract and capa-
bility mapping. Eventually, the user program is instantiated
in a separate security layer with the capabilities provided
through the stack of security layers that preceded it.

1The kernel wraps its calls similarly to how the encasement
library works.

5. STANDARD LIBRARIES
The security layer mechanism effectively isolates the sand-

box kernel from the functionality that can be externalized.
However, it is important to retain containment while exter-
nalizing functionality. For example, if the ability to write to
arbitrary files on the file system is allowed externally to the
kernel, this could be used to overwrite the sandbox imple-
mentation’s code. While there is insufficient space to fully
describe the capabilities provided by our sandbox kernel im-
plementation [25], we summarize its capabilities and then
describe how our sandbox provides functionality common to
existing sandboxes.

Our sandbox kernel has a total of 32 capabilities that it
provides to the untrusted security layer above it. These calls
can be summarized as follows:

• Thirteen network functions, to perform DNS lookups,
obtain the local IP address, and send / receive TCP
and UDP traffic.

• Two virtual namespace calls described in the previous
section.

• Six file I/O calls involving access to a sandbox-specific
directory on the file system. These allow the user to
open a file, read at a location in the file, write at a
location in the file, close the file, delete a file, and list
the files in the sandbox.

• A call to create and return a lock object, which has
methods to acquire or release the lock.

• Four functions to provide information. These calls re-
turn a string to describe the last error’s stack trace, re-
source utilization information, the thread’s name, and
the elapsed time since the program started.

• Three thread-related calls: a call to create a new
thread of execution for a function, a call to sleep the
current thread, and a call to force all threads to exit.

• A call to return random bytes suitable for crypto-
graphic use.

Using the above primitives, we have built standard li-
braries that reconstruct common language functionality. For
example, import is provided via a library that calls the
sandbox kernel to read the appropriate file from disk, and
passes the string containing the code into the kernel’s vir-
tual namespace API. All of the complexity of correctly map-
ping symbols between namespaces is handled outside of the
sandbox kernel. Utilizing the minimal functionality pro-
vided by the sandbox kernel we were able to restore access
to large amounts of Python functionality including print,
eval, traceback handling, and many types of introspection.

Similarly, standard libraries can extend the minimal file
system API provided by the sandbox kernel to provide many
conveniences expected by programmers. For example, in
Python a programmer can iterate over the lines of a file
using for line in file:. Rather than providing an it-
erator for thread-safe readline with consistent file location
in the kernel, we provide it as part of a standard library
above the TCB. Similarly, we provide write-buffering, log-
ging functionality, and other common mechanisms in stan-
dard libraries, moving thousands of lines of code out of the
TCB.

While reconstructing the common language functionality
of Python we worked with numerous undergraduates to im-
plement our standard libraries. These undergraduates were
able to write a majority of our standard libraries within
roughly five to ten hours per library with a heavy focus on
testing. For certain library functions there existed a pure-
Python implementation already; in this case we found that
occasionally the function ran correctly within our sandbox
without any major modifications.

In addition to core functionality, such as import and basic
file I/O, other complex functionality is also provided out-
side of the sandbox kernel. This includes cryptographic li-
braries, XML parsing, RPC, serialization, NAT traversal,
HTTP client / server code, argument parsing, advanced syn-
chronization primitives, and a variety of encoding schemes.
These routines comprise the majority of the lines of code
in our codebase. A bug in any of these routines will not
allow an attacker to escape the sandbox. Somewhat sur-
prisingly, portions of these libraries are implemented with
security sensitive code in other sandbox environments.

Another benefit of moving complexity out of the kernel
is that it simplifies interposition. For example, the kernel
function for opening a TCP connection requires that ports
and IP addresses are explicitly specified for both sides of the
connection. If a security layer wants to prevent connections
from using specific local IPs, or to reject traffic to specific
destinations, such filtering policies are trivial to implement
because all connection-related information is explicit. This
explicitness is also useful to expand the minimal API for
programmer convenience. For instance, programmers may
want to be able to specify the remote side of the connection
as a hostname instead of as an IP address. We provide
this functionality in a portion of the standard library that
is loaded after all the other security layers.

In the next section we overview a particular feature of our
sandbox architecture – required libraries. These libraries are
loaded in security layers prior to any standard libraries or
user code. We overview how we leverage required libraries to
implement security policies and to carry out a variety of use-
ful functionality, all of which is enabled by the interposition
afforded by security layers.

6. REQUIRED LIBRARIES
Previously, our sandbox allowed the machine owner to

filter application capabilities using mechanisms such as reg-
ular expressions over the values allowed as arguments to
privileged calls. This complex set of functionality resided
entirely in the trusted computing base.

The interposition provided by security layers made our
previous approach obsolete – it is trivial to perform filtering
using Python code in a security layer. This allowed us to
reduce the size of the sandbox kernel by removing regular ex-
pressions and the other filtering code. Using security layers
also naturally separates the policies specified by the machine
owner from policies that are controlled by the application de-
veloper. As Figure 2 shows, the application developer can
only load security layers once the required libraries – secu-
rity layers required by the sandbox and the machine owner –
have been loaded. In this section we describe an assortment
of interesting required libraries that we have implemented
in our sandbox.

6.1 Network API Interposition for Controlled
Node Communication

A networked testbed must be designed with a global se-
curity perspective in mind. For example, the testbed should
not be able to send SPAM, launch DDoS attacks, spread
malware through remote exploits, or perform similar mali-
cious actions. To prevent such actions, there must be re-
strictions on which hosts testbed nodes can communicate
with. Specifically, it is desirable to allow testbed nodes to
only communicate with each other, with critical services like
DNS, and with computers that have explicitly opted-in. To
provide this capability, we constructed a traffic containment
service [7], which restricts communication between the local
node and a remote node based on the destination IP, port,
or some combination of the two. Here we briefly overview
how required libraries made this service possible.

Although this service is essential to the adoption of our
testbed, it is also complex due to the various distributed
protocols it uses to maintain the list of participating nodes.
Because of this we were hesitant to add this service to the
TCB. Instead, we isolate this service in a security layer, and
transparently add it as a required library to those machines
whose owners want to filter the source or destination of their
machine’s traffic. The transparency of security layers makes
the addition of this required library trivial – it merely in-
terposes on the sandbox network API just above the kernel.
Additionally, security layer isolation guarantees that a bug
in this library will not compromise the sandbox kernel.

6.2 Transparent Forensic Logging
To help investigate potential abuses, to support auditing,

and to help debug our platform we wanted to collect various
local information, such as the destination of traffic and the
rate of resource consumption. An important requirement
of this collection is that the researcher using the machine
should not be able to modify the collected data.

We implemented this functionality in a required library
by interposing on the calls that need to be logged and then
writing out the collected data into a file. To prevent modifi-
cation or deletion of this file, the library traps the openfile

and removefile capabilities. Leveraging security layers en-
abled us to move this functionality outside of the sandbox
kernel, without sacrificing transparency for the application
code.

6.3 Dynamic Policy Loading
An administrator may want to add or remove security

layers for a large number of machines under their control.
However, making the change on each system manually is
time prohibitive. We constructed an administrator control
required library, which retrieves a list of security layers to
load from a user-specified server. This list is signed with the
administrator’s private key (along with other security meta-
data to prevent replay attacks), and contains the names, lo-
cations, and secure hashes of the security layers to be loaded.

6.4 Location-Aware Resource Restriction
Required libraries also make it easy to construct adaptive

policies. An example of this is a policy that changes de-
pending on the machine’s location. We implemented such
a policy as a required library that periodically checks the
machine’s IP address and changes the capabilities set based
on the machine’s geolocation. This allows a user to have

different network restrictions when their laptop is at home
or at work, for example.

7. EVALUATION
In this section we evaluate our approach. First we com-

pare the resiliency of our sandbox to the JVM. We do so by
considering previous security bug reports for the Java code
portion of the JVM [42]. We manually translate these bugs
into the context of our sandbox to understand how they
would manifest. We categorize the impact of these bugs on
our sandbox and detail how security layers help to mitigate
them. Second, we evaluate the cost of our techniques by
quantifying the performance impact and memory overhead
of constructing and using security layers in Python.

7.1 Risk Reduction
To evaluate the change in risk with using security layers,

we considered the set of critical Java security vulnerabilities
studied by Paul and Evans [42]. For each bug, we attempted
to understand how the vulnerability impacts our sandbox if
the component containing the vulnerability were translated
into our sandbox. Our translation was guided by consider-
ing how the buggy component would be implemented in our
system, relying on the underlying motivation of our project
to migrate as much functionality as possible out of the sand-
box kernel. Because this evaluation effort is inherently qual-
itative we mitigated the subjective nature of the analysis
by employing three authors to independently categorize the
severity of each bug. The authors then actively discussed
the bugs where they had any category disagreement until
a complete consensus on the appropriate category for each
bug was reached.

Table 1 describes the bugs, their severity in Java, and their
categorized severity in our sandbox. The values in the secu-
rity layer severity column of this table mean the following:
Prevented – bug cannot manifest in our sandbox; Insufficient
detail – bug report did not provide enough information to
make the translation possible; Cannot translate – the bug is
specific to the JVM and cannot be mapped into the context
of our sandbox; Exception – an exception is raised when the
bug is triggered; Hang – the bug hangs the sandbox; Allowed
– the bug is explicitly allowed to manifest due to security
policies of our sandbox kernel; Unknown – the bug does not
have a single definitive translation.

The most critical bugs in Table 1 allow arbitrary code
execution or read access to the entire file system. We now
discuss these critical bugs in more detail in the order they
appear in the table.

• Leveraging the bug in CVE-2001-1008 an attacker can
execute signed code with expired signatures. This is a
risk because this code may be native code containing
flaws. Our sandbox prohibits users from executing na-
tive code (whether signed or not). The closest transla-
tion of this bug would manifest as a security layer that
only loads code if the code is signed. A similar flaw
in this layer would allow malicious code to be loaded
and executed, however the malicious code would not
be able to escape the sandbox.

• CVE-2005-3905 and CVE-2005-3906 provide insuffi-
cient information to make a translation possible. If
the reflection vulnerabilities exist due to bugs in type

Bug Number Short Description Java Severity Security Layer Severity

CVE-2001-1008 Execute apps with expired signatures Arbitrary Prevented
CVE-2005-3905/3906 Reflection vulnerability 1 & 2 Arbitrary Insufficient detail
CVE-2002-0865/0866 XML/DB vulnerability allows code loading Arbitrary Prevented
CVE-2002-1293 CAB loader missing security Arbitrary Prevented
CVE-1999-0766/0141 Bytecode verifier buffer flaw 1 & 2 Arbitrary Cannot translate
CVE-1999-0440 Bytecode verifier loads an unchecked class Arbitrary Prevented
CVE-2000-0327/2002-0076 Bytecode verifier cast bug 1 & 2 Arbitrary Cannot translate
CVE-2003-0111 Bytecode verifier unknown bug Arbitrary Cannot translate
CVE-2004-2627 Bytecode verifier bytecode bug Arbitrary Cannot translate
CVE-2003-0896 A ’/’ in a classname bypasses security Arbitrary Prevented
CVE-2000-0676 Can use file:/// to read arbitrary files File Read Prevented
CVE-2000-0162 Remote attacker can read files File Read Prevented
CVE-2000-0711 Incorrect ServerSocket creation Socket Allowed
CVE-2000-0563 Arbitrary connection via HTTP redirection Socket Allowed
CVE-1999-0142/1262 Arbitrary outgoing connections 1 & 2 Socket Allowed
CVE-2002-0058 Session hijack if client uses proxy Socket Allowed
CVE-2002-0867 Handle validation crashes JVM Unclear Exception
CVE-2002-1289 No address validation for native services Unclear Prevented
CVE-2003-0525 Double free from getCanonicalPath Unclear Prevented
CVE-2002-1287 Long classname crashes JVM Crash Prevented
CVE-2005-3583 Deserialization may crash JVM Crash Prevented
CVE-2004-1503 Integer overflow in DNS raises exception Exception Exception
CVE-2004-2540 readObject may hang the JVM Hang Hang
CVE-2004-0651 Unknown vulnerability Hang Insufficient detail
CVE-2002-1292 Can manipulate class loading security Unclear Prevented
CVE-2004-0723 Cross-site file system communication Information leak Prevented
CVE-2002-1260 DB access missing checks DB access Unknown
CVE-2002-1290 Applets can manipulate clipboard Clipboard access Unknown
CVE-2002-1288/1325 Applet can discover PWD 1 & 2 Directory Info Unknown
CVE-2002-0979 Applet may write executable to known path Unknown Unknown

Table 1: A listing and description of JVM security vulnerabilities from [42] that we translated into the context
of our sandbox to study the risk reduction benefits of our sandbox. For those bugs where the translation was
feasible, the last column indicates the severity of the bug once it was translated. Values in this column are
defined in the text. The bugs are sorted according to the order in which they are discussed in the text.

conversion or memory safety, similar bugs would allow
arbitrary code execution in our sandbox as well. How-
ever, if the flaws are related to incorrect capabilities
when using reflection, there is no security risk as this
portion of our implementation (e.g. eval) exists in a
security layer.

• CVE-2002-0865, CVE-2002-0866, and CVE-2002-1293
are the result of different standard libraries using cus-
tom code loading mechanisms. In our sandbox, cus-
tom code loading functionality would be implemented
inside the security layer hosting the standard library
(e.g. XML, CAB). This would prevent the vulnerabil-
ity.

• CVE-1999-0766, CVE-1999-0141 CVE-2000-0327, CVE-
2002-0076, CVE-2003-0111, and CVE-2004-2627 can-
not be easily translated because the bug descriptions
have inadequate information. These bugs are in the
bytecode verifier which is significantly different in
Java and Python. Our implementation does not load
Python bytecode, but instead passes the interpreter
the program’s source (Appendix A). However, our im-
plementation would prevent CVE-1999-0440 (a miss-
ing check for bytecode security), since the only way
to load code is through a single call provided by the
sandbox kernel.

• The critical vulnerability CVE-2003-0896 and file ac-
cess bugs like CVE-2000-0676 and CVE-2000-0162 ex-

ist because of insufficient checks on file system access.
In our implementation, there is a single set of routines
in the sandbox kernel that all routines must use. We
prevent this category of flaws by placing the appropri-
ate file system access check in a single place.

One category of bugs listed in Table 1 deals with violations
of the same-origin policy (CVE-2000-0711, CVE-2000-0563,
CVE-1999-0142, CVE-1999-1262, and CVE-2002-0058). As
our sandbox is in part used for networking research, our net-
work policy is more permissive than the same-origin policy.
Namely, our users typically choose between allowing arbi-
trary network connections (no security layer interposition)
or use a security layer like the Controlled Node Communi-
cation layer (Section 6.1).

There is also a large class of bugs that crash or hang the
JVM (CVE-2002-0867, CVE-2002-1289, CVE-2003-0525,
CVE-2002-1287, CVE-2005-3583, CVE-2004-1503, CVE-
2004-2540, and CVE-2004-0651), and possibly lead to more
serious attacks. In our framework, these bugs most likely
result in exceptions or hang the sandbox, thus having a
similar denial-of-service effect.

The security policy manipulation bug (CVE-2002-1292)
exists because Java had outdated security checks that an
attacker can manipulate. Since valid security policies rarely
use this interface, the main impact of the vulnerability would
be to allow a malicious party to prevent the loading of ar-
bitrary classes. A similar vulnerability would exist in our

No args Immutable Mutable Exception

General 5.9 µs 12 µs 15 µs 8.8 µs
Custom .15 µs .80 µs 1.7 µs 1.1 µs

Table 2: Call overhead for general and customized se-

curity layer verification routines.

framework if an outdated security layer with a vulnerability
was loaded on client machines.

The final classification of bugs are those that leak sen-
sitive information or access, but do not allow escape of the
sandbox (CVE-2004-0723, CVE-2002-1260, CVE-2002-1290,
CVE-2002-1288, CVE-2002-0979, and CVE-2002-1325). It
is difficult to directly translate these issues to our sandbox.
However, in general using a small sandbox kernel makes
boundaries and capabilities explicit, which may mitigate the
confusion that led to some of these errors.

7.2 Performance
In many applications there exists a delicate balance be-

tween performance and security. In the context of our appli-
cation – hosting experimental code on volunteered machines
– we can reduce performance to increase security. In this
section we evaluate the two types of performance penalties
incurred when using security layers: initialization and use.
All of the following performance tests were run on an Apple
iMac with an Intel i7-860 2.8GHz CPU, 4GB of 1333MHz
RAM running Mac OS X 10.6.3. Running time calculations
are averages over 10,000 iterations.

Initialization Cost. When a security layer is initialized,
the code is validated and the encasement library creates cus-
tom wrapper functions for the individual functions. To eval-
uate this, we examined the initialization time of the sand-
box with and without the encasement library. The sandbox
itself takes about 135 ms to initialize and the encasement
library takes another 38 ms. In addition, each security layer
takes time to initialize, as the dispatch method must wrap
the functions and objects necessary to maintain containment
between each security layer. We also found it takes 2.5 ms to
initialize a security layer that adds a noop function and then
dispatches the next security layer. We believe this overhead
is acceptable given that Java (1.6.0 20) and Python (2.6.1)
start in 170 ms and 17 ms respectively.

Per-use Cost. The second type of performance cost is
incurred whenever a security layer is crossed2. Table 2 shows
the cost for our general encasement library implementation,
which inspects and validates the contract of a capability at
run time, and a customized version which performs the same
operations but is optimized ahead of time. In each case,
the type of the arguments or exceptions that the function
raises has a slight performance impact, but the costs stay
roughly within the same order of magnitude. This means
that the type of contract does not significantly impact the
performance of the encasement library for arguments and
exceptions of a small size.

To evaluate overall performance, Table 2 shows that the
cost of a general contract verification implementation is ap-
proximately an order of magnitude higher than that of a
customized version. However, the general contract verifica-
tion implementation is much easier to verify for correctness

2Note that a security layer which does not interpose on a
call, does not impact its running time.

and security properties than a customized version (hence we
use the general verification in production). The performance
penalty is only paid when crossing the boundary between
two security layers. Each security layer that interposes on a
call typically performs functionality that is much more ex-
pensive than this. To put these numbers in perspective, a
function call is about an order of magnitude cheaper than
a customized security layer crossing. However, in Python a
function call performs no type checking or other validation
so the native mechanisms are clearly inadequate to provide
security isolation. The most appropriate security compar-
ison is with a local RPC, which provides the same sort of
security guarantees as a security layer. A local RPC us-
ing XML-RPC is three orders of magnitude more expensive
than crossing the security layer boundary using our general
contract verification implementation.

7.3 Memory Overhead
In addition to consuming additional CPU when using mul-

tiple security layers, each security layer also incurs a mem-
ory cost. This cost is due to the space needed by the con-
tracts, the copying of mutable arguments, and the wrappers
needed for security layer crossings. In our experiments on
a system with 64-bit memory addresses, each security layer
consumes about 19 KB of memory. The encasement library
consumes an additional 1 MB of memory. Our experience
has been that these memory overheads are acceptable, even
on memory-limited devices such as mobile phones.

8. RELATED WORK
We gained significant inspiration from previous ideas and

systems. At the highest level, our security layer abstraction
is conceptually similar to layering in prior systems [19, 31].
We categorize and discuss closely related work below.

8.1 Object-Capability Based Languages and
Systems

Capabilities in computer systems have a long history [34].
In particular there has been a significant amount of work on
object-capability languages [39, 38], which provide a prin-
cipled set of techniques for resolving the long studied prob-
lem of dividing an application into security contained com-
ponents [51, 29, 16]. Joe-E [38] is the only other object-
capability language that uses a subset of a widely used pro-
gramming language (Java). Current work on Joe-E is fo-
cused on application security and although the authors are
cognizant that the lack of security in the standard library
code of the Joe-E sandbox is a limitation of their technique,
it remains an open problem that has not been addressed [38].
In this work, we address this limitation using the security
layer primitive to isolate trusted code. Work by Stiegler and
Miller [53] on a capability subset of OCaml demonstrated
that object-capabilities do not have to impact the language’s
expressivity or performance. Their work has similar limita-
tions to Joe-E – privileged standard libraries are excluded
and all authorities from the safe version of the standard li-
brary must be removed.

Our system has many conceptual similarities to the Hydra
capability-based operating system [34] in that we provide
similar guarantees and mechanisms for protection, albeit for
a programming language sandbox instead of an operating
system. One significant difference is that our protection
mechanism (encasement library) is not inside of our sand-

box kernel. Thus a flaw in the encasement library can at
most allow one to bypass security layers but will not allow
escape of the sandbox. Another difference is that we do not
allow a process to do a ’rights walk’ through the set of local
namespaces and utilize capabilities. This allows calls and
objects to pass both ways through security layers without
compromising security, which is important for callbacks and
notifications.

Cannon, et. al. [13] present a method for securing the
Python interpreter by implementing a set of resource re-
strictions. They modified the Python interpreter to prevent
read/write/execution of arbitrary files/modules. Using this
modified interpreter they added the ability to import exter-
nal modules, based on a user defined whitelist. This leaves
the sandbox integrity up to the user, which can be problem-
atic. If a user whitelists a module, such as ’sys’, it would
give the interpreter file I/O capabilities which could allow
the modification of the whitelist. In our implementation a
user is unable to add functionality to a security layer that
could produce undesired side effects such as giving full access
to the file system.

8.2 Secure Language Subsets and Isolation
Prior work by Back, et. al. [4] encourages a single, explicit

separation between trusted and untrusted code, which they
call “the red line.” Our motivation is similar, but we propose
a separation between multiple security layers, with a small
kernel of truly trusted functionality.

Other work has gone into building secure language sub-
sets that restrict the allowed operations and functionality
in a language [37, 22, 58]. There are various subsets of
JavaScript, such as Facebook’s FBJS [22], Yahoo’s AD-
safe [58] and formal attempts from within the language [37].
While this is useful for isolating an untrusted program’s
namespace, it does not allow security functionality to be
composed in a manner similar to security layers.

Isolation techniques have been applied to other domains
such as extensions for web browsers [8], operating system
separation of processes [2], virtual machine separation of
operating systems [27, 6], constraining the functionality of
a process [36], or running mutually distrustful programs
within a single process [56, 17, 5]. In this work, we focus
on the converse problem – given a mechanism for isolation
between components, we leverage secure interposition and
interaction to construct secure standard libraries.

8.3 Interposition
In addition to interposition by language restrictions, some

researchers have also used conceptually similar mechanisms
to interpose on a process, usually at the system call layer [45,
44]. Current OS interposition mechanisms have several
drawbacks that make them undesirable in practice. For
example, they are OS specific, may require the user to in-
stall kernel patches, require the interposition code to be
trusted, incur significant overhead, and are prone to subtle
errors [57, 26]. Our use of security layers is a lightweight
means of achieving similar functionality, while performing
interposition by a straightforward wrapping of function calls.

Another mechanism for interposition is to rewrite the user
program to contain references to the appropriate monitor
code [21, 55, 14]. Rewriting was used by Erlingsson, in his
work on Inlined Reference Monitors [21] and has also been
used in conjunction with aspect-oriented programming [55,

14]. We could have used similar techniques to add secu-
rity checks, but decided against performing modification of
source code because of the difficulties in asserting the cor-
rectness of these techniques. We believe that using separate
namespaces makes it much easier for a programmer to rea-
son about the behavior and correctness of a security layer.

8.4 System Call Filtering
There has also been a significant amount of work on sys-

tem call filtering as a mechanism to secure existing system
call interfaces [24, 28, 1, 9]. While the low-level mechanisms
are similar to our approach, prior work focuses on securing
an existing system call interface, while we leverage our flex-
ibility to define the interface. This led us to make different
design decisions.

In [24], Fraser, et. al. describe a technique for secur-
ing commercial off-the-shelf software with the use of generic
wrappers. Their implementation uses a form of tagging to
categorize system calls that a user-defined wrapper should
be applied to. One type of tag that is used is a parameter
tag, which is similar to our use of contracts. Parameter tags
may be used to generate wrapper functions that perform ar-
gument copying (including deep copies of structures). One
important difference is that they rely solely on static analysis
of these tags which may limit the flexibility of the system.

Systems like Janus [28], MAPbox [1] and Tron [9] apply a
wrapper function to system call contracts. These wrappers
indicate acceptance or denial of calls. In our system, instead
of restricting calls only via contracts, the resulting security
layer actually executes code and so may directly return or
raise an exception.

8.5 Distributed Virtual Machine
Gün Sirer, et. al. [52] propose a distributed virtual ma-

chine (DVM) architecture and use it to decompose the JVM
into a set of system services, which are offloaded from the
client machine. This reduces verification overhead, improves
security through physical isolation, and allows a system
administrator to verify code and enforce a security pol-
icy across all machines that they administer. Our use of
security layers has similar benefits without requiring a cen-
tralized component. In our model, similar functionality is
provided by dynamic policy loading (see Section 6.3).

8.6 Information Flow Control
There has been a lot of work on information flow control

both in operating systems [20, 59] and programming lan-
guages [40, 50, 10, 15]. These techniques are used to tag and
track data as it moves through an application. This work has
features like isolation and control of interfaces that is also
used in our work. Information flow techniques are compli-
mentary but orthogonal to our use of security layers. Secu-
rity layers focus on the capabilities and call semantics across
security boundaries instead of tracking data flow. The most
related information flow control work is Wedge [10]. Wedge
is a system to modularize application logic so that it does
not leak sensitive user information. Wedge focuses primarily
on memory tagging, although it does utilize SELinux poli-
cies [36] to limit the set of allowed system calls. Wedge’s no-
tion of callgates could be used as a building block for system
call interposition, but requires kernel support and at least
one kernel crossing per call. Security layers do not have
Wedge’s memory tagging functionality, but security layers

are more lightweight than Wedge, perform boundary check-
ing, and require no kernel support.

9. CONCLUSION
In this work we designed, implemented, and evaluated se-

curity layers – a mechanism to isolate and transparently in-
terpose on standard libraries in a programming language
sandbox. Security layers make it possible to push library
functionality out of the sandbox kernel, thereby helping to
mitigate the impact of bugs in libraries. As a result, our
Python-based sandbox maintains containment of application
code despite bugs in the standard library implementation.
To evaluate our design we examined a set of known JVM
security bugs and found that security layers would likely
prevent at least 6 of the 8 applicable bugs that led to ar-
bitrary code execution. Security layers also help to protect
against vulnerabilities that led to arbitrary file reads, sand-
box crashes, and other faults.

Our experience with a 20 month sandbox deployment
across thousands of nodes has been overwhelmingly positive.
Security layers allowed users to add security functionality,
without increasing the risk of sandbox escape. We have
used security layers to enforce network communication poli-
cies, log forensic information, and perform other operations,
without adding any code to the sandbox kernel. In addition,
when optimized for performance, security layers incur a per-
formance penalty that is within an order of magnitude of a
function call. Given the security and functionality benefits
of security layers, we feel that this mechanism incurs an
acceptable performance penalty and is broadly applicable,
meriting consideration in the design of any sandbox.

Acknowledgments
We would like to thank the large number of people who
helped to significantly improve this paper. We appreciate
the feedback and discussions with Tadayoshi Kohno, Wenjun
Hu, Mark Miller, Marc Stiegler, Adam Barth, and Adrian
Mettler. We are also grateful to our shepherd Trent Jaeger
and the anonymous reviewers for their valuable feedback.

This material is based upon work supported by the Na-
tional Science Foundation under CNS-0834243. Any opin-
ions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not
necessarily reflect the views of BBN Technologies, Corp., the
GENI Project Office, or the National Science Foundation.

10. REFERENCES
[1] A. Acharya and M. Raje. MAPbox: Using

Parameterized Behavior Classes to Confine Untrusted
Applications. In SSYM’00: Proceedings of the 9th
conference on USENIX Security Symposium, Berkeley,
CA, USA, 2000. USENIX Association.

[2] M. Aiken, M. Fähndrich, C. Hawblitzel, G. Hunt, and
J. Larus. Deconstructing process isolation. In
Proceedings of the 2006 workshop on Memory system
performance and correctness, page 10. ACM, 2006.

[3] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky,
and D. Werthimer. SETI@home: An experiment in
public-resource computing. Commun. ACM,
45(11):56–61, 2002.

[4] G. Back and W. Hsieh. Drawing the red line in Java.
In HotOS’99, pages 116–121, 1999.

[5] G. Back, W. C. Hsieh, and J. Lepreau. Processes in
KaffeOS: isolation, resource management, and sharing
in Java. In OSDI’00, pages 23–23, Berkeley, CA, USA,
2000. USENIX Association.

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. In
SOSP’03, pages 164–177, New York, NY, USA, 2003.
ACM.

[7] C. Barsan and J. Cappos. ContainmentInSeattle –
Seattle – Trac. https://seattle.cs.washington.
edu/wiki/ContainmentInSeattle. Accessed April 3,
2010.

[8] A. Barth, A. P. Felt, P. Saxena, and A. Boodman.
Protecting browsers from extension vulnerabilities.
Technical Report UCB/EECS-2009-185, EECS
Department, University of California, Berkeley, Dec
2009.

[9] A. Berman, V. Bourassa, and E. Selberg. TRON:
Process-Specific File Protection for the UNIX
Operating System. In In Proceedings of the USENIX
1995 Technical Conference, pages 165–175, 1995.

[10] A. Bittau, P. Marchenko, M. Handley, and B. Karp.
Wedge: splitting applications into reduced-privilege
compartments. In NSDI’08, pages 309–322, Berkeley,
CA, USA, 2008. USENIX Association.

[11] BOINC. http://boinc.berkeley.edu/. Accessed
April 2, 2010.

[12] A security vulnerability in the Java Runtime
Environment (JRE) related to deserializing calendar
objects may allow privileges to be escalated.
http://sunsolve.sun.com/search/document.do?

assetkey=1-26-244991-1. Accessed April 8, 2010.

[13] B. Cannon and E. Wohlstadter. Controlling Access to
Resources Within The Python Interpreter.
http://www.cs.ubc.ca/~drifty/papers/python_

security.pdf. Accessed July 19, 2010.

[14] B. Cannon and E. Wohlstadter. Enforcing security for
desktop clients using authority aspects. In AOSD’09,
pages 255–266, New York, NY, USA, 2009. ACM.

[15] S. Chong, K. Vikram, A. Myers, et al. SIF: Enforcing
confidentiality and integrity in web applications. In
Proc. 16th USENIX Security, 2007.

[16] G. Czajkowski. Application isolation in the Java
Virtual Machine. In OOPSLA’00, pages 354–366, New
York, NY, USA, 2000. ACM.

[17] G. Czajkowski and L. Daynés. Multitasking without
comprimise: a virtual machine evolution. In
OOPSLA’01, pages 125–138, New York, NY, USA,
2001. ACM.

[18] D. Dean, E. Felten, and D. Wallach. Java security:
From HotJava to Netscape and beyond. In 1996 IEEE
Symposium on Security and Privacy., pages 190–200,
1996.

[19] E. W. Dijkstra. The structure of the
“THE”-multiprogramming system. Commun. ACM,
11(5):341–346, 1968.

[20] P. Efstathopoulos, M. Krohn, S. VanDeBogart,
C. Frey, D. Ziegler, E. Kohler, D. Mazieres,
F. Kaashoek, and R. Morris. Labels and event
processes in the Asbestos operating system. In
SOSP’05, page 30. ACM, 2005.

[21] U. Erlingsson. The inlined reference monitor approach
to security policy enforcement. PhD thesis, Cornell,
2004.

[22] FBJS - Facebook developers wiki. http:
//wiki.developers.facebook.com/index.php/FBJS.
Accessed April 2, 2010.

[23] Pwn2own 2010: interview with charlie miller.
http://www.oneitsecurity.it/01/03/2010/

interview-with-charlie-miller-pwn2own/.
Accessed July 26, 2010.

[24] T. Fraser, L. Badger, and M. Feldman. Hardening cots
software with generic software wrappers. Foundations
of Intrusion Tolerant Systems, 0:399–413, 2003.

[25] FutureRepyAPI – Seattle. https:
//seattle.cs.washington.edu/wiki/FutureRepyAPI.
Accessed April 15, 2010.

[26] T. Garfinkel. Traps and pitfalls: Practical problems in
system call interposition based security tools. In
NDSS’03. Citeseer, 2003.

[27] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and
D. Boneh. Terra: a virtual machine-based platform for
trusted computing. In SOSP’03, pages 193–206, New
York, NY, USA, 2003. ACM.

[28] I. Goldberg, D. Wagner, R. Thomas, and E. A.
Brewer. A secure environment for untrusted helper
applications confining the Wily Hacker. In SSYM’96:
Proceedings of the 6th conference on USENIX Security
Symposium, Focusing on Applications of Cryptography,
Berkeley, CA, USA, 1996. USENIX Association.

[29] C. Hawblitzel, C.-C. Chang, G. Czajkowski, D. Hu,
and T. von Eicken. Implementing multiple protection
domains in Java. In USENIX ATC’98, pages 22–22,
Berkeley, CA, USA, 1998. USENIX Association.

[30] Learn about Java technology.
http://www.java.com/en/about/, Accessed April 8,
2010.

[31] P. A. Karger, M. E. Zurko, D. W. Bonin, A. H.
Mason, and C. E. Kahn. A Retrospective on the VAX
VMM Security Kernel. IEEE Trans. Softw. Eng.,
17(11):1147–1165, 1991.

[32] S. Koivu. Calendar bug.
http://slightlyrandombrokenthoughts.blogspot.

com/2008/12/calendar-bug.html. Accessed April 8,
2010.

[33] B. Lampson. Computer security in the real world.
Computer, 37:37–46.

[34] H. M. Levy. Capability-Based Computer Systems.
Butterworth-Heinemann, Newton, MA, USA, 1984.

[35] S. Li and G. Tan. Finding bugs in exceptional
situations of JNI programs. In CCS’09, pages 442–452,
New York, NY, USA, 2009. ACM.

[36] P. Loscocco and S. Smalley. Integrating flexible
support for security policies into the Linux operating
system. In USENIX ATC’01, pages 29–40, 2001.

[37] S. Maffeis, J. Mitchell, and A. Taly. An operational
semantics for JavaScript. Programming Languages and
Systems, pages 307–325.

[38] A. Mettler, D. Wagner, and T. Close. Joe-E: A
security-oriented subset of Java. In Network and
Distributed Systems Symposium. Internet Society,
2010.

[39] M. S. Miller. Robust Composition: Towards a Unified
Approach to Access Control and Concurrency Control.
PhD thesis, Johns Hopkins University, Baltimore,
Maryland, USA, May 2006.

[40] A. Myers, L. Zheng, S. Zdancewic, S. Chong, and
N. Nystrom. Jif: Java information flow. Software
release at http://www.cs.cornell.edu/jif. Accessed
April 3, 2010.

[41] S. Oaks. Java Security. O’Reilly and Associates, Inc.,
Sebastopol, CA, USA, 2001.

[42] N. Paul and D. Evans. Comparing Java and .NET
security: Lessons learned and missed. Computers and
Security, pages 338–350. Volume 25, Issue 5, July
2006.

[43] PlanetLab. http://www.planet-lab.org. Accessed
April 2, 2010.

[44] N. Provos. Improving host security with system call
policies. In Proceedings of the 12th USENIX Security
Symposium, volume 1, page 10. Washington, DC, 2003.

[45] PTrace. http://en.wikipedia.org/wiki/Ptrace.
Accessed April 2, 2010.

[46] Fujitsu Java Runtime Environment reflection API
vulnerability. http://jvndb.jvn.jp/en/contents/
2005/JVNDB-2005-000705.html, Accessed April 8,
2010.

[47] Sun Java Runtime Environment reflection API
privilege elevation vulnerabilities.
http://www.kb.cert.org/vuls/id/974188, Accessed
April 8, 2010.

[48] Section 5 – the three parts of the default sandbox.
http://www.securingjava.com/chapter-two/

chapter-two-5.html. Accessed April 8, 2010.

[49] Seattle: Open peer-to-peer computing.
http://seattle.cs.washington.edu/. Accessed April
3, 2010.

[50] V. Simonet and I. Rocquencourt. Flow Caml in a
nutshell. In Proceedings of the first APPSEM-II
workshop, pages 152–165. Citeseer, 2003.

[51] L. Singaravelu, C. Pu, H. Härtig, and C. Helmuth.
Reducing TCB complexity for security-sensitive
applications: three case studies. In EuroSys’06, pages
161–174, New York, NY, USA, 2006. ACM.

[52] E. G. Sirer, R. Grimm, A. J. Gregory, and B. N.
Bershad. Design and implementation of a distributed
virtual machine for networked computers. In SOSP’99,
pages 202–216, New York, NY, USA, 1999. ACM.

[53] M. Stiegler and M. Miller. How Emily tamed the
Caml. Technical Report HPL-2006-116, Advanced
Architecture Program. HP Laboratories Palo Alto,
2006.

[54] G. Tan and J. Croft. An empirical security study of
the native code in the JDK. In Proceedings of the
USENIX Security Symposium, pages 365–377,
Berkeley, CA, USA, 2008. USENIX Association.

[55] J. Viega, J. Bloch, and P. Chandra. Applying
aspect-oriented programming to security. Cutter IT
Journal, 14(2):31–39, 2001.

[56] R. Wahbe, S. Lucco, T. Anderson, and S. Graham.
Efficient software-based fault isolation. In SOSP’94,
page 216. ACM, 1994.

[57] R. N. M. Watson. Exploiting concurrency

vulnerabilities in system call wrappers. In WOOT’07,
pages 1–8, Berkeley, CA, USA, 2007. USENIX
Association.

[58] Making JavaScript safe for advertising.
http://www.adsafe.org/. Accessed April 2, 2010.

[59] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and
D. Mazières. Making information flow explicit in
HiStar. In OSDI’06, pages 263–278.

APPENDIX
A. THE REPY LANGUAGE

This section describes how we restricted the Python pro-
gramming language to a subset we call Repy, that is similar
to an object-capability system. Python is a memory-safe
language, in that, it does not allow a program to manipu-
late pointers or inspect memory directly. However, memory-
safety is not sufficient for the construction of an object-
capability system. While a similar effort has been performed
for Java [38], Python has some interesting differences be-
cause the language allows much more introspection than
Java.

A.1 Python Scopes
In Python, there are three scopes: local, global, and built-

in. The local scope is associated with a function or a block of
code, the global scope is associated with a module, and the
built-in scope is always available. In Python each of these
scopes is represented by a dictionary. The built-in scope
contains the primitives, basic data structures, and common
exceptions. Normally, this dictionary also contains unsafe
functions such as import, and eval but we remove these dur-
ing sandbox initialization. Our technique for isolating sys-
tem code from user code is to define sensitive code in a sepa-
rate global context and to control all references between the
user and system code. The only permitted references from
the user’s global scope to the system’s global scope are API
calls, all of which are explicitly added to the scope before
any user code executes. Since the local scope is created and
destroyed at a function level, there is no need to handle it
separately as it does not have access to anything not already
available in the global scope.

A.2 Code Safety Evaluation
The goal of code safety evaluation is to test if the provided

program can execute on the underlying runtime system with-
out presenting a security risk. For this, a candidate program
is validated by checking whether it meets a behavioral spec-
ification, which restricts the source code to just the valid
operations. This analysis is performed on the interpreter’s
parse tree of a program and disallows unsafe instructions,
such as the import instruction.

A.3 Programming Language
The sandbox virtual machine executes code written in a

subset of the Python language. To minimize the risk of
bugs, the virtual machine implementation attempts to build
on parts of the underlying trusted computing base that are
stable, conceptually simple and widely used. For example,
we allow use of a vanilla type of the Python interpreter’s
style of classes and simple types; we do not allow classes that
subclass basic types, provide their own namespace storage

mechanisms, or utilize other complex mechanisms that are
rarely used or new to the language.

This language supports a subset of Python language prim-
itives and constructs – it is, in fact, executed by the Python
interpreter. The virtual machine loads code as text and then
uses the standard compiler module built into the interpreter
to build a parse tree of the code. The virtual machine ver-
ifies that the parse tree contains only the supported subset
of the language using a popular safety module, which was
initially developed by Phil Hassey and that we significantly
adapted to our context. If there is a disallowed language
construct, the code is rejected without executing. We found
this method to be efficient and robust in detecting disallowed
or unrecognized functions and language constructs. Assum-
ing the parse tree for the code contains the valid subset of
Python, the code is executed once the built-ins and the API
are mapped into its namespace.

The virtual machine verifies multiple aspects of the Python
interpreter before it begins executing loaded code. Allowed
built-in Python functions are checked to ensure their sig-
natures (i.e. argument list) are defined as expected. This
prevents differences in interpreter implementations or in-
terpreter versions, which may result in changes to built-in
functions, from exposing unintended functionality to un-
trusted code.

A.4 Language Built-ins
Static analysis of a parse tree will not catch all security

threats. Many dynamic languages have built-in functions
and object attributes that allow a high degree of introspec-
tion (referred to as reflection in Java), enabling code to
inspect and manipulate elements of the execution environ-
ment. Introspection is useful in debugging, profiling, and (as
we have found) in restricting the functionality of executing
code. However, introspection also provides mechanisms for
circumventing the API and language restrictions. To combat
this, the virtual machine remaps the introspective built-ins
to make them trap out of the sandbox and cause termina-
tion. This remapping essentially augments the interpreter
to perform simple run-time analysis for further safety.

However, while language constructs constrain what loaded
code executes, there remain certain built-in functions that
provide functionality outside of what can be expressed
within our language constraints. These built-ins must also
be correctly restricted because execution of these unsafe
functions may cause the code to escape the sandbox re-
source or isolation restrictions.

The set of allowed built-ins consists of 87 items obtained
directly from Python’s interpreter. These include definitions
of constants and exceptions like True and ValueError (53),
type conversion functions like float and chr (15), math func-
tions like max and pow (8), as well as miscellaneous Python
operations like len and range (11). Notice that operations
like import (which includes code from another module), eval,
and exec are not directly allowed because verifying their
safety is known to be difficult. The virtual namespace prim-
itive (Section 4) provides unprivileged code with access to
equivalent functionality that is safely implemented.

