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State-of-the-Art Measurement
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System Measurement Speed (ms)

Hedera (NSDI ’10) 5,000

DevoFlow Polling (Sigcomm ’11) 500–15,000

Mahout Polling (Infocom ’11) 190

sFlow/OpenSample (ICDCS ’14) 100

Helios (Sigcomm ’10) 77.4

Planck < 4.2
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Outline

❖ Motivation!
❖ Planck Architecture!
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❖ Is Planck Useful?!

❖ Microbenchmarks!
❖ Traffic Engineering
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Architecture Goals

❖ Obtain very fast samples across all switches in the network!
❖ Use those samples to infer global state of the network!

❖ Flow throughput!
❖ Flow paths!
❖ Port congestion state
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Our Solution: Repurpose Port Mirroring
❖ Modern switches support port-mirroring!

❖ Copies all packets e.g. going out a port to a 
designated mirror port!

❖ Mirror all ports to a single mirror port!
❖ Intentional oversubscription!
❖ Drop behavior approximates sampling!
❖ Data-plane sampling much faster than 

control-plane based approaches
7
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Planck Architecture
❖ Oversubscribed port-mirroring as a 

primitive !

❖ Collectors receive samples from mirror 
ports!

❖ Netmap for fast processing!

❖ Reconstruct flow information across all 
flows in the network!

❖ Collectors can interact with an SDN 
controller to implement various applications
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Experiment Setup
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❖ Vary the number of congested ports!
❖ N number of: 2 senders paired with 1 

receiver!
❖ TCP will fill up the output buffer going to 

the receiver!
❖ 15 trials for each config with/without 

Planck-mirroring!
❖ Monitor latency, packet loss and 

throughput

Switch

…

N

CollectorMirror Port

1
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Switches Share Buffers

❖ Modern switches use shared buffers!
❖ Independent queues per ports is not 

completely accurate!
❖ Memory consumed by an oversubscribed 

mirror port may use space that production 
traffic could use

1313
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Production Traffic Latency
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Production Traffic Packet Loss
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Production Throughput
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Is Planck Feasible?

❖ Does Planck hurt production traffic?!
❖ Can Planck infer throughput?!
❖ Can Planck infer congested ports?
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Throughput Estimation is Accurate
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(n*10 Gbps sent to mirror port)

❖ Estimates are trivial if sampling 
rate is known!

❖ Leverage TCP seq# in packets!
❖ Smoothed estimates in 200–700 µs!
❖ See paper for more details



Sample Inter-Arrival Length
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❖ x13 10 Gbps flows!
❖ Grows roughly linearly!
❖ See paper for further results
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Sample Latency
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Control Loop Times

❖ < 3.5 ms to obtain sample + < 700µs to get 
tput estimate = 4.2 ms worst-case 
measurement time for 10 Gb!

❖ Planck achieves measurement speeds 18x – 
291x faster than recent approaches!

❖ Shadow MAC addresses [1] and some ARP 
tricks allow re-routing at < 3ms!

❖ See paper for more details

23
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Planck as a Platform

❖ Vantage point mirroring!
❖ tcpdump for switches!

❖ Global view of the network!
❖ flow data across all links!

❖ Traffic engineering!
❖ congested port notifications
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Testbed
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❖ Split x4 IBM G8264 (48-port) switches into 20 sub-switches!
❖ Routing via Floodlight plugin inspired by FlowVisor!

❖ x3 server machines with x8 10 GbE NICs each!
❖ x16 machines with x2 10 GbE NICs

16 Host Fat Tree



Methodology
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Workloads!

❖ Shuffle!

❖ Stride!

❖ Random!

❖ Random Bijection

Optimal Topology

…

1 2 3 4 … 16

Routing!

❖ Static [1]!

❖ Poll-100 ms!

❖ PlanckTE!

❖ Optimal

Traffic Engineering!

❖ Floodlight-based 
module using Planck!

❖ Collectors notify a 
controller when ports 
become congested

[1] PAST: Scalable Ethernet for Data Centers (CoNEXT ’12)



Traffic Engineering
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Traffic Engineering
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Future Work

❖ Planck should be able to go much faster!!
❖ Limit mirror port buffer!
❖ Truncation of samples!
❖ Improve re-routing time (via ARP improvements)!

❖ Control loop of 100s of µs is possible
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Conclusion

❖ Planck provides 1–2 orders of magnitude faster throughput measurements 
over recent approaches (< 4.2 ms today and 100s of µs possible)!

❖ Planck provides a platform for low-latency measurement!
❖ Planck traffic engineering yields near optimal results even for small flows!
❖ Measurements at these speeds prompt a re-thinking of how networks are 

managed
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