
Planck: Millisecond-scale Monitoring
and Control for Commodity Networks

Jeff Rasley, Brent Stephens,!
Colin Dixon, Eric Rozner,!
Wes Felter, Kanak Agarwal,!
John Carter, Rodrigo Fonseca

1

Self-Tuning Networks

2

Measurement

DecisionControl

Control Loop Examples!
!

• Traffic Engineering!
• Failure Avoidance!
• Forwarding Behavior Verification

How fast can we do this?

Self-Tuning Networks

2

Measurement

DecisionControl

100 ms — 1 sec+
Control Loop Examples!
!

• Traffic Engineering!
• Failure Avoidance!
• Forwarding Behavior Verification

How fast can we do this?

Self-Tuning Networks

2

Measurement

DecisionControl

100 ms — 1 sec+

~100 µs

Control Loop Examples!
!

• Traffic Engineering!
• Failure Avoidance!
• Forwarding Behavior Verification

How fast can we do this?

Self-Tuning Networks

2

Measurement

DecisionControl

100 ms — 1 sec+

~100 µs> 10 ms

Control Loop Examples!
!

• Traffic Engineering!
• Failure Avoidance!
• Forwarding Behavior Verification

How fast can we do this?

Self-Tuning Networks

2

Measurement

DecisionControl

100 ms — 1 sec+

~100 µs> 10 ms

Control Loop Examples!
!

• Traffic Engineering!
• Failure Avoidance!
• Forwarding Behavior Verification

How fast can we do this?

State-of-the-Art Measurement

3

System Measurement Speed (ms)

Hedera (NSDI ’10) 5,000

DevoFlow Polling (Sigcomm ’11) 500–15,000

Mahout Polling (Infocom ’11) 190

sFlow/OpenSample (ICDCS ’14) 100

Helios (Sigcomm ’10) 77.4

Planck < 4.2

State-of-the-Art Measurement

4

System Measurement Speed (ms)

Hedera (NSDI ’10) 5,000

DevoFlow Polling (Sigcomm ’11) 500–15,000

Mahout Polling (Infocom ’11) 190

sFlow/OpenSample (ICDCS ’14) 100

Helios (Sigcomm ’10) 77.4

Planck < 4.2

Outline

❖ Motivation!
❖ Planck Architecture!
❖ Is Planck Feasible?!
❖ Is Planck Useful?!

❖ Microbenchmarks!
❖ Traffic Engineering

5

Architecture Goals

❖ Obtain very fast samples across all switches in the network!
❖ Use those samples to infer global state of the network!

❖ Flow throughput!
❖ Flow paths!
❖ Port congestion state

6

Our Solution: Repurpose Port Mirroring
❖ Modern switches support port-mirroring!

❖ Copies all packets e.g. going out a port to a
designated mirror port!

❖ Mirror all ports to a single mirror port!
❖ Intentional oversubscription!
❖ Drop behavior approximates sampling!
❖ Data-plane sampling much faster than

control-plane based approaches
7

Production!
Traffic

Switch

Our Solution: Repurpose Port Mirroring
❖ Modern switches support port-mirroring!

❖ Copies all packets e.g. going out a port to a
designated mirror port!

❖ Mirror all ports to a single mirror port!
❖ Intentional oversubscription!
❖ Drop behavior approximates sampling!
❖ Data-plane sampling much faster than

control-plane based approaches
7

Mirror Port

Production!
Traffic

Switch

Our Solution: Repurpose Port Mirroring
❖ Modern switches support port-mirroring!

❖ Copies all packets e.g. going out a port to a
designated mirror port!

❖ Mirror all ports to a single mirror port!
❖ Intentional oversubscription!
❖ Drop behavior approximates sampling!
❖ Data-plane sampling much faster than

control-plane based approaches
7

Mirror Port

Production!
Traffic

Switch

Planck Architecture
❖ Oversubscribed port-mirroring as a

primitive !

❖ Collectors receive samples from mirror
ports!

❖ Netmap for fast processing!

❖ Reconstruct flow information across all
flows in the network!

❖ Collectors can interact with an SDN
controller to implement various applications

Planck Architecture
❖ Oversubscribed port-mirroring as a

primitive !

❖ Collectors receive samples from mirror
ports!

❖ Netmap for fast processing!

❖ Reconstruct flow information across all
flows in the network!

❖ Collectors can interact with an SDN
controller to implement various applications

Planck!
Collector!

Instance(s)

Planck Architecture
❖ Oversubscribed port-mirroring as a

primitive !

❖ Collectors receive samples from mirror
ports!

❖ Netmap for fast processing!

❖ Reconstruct flow information across all
flows in the network!

❖ Collectors can interact with an SDN
controller to implement various applications

SDN!
Controller

Planck!
Collector!

Instance(s)

Outline

❖ Motivation!
❖ Planck Architecture!
❖ Is Planck Feasible?!
❖ Is Planck Useful?!

❖ Microbenchmarks!
❖ Traffic Engineering

9

Is Planck Feasible?

❖ Does Planck hurt production traffic?!
❖ Can Planck infer throughput?!
❖ Can Planck infer congested ports?

10

SDN!
Controller

Planck!
Collector!

Instance(s)

Is Planck Feasible?

❖ Does Planck hurt production traffic?!
❖ Can Planck infer throughput?!
❖ Can Planck infer congested ports?

11

SDN!
Controller

Planck!
Collector!

Instance(s)

Experiment Setup

12

❖ Vary the number of congested ports!
❖ N number of: 2 senders paired with 1

receiver!
❖ TCP will fill up the output buffer going to

the receiver!
❖ 15 trials for each config with/without

Planck-mirroring!
❖ Monitor latency, packet loss and

throughput

Switch

…

N

CollectorMirror Port

1

2

Switches Share Buffers

❖ Modern switches use shared buffers!
❖ Independent queues per ports is not

completely accurate!
❖ Memory consumed by an oversubscribed

mirror port may use space that production
traffic could use

1313

Switches Share Buffers

❖ Modern switches use shared buffers!
❖ Independent queues per ports is not

completely accurate!
❖ Memory consumed by an oversubscribed

mirror port may use space that production
traffic could use

1313

Switch

1

…

2

N

Collector

Mirror Port

Production Traffic Latency

14

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 3 4 5 6 7 8 9 10

Av
er

ag
e

La
te

nc
y

(m
s)

Congested Output Ports

Mirror No Mirror

Production Traffic Packet Loss

15

��

�����

�����

�����

�����

����

�����

�����

�����

	� 	� 	
 	� 	� 	� 	� 	� 	

��
��
��
��
�	
��

�
��
��
��

���������	������	�����

������

���������

Production Throughput

16

 0
 2
 4
 6

0.
1%

Th
ro

ug
hp

ut
(G

bp
s) Mirror No Mirror

 0
 2
 4
 6

 1 2 3 4 5 6 7 8 9

M
ed

ia
n

Th
ro

ug
hp

ut
(G

bp
s)

Congested Output Ports

Mirror No Mirror

Production Throughput

16

 0
 2
 4
 6

0.
1%

Th
ro

ug
hp

ut
(G

bp
s) Mirror No Mirror

 0
 2
 4
 6

 1 2 3 4 5 6 7 8 9

M
ed

ia
n

Th
ro

ug
hp

ut
(G

bp
s)

Congested Output Ports

Mirror No Mirror

 0
 2
 4
 6

0.
1%

Th
ro

ug
hp

ut
(G

bp
s) Mirror No Mirror

 0
 2
 4
 6

 1 2 3 4 5 6 7 8 9

M
ed

ia
n

Th
ro

ug
hp

ut
(G

bp
s)

Congested Output Ports

Mirror No Mirror

Is Planck Feasible?

❖ Does Planck hurt production traffic?!
❖ Can Planck infer throughput?!
❖ Can Planck infer congested ports?

17

SDN!
Controller

Planck!
Collector!

Instance(s)

Throughput Estimation is Accurate

18

��
��
��
��
��
��
��

�� �� �� �� �	 ��� ��� ���

�
��
��
��
��

�	
��

�
��

�
��
��
�

��
�����
������������

(n*10 Gbps sent to mirror port)

❖ Estimates are trivial if sampling
rate is known!

❖ Leverage TCP seq# in packets!
❖ Smoothed estimates in 200–700 µs!
❖ See paper for more details

Sample Inter-Arrival Length

19

❖ x13 10 Gbps flows!
❖ Grows roughly linearly!
❖ See paper for further results

 0
 2
 4
 6
 8

 10
 12
 14

 2 4 6 8 10 12 14

In
te

r-a
rr

iv
al

Le
ng

th
(M

TU
s)

Flows

Is Planck Feasible?
SDN!

Controller

Planck!
Collector!

Instance(s)

❖ Does Planck hurt production traffic?!
❖ Can Planck infer throughput?!
❖ Can Planck infer congested ports?

Is Planck Feasible?
SDN!

Controller

Planck!
Collector!

Instance(s)

❖ Does Planck hurt production traffic?!
❖ Can Planck infer throughput?!
❖ Can Planck infer congested ports?

Planck provides flow
throughput, a flow just needs

to be mapped to a port

Is Planck Feasible?
SDN!

Controller

Planck!
Collector!

Instance(s)

❖ Does Planck hurt production traffic?!
❖ Can Planck infer throughput?!
❖ Can Planck infer congested ports?

Planck provides flow
throughput, a flow just needs

to be mapped to a port

Outline

❖ Motivation!
❖ Planck Architecture!
❖ Is Planck Feasible?!
❖ Is Planck Useful?!

❖ Microbenchmarks!
❖ Traffic Engineering

21

Sample Latency

22

H

Switch

H

H

Sender Receiver

Collectort_1

t_2

Latency = t_2 - t_1

Sample Latency

22

Low Congestion !
Sample Latency: !

75–150 µs

H

Switch

H

H

Sender Receiver

Collectort_1

t_2

Latency = t_2 - t_1

Sample Latency

22

Low Congestion !
Sample Latency: !

75–150 µs

H

Switch

H

H

Sender Receiver

Collectort_1

t_2

Latency = t_2 - t_1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 1 2 3 4 5 6
C

D
F

Measurement Latency (ms)

IBM G8264 (10Gb) Pronto 3290 (1Gb)

High Congestion Sample Latency

Control Loop Times

❖ < 3.5 ms to obtain sample + < 700µs to get
tput estimate = 4.2 ms worst-case
measurement time for 10 Gb!

❖ Planck achieves measurement speeds 18x –
291x faster than recent approaches!

❖ Shadow MAC addresses [1] and some ARP
tricks allow re-routing at < 3ms!

❖ See paper for more details

23

DecisionControl
~100 µs> 10 ms

Measurement
100 ms — 1 sec+

[1] Shadow MACs: Scalable Label-switching !
for Commodity Ethernet (HotSDN ’14)

Control Loop Times

❖ < 3.5 ms to obtain sample + < 700µs to get
tput estimate = 4.2 ms worst-case
measurement time for 10 Gb!

❖ Planck achieves measurement speeds 18x –
291x faster than recent approaches!

❖ Shadow MAC addresses [1] and some ARP
tricks allow re-routing at < 3ms!

❖ See paper for more details

23

DecisionControl
~100 µs> 10 ms

Measurement

Planck: < 4.2 ms
100 ms — 1 sec+

[1] Shadow MACs: Scalable Label-switching !
for Commodity Ethernet (HotSDN ’14)

Control Loop Times

❖ < 3.5 ms to obtain sample + < 700µs to get
tput estimate = 4.2 ms worst-case
measurement time for 10 Gb!

❖ Planck achieves measurement speeds 18x –
291x faster than recent approaches!

❖ Shadow MAC addresses [1] and some ARP
tricks allow re-routing at < 3ms!

❖ See paper for more details

23

DecisionControl
~100 µs> 10 ms

Measurement

Planck: < 4.2 ms
100 ms — 1 sec+

[1] Shadow MACs: Scalable Label-switching !
for Commodity Ethernet (HotSDN ’14)

< 3 ms

Planck as a Platform

❖ Vantage point mirroring!
❖ tcpdump for switches!

❖ Global view of the network!
❖ flow data across all links!

❖ Traffic engineering!
❖ congested port notifications

24

SDN!
Controller

Planck!
Collector!

Instance(s)

Outline

❖ Motivation!
❖ Planck Architecture!
❖ Is Planck Feasible?!
❖ Is Planck Useful?!

❖ Microbenchmarks!
❖ Traffic Engineering

25

Testbed

26

❖ Split x4 IBM G8264 (48-port) switches into 20 sub-switches!
❖ Routing via Floodlight plugin inspired by FlowVisor!

❖ x3 server machines with x8 10 GbE NICs each!
❖ x16 machines with x2 10 GbE NICs

16 Host Fat Tree

Methodology

27

Workloads!

❖ Shuffle!

❖ Stride!

❖ Random!

❖ Random Bijection

Optimal Topology

…

1 2 3 4 … 16

Routing!

❖ Static [1]!

❖ Poll-100 ms!

❖ PlanckTE!

❖ Optimal

Traffic Engineering!

❖ Floodlight-based
module using Planck!

❖ Collectors notify a
controller when ports
become congested

[1] PAST: Scalable Ethernet for Data Centers (CoNEXT ’12)

Traffic Engineering

28

Stride(8) 100 MiB Workload!
CDF of Flow Throughput

��

����

����

����

����

��

�� �� �	 �� �
 �� �� �� ��

�
�
�

��������

����������	

�����

Static [1]
Optimal

Traffic Engineering

28

Stride(8) 100 MiB Workload!
CDF of Flow Throughput

��

����

����

����

����

��

�� �� �	 �� �
 �� �� �� ��

�
�
�

��������

����������	

�����

��

����

����

����

����

��

�� �� �	 �� �
 �� �� �� ��

�
�
�

��������

����������	

�����

��

������

Static [1]
Optimal

Poll 100ms

Traffic Engineering

28

Stride(8) 100 MiB Workload!
CDF of Flow Throughput

��

����

����

����

����

��

�� �� �	 �� �
 �� �� �� ��

�
�
�

��������

����������	

�����

��

����

����

����

����

��

�� �� �	 �� �
 �� �� �� ��

�
�
�

��������

����������	

�����

��

������

��

����

����

����

����

��

�� �� �	 �� �
 �� �� �� ��

�
�
�

��������

����������	

�����

��

������

����

Static [1]
Optimal

Poll 100ms
PlanckTE

Traffic Engineering

29

Stride(8) Workload

��

��

��

��

��

���

����� ���� �� ��� ����

�
��
��
��
�
�	

�
��
�

�
��
��
�

��

	
���
���������

�����
��

������

�
������
 !����

Future Work

❖ Planck should be able to go much faster!!
❖ Limit mirror port buffer!
❖ Truncation of samples!
❖ Improve re-routing time (via ARP improvements)!

❖ Control loop of 100s of µs is possible

30

Conclusion

❖ Planck provides 1–2 orders of magnitude faster throughput measurements
over recent approaches (< 4.2 ms today and 100s of µs possible)!

❖ Planck provides a platform for low-latency measurement!
❖ Planck traffic engineering yields near optimal results even for small flows!
❖ Measurements at these speeds prompt a re-thinking of how networks are

managed

31

