
Theoretical Computer Science in TransitionJohn E. SavageDepartment of Computer ScienceBrown UniversityProvidence, RI 02912-1910June 6, 1996If the past is prologue to the future, computer science will continue to be extremely successful.In a few short decades computer science has lead to revolutions in work, recreation andsocietal interactions. There are few technologies whose impact has been greater. Theoreticalcomputer science has played a central role in these developments and is destined to play acentral role in the future.This document provides a brief discussion of the role of theory in computer science as wellas a quick survey of contributions by the �eld. It takes the position that the unpredictablenature of research argues for a liberal attitude toward research funding while maintainingstandards. Thus, it argues against picking speci�c research agendas or betting large amountsof support on a few research groups. Finally, it lists important areas of computer sciencethat have the potential to attract the attention of theoretical computer scientists.1 The Nature of Computer ScienceA distinguishing characteristic of computer science is the enormous gap that exists betweenthe simple instruction sets of our computers and the complexity of useful software. Thisdichotomy produces intellectual challenges of the highest order. Today many importantapplications contains several million lines of code, too many for one person to read in a yearand impossible for one person to fully understand. VLSI chips are now being manufacturedcontaining more than one hundred million transistors, again posing an almost impossibleproblem for human comprehension.2 The Role of TheoryModern computer science presents immense challenges to which both experimental and the-oretical computer scientists respond. Researchers in both communities explore the frontiersof the �eld. Experimental computer science is devoted primarily to harnessing the power of1



computation whereas theoretical computer science seeks largely to understand the limits oncomputation and the power of computational paradigms. Theoreticians also develop generalapproaches to problem solving. The boundary between experimental and theoretical com-puter science is not �rmly marked; theoreticians invent ways of harnessing computation andexperimentalists apply analysis in their work. Both communities share a common vision,however, which is to make computation useful.Experimental computer science is most e�ective on problems that require complex soft-ware solutions such as the creation of software development environments, the organizationof data that is not tabular, or the construction of tools to solve constrained optimizationproblems. The approach is largely to identify concepts that facilitate solutions to a problemand then evaluate the solutions through construction of prototype systems.Theoretical computer science is most e�ective on problems that are susceptible to preciseformulation such as the characterization of hard computational problems, the encryptionmessages for large scale use, the use of large degrees of parallelism, the coordination of activityon distributed systems, and the determination of limits on the performance of computers.The approach is to develop computational models and methods of analysis and then applythe analysis to problems that would be executed on these models.One of theoretical computer science's most important functions is the distillation ofknowledge acquired through conceptualization, modeling and analysis. Knowledge is ac-cumulating so rapidly that it must be collected and prepared for transmission to the nextgeneration. While this task is not limited to theoretical computer science, it is one of itsprinciple functions.3 Contributions of Theoretical Computer ScienceThe success of theoretical computer science is measured both by its impact on practice andby its contribution to the understanding of computation and the limits thereof.Theoretical computer science has made contributions to many areas. In the 1930'sChurch, Godel, Kleene, Turing and others developed fundamental models of computationthat continue to be relevant. In the 1940's Shannon, von Neumann and Weiner and ad-vanced computer science through the study of circuits and other models of computation.The 1950's and 60's saw development of formal languages as well as models of computationsuch as the �nite-state machine and the pushdown automaton. This work continues to beused in programming and the design and translation of languages today.Algorithms and data structures is an area that has seen an enormous amount of e�ortby theoreticians whose impact on practice has been immense. Activity began in this areaas early as the 1950's and has grown in importance to the present time. Among its no-table achievements are fast and e�cient algorithms for sorting, searching and data retrieval,computations on strings and graphs, computational geometry, scienti�c computation, andconstraint and optimization problems.During the 1960's the foundations of computational complexity were developed. Hier-archies of problems were identi�ed and speed-up and gap theorems established. This area
ourished in the 1970's and beyond, in particular, through the identi�cation of the NP-complete, P-complete and PSPACE-complete languages. In the 1970's connections were2



established between Turing and circuit complexity, thereby spawning a new examination ofthis topic. Space-time tradeo� studies were also initiated. Research in all of these areascontinues today.The late 1970's saw the emergence of the VLSI model as well as methods of analysis forit. This led to a burst of activity on the part of theoreticians in the 1980's in this area andto the rebirth of computer architecture under the label of VLSI.The early 1980's saw the introduction of the �rst models for memory hierarchies andto the development of I/O complexity as an important area of research. Several di�erentmodels capturing various aspects of memory hierarchies emerged and research in this areais now leading to a redesign of I/O systems.Public key cryptography emerged in the mid to late 1970's and has spawned a 
ood ofinteresting ideas having to do with secure communication and interactive and zero-knowledgeproof systems. Today systems based on some of these ideas are used to provide security forpurchases over the Internet.Beginning in the late 1970's, theoretical research on parallelism has resulted in newparallel computer architectures and new paradigms for programming parallel machines thathave been o�ered in products. We have learned that even the \simple" PRAM parallelmachine model is very di�cult to program e�ciently. New algorithms have had to beinvented for old problems because old ones could not exploit parallelism. Through theoreticalstudies we have come to better understand why some problems are much more di�cult toprogram in parallel than others. Since computers will become increasingly parallel as weapproach the limits of performance of serial VLSI-based computers, the impact of researchin this area will continue to grow.The formal study of the semantics of programming languages, an area that became activein the 1960's, has led to a much better understanding of programming constructs, therebyguiding the design of successors to pioneering languages, such as LISP, Prolog, and Simula,that were invented to simplify the design and maintenance of complex applications. Thestudy of programming language semantics also provides a fundamental tool for the develop-ment of static analysis and program transformations, two key steps in compiler optimization.The formal study program veri�cation techniques also began in the late 1960's. It hasalso had an important impact on programming language design. Recent results in modelchecking show high promise for a signi�cant industrial impact.Relational database theory emerged in the early 1970's and, together with many advancesin data structures, optimization methods and other contributions, has had a major impact onpractice. Today relational database are commonplace commercial products that are widelyused throughout the world.The often subtle behavior of concurrent and distributed systems, which became andactive area of research on the late 1960's and early 1970's, has bene�ted immensely fromformal modeling and analysis. Models of concurrent systems have been introduced andtools to understand concurrency applied. Transactions processing, which involves issues ofserializability, locking, logging, timestamping, replication and orphan handling, have alsobeen subjected to modeling and analysis, thereby insuring correct handling of these issues.The same is true of I/O which depends on the correct and e�cient implementation of datastructures used in this context. All of this work has a direct impact on practice.Learning theory, which saw a burst of activity on the part of theoretical computer sci-3



entists in the 1980's, has led to new and deeper understanding of the problems for whichactive and passive learning is possible, thereby serving as a guide for the intelligent use ofcomputers.Computational biology and the human genome project have bene�ted from the algorithmdesign and complexity analysis that theoretical computer scientists have brought to them.This work will continue to be important in the future.Approximation algorithms for hard computational problems have long been sought. Thedevelopment of a theory of polynomially checkable proofs provides a major improvement inour understanding of the degree to which NP-complete problems are approximable. Thisknowledge will serve as an important guide in the search for good approximation algorithms.4 Research Funding PoliciesWhile research is by its nature highly unpredictable, successful research can be extraordi-narily valuable. In fact, a few truly successful researchers can justify support for a largecommunity of researchers.Research is unpredictable because it is di�cult to forecast the future or estimate theskill and stamina of individual researchers. It is hard to determine who has chosen the rightproblem and whether that group or person will be successful or not.Faced with these uncertainties, a prudent research funding policy invests in more peoplewith smaller grants in a larger number of areas than the converse. Such a policy increasesthe odds that some investigators will be successful. A wise funding policy will also increasethe interaction between researchers, thereby seeking to encourage cross fertilization andcreativity in problem solving.It is important to note that good researchers are very aware of the objectives of their �eldand need nurturing rather than direction. Should they stray for too long from a path thatappears to be directed toward the problems of the �eld, this is cause for concern. However,the unpredictability of research demands that patience and tolerance be the hallmarks of asuccessful research funding policy. A research direction that may seem unpromising to some,for example, an exploration of proof methods in the pursuit of the P ?= NP question, mayeventually be very productive.Standards must also be met. Funding should be provided to those who are thought to bemost capable of doing the research. Peer evaluation works very well in this regard but thereis also a need for enlightened, unilateral decision making on the part of those with fundingresponsibility. Variety in research funding criteria as well as in research topics reduce riskAs research �elds mature, there is an increasing need to apply the fruits of research. Oftenthe application of research results is far from simple and o�ers important and interestingintellectual challenges. Some researchers may wish to follow research topics as they becomemore applied, thereby serving the profession as well as themselves.5 Directions for ResearchComputer science is a vibrant �eld, full of potential. Not only are new products emergingevery day, the demands of the �eld create new computational problems that need solution,4



many of them highly complex. Since the computer scientist is needed when the computa-tional problem is hard, this means that our �eld is likely to be in demand for the foreseablefuture.Many areas o�er problems of su�cient complexity and importance to warrant the atten-tion of the theoretical computer scientist. Some of these currently lack the precision thatusually attracts theoreticians but, through joint work with experimentalists, this can change.A list of research areas that may attract theoreticians is given below. It is not intendedto be complete nor the description of a research agenda. Our community is rich in diversitywhich should continue to be encouraged. Together we can come to agreement on areas thathave high potential, bearing in mind, of course, that it is undesirable to invest too fully intoo few areas, especially areas that have received a great deal of attention in the past.� Parallel and distributed computing are increasing steadily in importance. Manufac-turers now o�er symmetric multiprocessors as well as support for locally and remotelydistributed computing. The problems they encounter in coordinating activity, access-ing data, securing transactions while achieving high performance are challenging.� Many companies are now very dependent on high-performance computing for the sim-ulation of complex designs and for the planning and scheduling of work of all kinds.These areas have pro�ted and will continue to pro�t from the research of theoreticians.� The growing complexity of software o�ers immense challenges to speci�cation andunderstanding for which the talents of theoreticians are appropriate. This is an areain which interaction with experimentalists will lead to new methods for specifying andverifying software systems. Interestingly, while algorithms and data structures areimportant in the design of large complex software systems, they occupy a relativelysmall fraction of a designer's time.� As computer systems become more complex, understanding their behavior and perfor-mance will present daunting challenges. This topic will increase in importance as thepro�t margins on computer systems shrink.� Data storage and retrieval in the future will not be limited to relational and objectoriented databases. Data in a large variety of formats and types will commingle andsearch and retrieval mechanisms will be invented to access them. Theoreticians canplay a role here by laying the foundations for the logical development of this area.Most traditional areas of computer science will continue to evolve and require the atten-tion of theoretical computer scientists.New areas will emerge that are hard to predict. For example, ubiquitous and mobilecomputing in which many users migrate their work and attention to di�erent computers willo�er many challenges including the obvious one of resource allocation. Quantum computinghas the tantalizing prospect of being a new and highly parallel computing model that maybe used to solve very hard problems in an instant.Computer science is a thriving area that will continue to thrive for decades to come.The role for the theoretician in computer science is to create new computational models andto explore the power and limits of these models for important problems. As long as thecomputational problems are very hard there is a role for the theoretician.5


