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A key challenge facing nanotechnologies is learning to control uncertainty introduced by stochas-
tic self-assembly. In this article, we explore architectural and manufacturing strategies to cope
with this uncertainty when assembling nanoarrays, crossbars composed of two orthogonal sets of
parallel nanowires (NWs) that are differentiated at their time of manufacture. NW deposition is
a stochastic process and the NW encodings present in an array cannot be known in advance. We
explore the reliable construction of memories from stochastically assembled arrays. This is accom-
plished by describing several families of NW encodings and developing strategies to map external
binary addresses onto internal NW encodings using programmable circuitry. We explore a variety of
different mapping strategies and develop probabilistic methods of analysis. This is the first article
that makes clear the wide range of choices that are available.

Categories and Subject Descriptors: B.3.m [Memory Structures]: Miscellaneous; C.5.m [Com-
puter Systems Implementation]: Miscellaneous

General Terms: Design, Performance

Additional Key Words and Phrases: Addressing schemes, coupon collector problem, nanotechnology,
nanowire crossbars

1. INTRODUCTION

Anticipating the end of Moore’s Law for photolithography, scientists have
sought new methods of constructing memories and logic circuits. They have
developed methods for growing nanometer-sized nanowires (NWs) and carbon
nanotubes [Dekker 1999; Cui et al. 2001; Morales and Lieber 1998; Melosh
et al. 2003; Johnston-Halperin et al. 2004]. They have also exhibited meth-
ods to assemble NWs into nanoarrays, crossbars consisting of two orthogonal
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Fig. 1. (a) A crossbar has two sets of orthogonal wires. Binary data is stored at crosspoints defined
by pairs of intersecting wires. (Dots are associated with 1s.) (b) (2,4)-hot addressing of six NWs
{nw1, . . . , nw6} with four mesoscale address wires {mw1, . . . , mw4}. In practice, the MWs would
be much thicker than the NWs. Dark rectangles identify a lightly doped (controllable) region of
a vertical NW. Other regions of NWs are uncontrollable. MWs either carry a high electric field or
no field. A NW is nonconducting only if the MWs carrying high fields lie across its uncontrollable
regions. If exactly two of the four MWs carry a high electric field, exactly one of the six NWs is
conducting.

sets of parallel wires separated by a molecular layer [Kuekes et al. 2000; Chen
et al. 2003; Melosh et al. 2003; Whang et al. 2003; Zhong et al. 2003; Huang
et al. 2001; Kim et al. 2001; Wu et al. 2002]. (See Figure 1(a).) Within this layer,
molecules at the crosspoints of pairs of orthogonal NWs can switch their conduc-
tivity under the application of large positive and negative electric fields [Collier
et al. 2000; Collier et al. 1999; Rueckes et al. 2000; Duan et al. 2002]. The con-
ductivity at crosspoints can be sensed without changing it by the application of
smaller electric fields.

It is proposed that nanocrossbars be used as very high density memories
and programmed logic arrays (PLAs) [DeHon 2003; DeHon et al. 2003; Gojman
et al. 2004; Rachlin et al. 2005; DeHon et al. 2005]. A prototype 8 × 8 crossbar
with a density of 6.4 Gbits/cm2 has been announced that is based on these
technologies [Chen et al. 2003] and a memory with storage capacity of 10 Gbits
based on cross-bars of NTs is promised (see http://www.nantero.com). DeHon
et al. [2005] estimate that a memory density exceeding 1011 bits/cm2 is possible.

Two types of NW have been proposed for use in crossbars, differentiated
(or encoded) NWs and undifferentiated (or uniform) NWs. In this article, we
consider crossbars constructed with differentiated NWs. NWs are so small
that the process of quickly assembling large numbers of them into an array
is stochastic. As a consequence, it isn’t possible to predict with certainty which
NW types will fall onto a chip or whether the number of distinct addresses
available will meet stated minimal requirements. Instead, design parame-
ters are chosen so that these requirements are met with a certain minimal
probability.

In this article, we present a broad study of the stochastic assembly of nanoar-
ray memories constructed with differentiated NWs. Unlike DeHon et al. [2003,
2005], we don’t examine just the area occupied by the crosspoints and address
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wires, we also examine the area of translation memories used to map external
binary addresses onto internal NW encodings. Also, we don’t restrict attention
to just one strategy to perform this mapping but consider four representative
strategies. We do this because the total area occupied by a nanoarray is affected
by the address mapping strategy.

The “all different” address mapping strategy examined in DeHon et al. [2003,
2005] requires that, with high probability, all NWs have different addresses. We
show that relaxing this requirement so that half of them are different (the “most
different” strategy) dramatically reduces the number of different NW types
needed to ensure success with high probability and uses less total chip area. We
also introduce the “all present” strategy in which every NW type is present and
show that it doesn’t require a translation memory and has the potential to use
less area than DRAMs. However, it is inferior to the “most different” strategy.
Finally, we present the “repeated codeword” strategy in which each codeword
appears many times and show that it can succeed using a very small number
of NW types. This will be an important consideration in the manufacture of
nanoarrays.

We also introduce a new type of NW code called the “binary reflected codes,”
examine the use of address wildcards in storing data and codeword discovery,
and give nearly optimal algorithms for the latter problem.

Even though the assembly of nanoarrays is stochastic, there is a wealth of
design opportunities to be considered. This is the first work that attempts to
explore the wide range of design possibilities for individual nanoarrays in a
comprehensive fashion.

1.1 Crossbar Nanoarrays

In nanoarrays, data is stored using the state of conductivity of the molecules
at crosspoints. The standard method of reading and writing data in nanoar-
rays involves turning off (reducing the conductance of) all but one NW in each
dimension through the application of electric fields to mesoscale wires (MWs)
that are orthogonal to the NWs. There are many ways to construct NWs so
they will operate in this way. One way is illustrated in Figure 1(b) by NWs that
have two lightly doped (controllable) regions under two of four MWs. When
an electric field is applied by a MW to a controllable region of a NW, the NW
conductance is greatly reduced, implementing a field effect transistor (FET).
When electric fields are applied to two of the four MWs in Figure 1(b), exactly
one NW remains conducting.

To write data at a crosspoint, a high positive or negative electric field is
applied across it by applying fields across the two NWs defining the crosspoint.
(See Figure 2.) This is accomplished by activating the subset of the MWs that
make only the two NWs conducting, grounding one end of both NWs, and ap-
plying voltages at their other ends. The application of a large voltage across
a crosspoint causes the molecules at the crosspoint to become conducting or
nonconducting. That is, it sets the state of a switch.

To read data at a crosspoint, the NWs defining the crosspoint are again made
conducting, their grounded ends are disconnected (see Figure 2), and a voltage
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Fig. 2. A nanoarray in which horizontal and vertical NWs are each controlled by a set of mesoscale
address wires (MWs), labeled Ar,i and Ac, j , that are separated by an insulation layer from NWs.
The intersection of lightly doped (dark) NW regions with MWs defines FETs. Ohmic contacts are
made with both ends of each set of NWs. A lightly doped region at one end of each set of NWs allows
voltages Vgr and Vgc to disconnect that end from its ohmic contact. Data is stored in the state of
conductivity of a molecular layer for reading of the status of crosspoint switches.

is applied to one NW while current is sensed on the other. Current will flow
from one NW to the other only if the switch between the two NWs is closed.

The crossbar shown in Figure 2 has one ohmic contact at each end of each
set of NWs. In practice, multiple ohmic regions will be used at one end of each
set of NWs. This reduces the number of different NW types that need to be
manufactured because the same codeword can be activated independently in
different ohmic regions.

1.2 Nanowire Decoders

A decoder is an arrangement of MWs and NWs such that activation of a subset
of the MWs causes one NW (or a small number of NWs) to remain conducting.
An example of a decoder is given in Figure 1(b). Three methods of realizing
decoders have been proposed. The first two assume that NWs are undifferenti-
ated. That is, when grown, the NWs are all the same. The third method, which
is the subject of this article, assumes that NWs are differentiated during their
manufacture.
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Fig. 3. (a) NWs grown through a vapor-liquid-solid process. (b) NWs are doped as they grow.

Although a decoder could be realized by attaching a single MW to each NW,
to do so would lose the advantage of nanometer spacing. For that reason, each
of the decoders being proposed for nanoarrays utilizes a few MWs to control
many NWs.

Williams and Kuekes [2001] describe the randomized contact decoder based
on the random deposition of gold nanoparticles between MWs and undifferenti-
ated NWs that results in contacts at about half of the intersections. Heath et al.
[2005] and Heath and Ratner [2003] describe the mask-based decoder in which
a collection of high-K and low-K dielectric regions are interposed between NWs
and MWs. Because the size of such regions is determined by the low precision
of lithography, many of the regions are randomly positioned to achieve NW
differentiation with high probability. This decoder has been analyzed by
Rachlin et al. [2005]. Finally, DeHon et al. [2003] describe and analyze one
type of differentiated NW decoder for axially-encoded NWs (see Section 2). (The
decoder shown in Figure 1(b) is of this type.) A similar type of decoder has
been developed for radially encoded NWs [Savage et al. 2005] in which NWs
are encoded using shells of multiple types [Lauhon et al. 2002]. Decoders for
differentiated NWs are examined in Section 5.1.

1.3 Nanowire Differentiation

Two methods have been devised to differentiate NWs. The first method is known
as modulation doping when referring to the doping process and axial doping
when referring to the result. Modulation doping encodes NWs along their axial
dimension [Huang et al. 2001; Kim et al. 2001; Wu et al. 2002].

Axially-encoded NWs can be grown from seed catalysts through a vapor-
liquid-solid (VLS) process depicted in Figure 3 [Gudiksen et al. 2002; Wu et al.
2002; Björk et al. 2002]. In the example, silane molecules (SiH4) fall onto gold
clusters, precipitating out Si atoms that solidify into crystalline silicon NWs.
These NWs can be differentiated by adding dopant molecules to the gaseous
mixture as they grow. NWs can be heavily and lightly doped over lengths that
are determined by exposure time.

Under modulation doping, each NW is given a pattern of controllable and
uncontrollable regions, each approximately the same length. (A controllable
region is generally a few nanometers longer than an uncontrollable region
[DeHon et al. 2003].) For example, two of four regions could be made controllable
as suggested in Figure 1(b) where all six different doping patterns are shown.
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In Section 2, two types of axial code are described, the (h,b)-hot codes [DeHon
2003] and binary reflected codes (BRCs), a new type of code introduced here.
Because BRCs are based on binary sequences and their complements, they
simplify the decoding process and permit operations that use binary sequences.

The second method of differentiating NWs is called radial encoding [Savage
et al. 2005]. NWs are encoded by giving them multiple layers of shells of differ-
ent types. Core-shell NWs [Lauhon et al. 2002] are produced by first growing
a NW core that is lightly doped and then depositing shells on the core epitax-
ially. The shells are made of materials that can be separately etched [Savage
et al. 2005]. Hybrid encoding of NWs is also possible. In this case, NW cores
are given an axial encoding and shells have a radial encoding. Unfortunately,
hybrid codes are inferior in the use of area to both axial and radial codes [Savage
et al. 2005].

1.4 Nanowire Placement

NWs are too small and numerous to place individually on a chip. Instead, sev-
eral methods have been proposed to place many NWs on a chip simultaneously.

Undifferentiated NWs have been grown outside a chip and then deposited
in groups [Melosh et al. 2003]. They have also been imprinted directly onto
a chip using stamps with nanometer dimensions [Chou et al. 1996; Xia and
Whitesides 1998; Chen et al. 2003]. These methods of placing NWs are largely
deterministic, although the methods of differentiating them are stochastic.

This article is concerned with differentiated NWs and explores the conse-
quences of the stochastic assembly process used to place them on a chip. Many
NWs with a given codeword are grown at one time and mixed in a solution.
The solution contains many copies of each type of NW codeword. A random
subset of them is deposited on a chip by a process that aligns the NWs along an
axis [Whang et al. 2003; Huang et al. 2001]. It is not possible to control which
NWs fall onto a chip nor can their locations be predicted in advance. Further-
more, because NWs can shift along their axial dimension, their controllable and
uncontrollable regions may not be perfectly aligned with MWs.

We assume that the NW mixture has so many copies of each NW that drawing
a small number of NWs doesn’t change the distribution of NW types. This
is a very safe assumption since withdrawals made without replacement only
increase the likelihood that the NWs selected have different types. Thus, we
assume that a) NWs are drawn with replacement, and b) the probability of
drawing a NW is proportional to its representation in the population.

To cope with the axial displacement that NWs experience in the fluidic as-
sembly process, an axial doping pattern is repeated along the length of each NW
as proposed in DeHon et al. [2003]. The question then arises as to whether a
shifted version of one NW encoding (the shift is assumed to be by multiples of a
MW pitch) generates another useable NW encoding. This problem is examined
in Section 5.1.

When a NW has an axial offset of its controllable and uncontrollable NW
regions with respect to MWs, the offset will be either by the pitch of MWs, or
by such an amount plus a fraction of a NW pitch. (See Figure 4.) If the offset
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Fig. 4. An example of a NW encoding producing multiple codewords under shifts. All the shifts
are close to a multiple of a MW pitch.

is close to a multiple of the NW pitch, the NW will operate as if it the offset is
an exact multiple of a NW pitch. In this article, we only consider this case. The
other case is examined in DeHon et al. [2003]. The analysis given there applies
here as well.

1.5 Nanowire Discovery

Because the nanoarray manufacturing process for differentiated NWs is
stochastic, it is not possible to know ahead of time which NWs will be present
in the array. As a consequence, a discovery process is needed after chip man-
ufacture to determine which NW types are on the chip. An auxiliary memory
must then be programmed to map external addresses to the NW types that are
present. This topic is examined in Section 5.1.

To help with the discovery process, it may be useful to employ wildcarding
to access NW encodings. In a binary address, a wildcard bit means that both
addresses specified by using both values of the bit are accessed. If multiple
wildcard bits are used, all addresses that are consistent with the non-wildcard
bits are accessed. This topic is explored in Section 8.

1.6 Article Outline

In Section 2, we introduce binary reflected codes, a new type of axial code that
is an alternative to (h, b)-hot codes [DeHon et al. 2003]. It is constructed from
binary sequences and their complements. In Section 3, we examine the peri-
odicity of codewords and explain the importance of periodicity for efficiently
manufacturing NWs.

In Section 4, we summarize bounds on the tails of probability distributions
derived in the appendix so that this information is available for analysis in later
sections. In Section 5, we describe four addressing strategies, that is, ways of
mapping binary sequences to NWs. The first of the four addressing strategies
is the all different strategy studied in DeHon et al. [2003]. The three remaining
strategies are original to this article. One of these, the repeated codeword strat-
egy, is particularly noteworthy in that it requires only a very small number of
NW encodings. We also suggest additional strategies for further study.

In Section 7, we compare the four strategies based on the area requirements
described in Section 6. We find that the most different and repeated codeword
strategies are superior to the other two. We also show that if NW pitches of about
10nm are possible, the all present strategy provides a higher area density than
is expected from DRAMs in the near future.
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The use of wildcards is explored in Section 8. Wildcards can be useful in
storing data in arrays as well as in codeword discovery. We describe an efficient
hardware implementation of wildcarding.

For most design strategies, only certain codewords are present in each ohmic
region. Section 9 gives efficient algorithms for codeword discovery that apply
to all all addressing strategies. Conclusions are presented in Section 10.

2. ENCODED NANOWIRES

There are two ways to differentiate NWs during their manufacture. Their cores
can be given a nonuniform encoding (axial codes), or shells of various types
can be added to a uniform core (radial codes), [Savage et al. 2005]. Hybrid
axial/radial codes are also possible but they offer no advantages over either
pure axial or radial encodings [Savage et al. 2005].

Following we describe two types of axial codes, (h, b)-hot and binary reflected
codes. Binary reflected codes are introduced here.

When differentiated NWs are placed on a chip using fluidic methods, NWs
are equally likely to be in any position relative to MWs. If such NWs don’t
make contact with ohmic regions at each end, they are disabled. If they do
make contact, the codewords that they represent depend on their alignment
with respect to MWs.

In Section 3, we ask how to generate ensembles of NWs with axial encoding so
that, when NWs are drawn with equal probability and replacement and placed
on a chip subject to random axial displacement by multiples of a MW pitch,
all codewords in the code are equally likely to appear. This condition offers the
best chance of having d distinct codewords for any d .

2.1 (h, b)-Hot Codes

The (h, b)-hot code [DeHon 2003] is one in which h of b regions is lightly doped
and controllable and the (b − h) remaining regions are heavily doped and
uncontrollable. There are C = (b

h

)
such doping patterns or codewords. A NW

is nonconducting if a MW carrying a high electric field is adjacent to one of
its controllable regions. A NW is conducting when each MW carrying a high
electric field is adjacent to one of its b − h uncontrollable regions. M = b MWs
are necessary to control (h, b)-hot codewords.

It is easy to show (see Lemma B.1) that C = (b
h

)
implies that b ≥

(log2 C)/H(h/b). Here H(x) = −x log2 x − (1 − x) log2(1 − x) is the binary en-
tropy function. Thus, M = b is proportional to log2 C when h is a fixed fraction
of b.

To cope with NW axial displacements, a (h, b)-hot codeword is repeated along
its axial dimension. As a consequence, a NW axial displacement by a multiple
of a MW pitch is equivalent to a cyclic shift of the NW codeword. An (h, b)-hot
codeword is mapped to another such codeword when it undergoes a cyclic shift
since the number of 1s is unchanged.

2.2 Binary Nested Codes

(h, b)-hot codeword are closed under cyclic shift. Binary nested codes are exam-
ples of codes that are not closed. In such codes, each codeword is formed from a
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length-n binary number by replacing each 0 by 01, and 1 by 10, and then letting
1 denote a lightly doped region and 0 a heavily doped region.

To see that these codes are not closed under shifting, consider the mapping
of the binary number 101, namely, 100110. When shifted cyclically right by one
place, the codeword becomes 010011 which is not a valid codeword.

2.3 Binary Reflected Code

The binary reflected code (BRC) consists of codewords of the form z = xx where
x = (xk−1, . . . , x1, x0) is a binary tuple, x is its Boolean complement, and 1
and 0 denote lightly and heavily doped regions, respectively. The number of
codewords in a BRC is C = 2k . The number M of MWs needed to address BRCs
is M = 2k = 2 log2 C.

Codewords in the BRC represent a permutation of codewords in a binary
nested code that results in their being closed under shifting. To see this, observe
that codewords in BRCs have the property that bits that are separated by k
positions are Boolean complements of one another. If a BRC codeword is shifted
left by one place, the first k bits are xk−2, . . . , x1, x0, x̄k−1, and the second k bits
are x̄k−2, . . . , x̄1, x̄0, xk−1 for which the property clearly holds. Since the code
space is preserved by one left cyclic shift, it is preserved by arbitrarily many
such shifts. Since the results of right cyclic shifts are included among the left
cyclic shifts, the property holds.

3. GENERATING RANDOM ENSEMBLES OF AXIAL CODEWORDS

The codeword that appears on a particular NW depends on its encoding and its
axial displacement when placed on a chip. The goal is to create an ensemble
of axially-encoded NWs such that each codeword is equally likely to appear in
the nanoarray. Axial displacement causes encodings to shift cyclically, allowing
a single encoding to produce multiple codewords. This observation allows for a
reduction in the number of encodings which must be manufactured. In order to
correctly determine how many NWs to produce with each encoding, the period-
icity of the encoding must be taken into account. The details of this procedure
are discussed in the following.

3.1 Codeword Equivalence Classes

Consider a codeword, z, which has length l . Let Rt(z) denote the cyclic shift of
z by t places, and let H(z) = {z, R(z), . . . , Rl (z)} be the set of codewords that
result from all possible cyclic shifts of z. Let p(z) = |H(z)| be the number of
distinct codewords in H(z). Observe that p(z) is the period of z.

Let z and w be two codewords. Then either H(z) = H(w) or H(z) ∩ H(w) = ∅,
the empty set. We call H(z) the equivalence class containing z. Any member of
an equivalence class is called a seed because, under cyclic shifts, it generates
each member of the class. If one seed can generate all members of a large set,
this greatly reduces manufacturing costs.

3.2 Codeword Probability

Given a code, suppose that a single seed is selected for each equivalence class,
and that K copies of each seed are present in the ensemble from which NWs
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are selected. If p(z) = l for all codewords, then each seed will generate exactly
l codewords and each codeword will be equally likely.

On the other hand, suppose some seeds have period l
2 . These seeds will

generate only l
2 codewords, and, as a result, these codewords will be generated

twice as often as those generated from seeds with period l . If the ensemble
contains K copies of each seed with period l , it should only contain K

2 copies of
each seed with period l

2 .
More generally, if codewords have length l , a seed with period p will generate

p codewords and should have multiplicity K p
l , where K is some large constant.

This condition ensures that each codeword is equally likely to appear in the
nanoarray.

3.3 Binary Reflected Code

We now consider the relationship between p and l for binary reflected
codewords.

Example 3.1. When l = 12, both 110001001110 and 110011001100 are
valid codewords. Though p(110001001110) = 12, p(110011001100) = 4.

For a given l , the following lemma states which periods are possible.

LEMMA 3.1. Let d2(l ) be the largest power of 2 dividing l . The period of a
binary reflected codeword must divide l , the length of the codeword, but not l

2 .
The set P(l ) of periods of binary reflected codewords of length l satisfies

P(l ) = d2(l ) ∗ D
(

2l
d2(l )

)
,

where D(n) is the set of the divisors of n, and ∗ denotes multiplication by an
integer of every element of a set of integers.

PROOF. Let z = xx be a binary reflected codeword of length l = 2k. Because
Rl (z) = z, p(z) divides 2k. If p(z) = k, then z = yy for some sequence y, but
this violates the condition that z = xx for some sequence x. It follows that p(z)
divides 2k, but not k. In other words, P(l ) ⊆ D(2k) − D(k).

To see that P(l ) ⊇ D(2k) − D(k), observe that if p ∈ D(2k) − D(k), p cannot
divide k and thus must go into 2k an odd number of times. If w = vv is a
binary reflected codeword of length p, then w repeated an odd number of times
will also be a binary reflected codeword. Repeating w (2k/p) times will result
in a codeword of length 2k with period p. Thus, P(l ) = D(2k) − D(k). Since
D(2k) = 2 ∗ D(k) ∪ D(k), it follows that P(l ) = 2 ∗ D(k) − D(k).

Finally, let n ∈ D(k), and thus 2n ∈ 2 ∗D(k). If k is odd, 2n ∈ 2 ∗D(k) −D(k).
If k is even and the largest power of 2 dividing n is less than d2(k), 2n ∈ D(k)
and 2n /∈ 2∗D(k)−D(k). Thus 2n ∈ 2∗D(k)−D(k) if and only if n is divisible by
d2(k), so P(l ) = 2 d2(k)∗D(k/d2(k)) = d2(l )∗D(2l/d2(l )) since 2 d2(k) = d2(l ).

Example 3.2. Consider codewords z = xx of length l = 36. Since d2(36) =
4, P(18) = 4 ∗ D(9) = 4 ∗ {1, 3, 9} = {4, 12, 36}.
ACM Journal on Emerging Technologies in Computing Systems, Vol. 1, No. 2, July 2005.
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We now determine the number of seeds that have period p for p ∈ P(l ).
Clearly, the smallest period is d2(l ). We show that our method of generating
reflected binary codewords significantly reduces the number of seeds needed to
generate all codewords.

THEOREM 3.1. The number of equivalence classes of codewords of length l
that have period p but no smaller period, νk(p), satisfies the following relation
where Q(p) = {q | q ∈ P(l ) where q strictly divides p}.

νk(p) =
(

2p/2 −
∑

q∈Q(p)

qνk(q)

)
/p

The number of equivalence classes is
∑

p∈P(k) νk(p).

PROOF. Since codeword z has period p(z), we can write it as z = wm, where
p(z) = |w| = l/m. If m is even, z = xx for x = wm/2, which is of improper form.
It follows that m is odd. Thus, |w| = l/m is even. Furthermore, the second half
of the middle instance of w falls in the first |w|/2 positions of the second half of
z. Consequently, the second half of w is the complement of its first half. That is,
we can write w = yy, where |y| = p/2, thus, w is a BRC codeword of length p.

We now derive an expression for pνk(p) where νk(p) is the number of equiv-
alence classes formed by codewords of period exactly p.

Consider codewords z that have the smallest period p = d2(l ). Then z =
(yy)l/p, where |y| = d2(l )/2. There are 2d2(l )/2 sequences y. They fall into exactly
2d2(l )/2/d2(l ) equivalence classes since p = d2(l ) is the smallest possible period.
Thus, pνk(p) = 2p/2 for p = d2(l ).

Now let z have period p > d2(l ). If q divides p, every sequence of period
q also has period p. Conversely, if a sequence has period p and also a period
less than p, then it has a period q such that q strictly divides p. The set Q(p)
contains the periods less than p of BRC codewords of length p.

Since there are qνk(q) BRC codewords of period exactly q, it follows that there
are

∑
q∈Q(p) qνk(q) codewords of period p and q such that q < p. The remaining

codewords of period p have period exactly p. Because there are 2p/2 codewords
with period q ∈ D(p), the result follows.

Example 3.3. The periods of the codewords in Example 3.2 are {4, 12, 36}.
The number of different equivalence classes with these periods is ν18(4) =
1, ν18(12) = (

26 − 4 ν18(4)
)
/12 = 5, and ν18(36) = (

218 − 4ν18(4)− 12ν18
(12)

)
/36 = 7, 280. It follows that an ensemble of ν18(4) + ν18(12) + ν18(36) =

7, 286 codeword seeds will generate all 262, 144 codewords, a reduction by a
factor of almost 36 in the number of doped NWs.

3.4 (h, b)-Hot Codes

We can investigate the relationship between p and b for (h, b)- hot codes using
a similar approach. The period of a seed in an (h, b)-hot code must divide b,
the codeword length. A codeword with period p will have the same sequence
of p bits repeated (b/p) times. This implies that h, the number of ones, must
be divisible by (b/p). Since h = q(b/p) for some integer q, p = q(b/h). In other
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words, p is a multiple of (b/h). The requirement on p in terms of h and b is
summarized in the following lemma:

LEMMA 3.2. The set P(h, b) of periods of (h, b)-hot codes satisfies

P(h, b) = D(b) ∩ M(b/h),

where D(n) is the set of the divisors of n, and M(n) is the set of multiples of n.

As an application of this lemma, observe that when b and h are relatively
prime, M(b/h) will not include any integers less than b. As a result, D(b) ∩
M(b/h) = b, and all seeds will have period b.

THEOREM 3.2. The number of equivalence classes of (h, b)-hot codewords that
have period p but no smaller period, νk(p), satisfies the following relation where
Q(p) = {q | q ∈ P(h, b) where q strictly divides p}.

νk(p) =
((

p
hp/b

)
−

∑
q∈Q(p)

qνk(q)

)
/p

The number of equivalence classes is
∑

p∈P(k) νk(p).

PROOF. An (h, b)-hot codeword with period p contains (b/p) copies of the
same sequence. As noted previously, this sequence must contains (hp/b) ones,
thus there are exactly

( p
hp/b

)
codewords with period p.

Once again, the set Q(p) contains the periods less than p of codewords of
length p. Just as with BRCs, there are qνk(q) sequences with period exactly q
and

∑
q∈Q(p) qνk(q) codewords of period q strictly less than p.

There are thus
( p

hp/b

)−∑
q∈Q(p) qνk(q) code words with period p but no smaller

period. Each codeword belongs to an equivalence class of size p, so the result
follows.

4. BOUNDS ON PROBABILITY DISTRIBUTIONS

Before doing a quantitative analysis of the four design strategies, we present
bounds on probabilities of events that arise in their use. They are derived in
the appendix.

LEMMA 4.1. The probability that each of the w NWs in an ohmic region has
a distinct encoding satisfies the following bound.

Pdistinct(w, C) ≤ e−w(w−1)/2C (1)

Consequently, Pdistinct(w, C) ≥ 1 − δ when C ≥ w(w − 1)/(−2 ln(1 − δ)).

This bound is very tight even for the smallest values of w that we consider, that
is, w ≥ 10, as shown in the appendix.

LEMMA 4.2. When w ≤ 2d and d ≥ 4, the number of different NW encodings,
C, needed to have at least d distinct NW encodings occur among w NWs with
probability at least 1 − δ must satisfy the following bound.

C ≥ (d − 1) e((d−1)−ln δ)/(w−d+1) (2)
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Comparison of these bounds with the exact values for the probabilities shows
that they provide values of w that are at least 80% of the exact values when
20 ≤ C ≤ 200, 10 ≤ w ≤ 100, and Q(d , w, C) is near .01. (See Figure 7.)

LEMMA 4.3. The number of NWs in an ohmic region w needed to ensure with
probability at least 1 − ε that each of the C NW encodings occurs in the region
at least once (d = C) satisfies the bound w ≥ C ln(C/ε).

LEMMA 4.4. Let x be the sum of n 0-1 valued variables with value 1 occurring
with probability p. Then,

Pr [x ≤ θnp] ≤ e−np(1−θ+θ ln θ ),

where 0 ≤ θ < 1 and np is the mean value of the sum.

5. ADDRESSING NANOARRAYS

A nanoarray is useful as a memory or PLA only if its NWs can be addressed
using standard binary addresses. Because the NW codewords that fall onto
a chip cannot be predicted in advance, a separate programmable translation
memory is needed to map binary addresses to the internal addresses repre-
sented by the MW fields used to activate individual NWs. When a nanoarray is
addressed from the mesoscale level, the current situation under investigation,
this programmable memory is a mesoscale memory, which we call MesoMem,
although, in principle, it may also be implemented at a lower level.

To fix ideas and evaluate addressing strategies, we assume that a nanoarray
is as a memory, denoted NanoMem, and that it has crosspoints, two decoders and
two translation memories. We also assume that, in each dimension, NWs are
connected to m ohmic regions each containing w NWs. We let M and N denote
the number of MWs and NWs in each dimension of the nanoarray. Clearly,
N = mw. Because not all addressing strategies require that each of the N
NWs in each dimension have different internal addresses, we let Naw denote
the number of unique addresses in each dimension. Obviously, the NanoMem
stores N 2

aw bits. Finally, we let Ameso denote the area of a NanoMem. We compare
addressing strategies based on the value Ameso for a given storage capacity N 2

aw.
In the following section, we describe four addressing strategies. These strate-

gies can be used to address either axially-or radially-encoded NWs, that is, NWs
that are differentiated before deposition on a chip.

To evaluate a strategy, it is necessary to know the relationship between M ,
the number of MWs, and the size C of the code space. As shown in Section 2
for (h, b)-hot codes, M ≥ C/H(η), where η = h/b, for BRCs, M = 2 log2 C, and
for radial codes with τ types in each shell, M = (τ/log2 τ ) log2 C [Savage et al.
2005]. Since the value of M is similar for each of these codes, for analytical
convenience, we evaluate strategies for the BRCs. That is, we let M = 2 log2 C.

5.1 Addressing Strategies

In DeHon et al. [2003, 2005], it is assumed that the set of axial codes is chosen so
that, with high probability, all NWs that fall in an ohmic region have distinct
addresses. As mentioned, in DeHon et al. [2003], it was estimated that this
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would require C > 100w2 different code types to ensure that all w NWs in one
ohmic region are different with probability .99. When w = 1, 000, C > 108, a
totally impractical number. For this reason, we subdivided the ohmic region in
each dimension into m ohmic regions for which w is much smaller, say on the
order of 10 to 30.

We examine four NW addressing strategies. The first three assume that some
of the external binary address bits in each dimension of a nanoarray are used
to select one of m ohmic regions with a standard decoder. The remaining bits,
which are stored in a translation memory, are used to activate one NW type
in an ohmic region. These three strategies are called all different (Sad), most
different (Smd), and all present (Sap) codeword strategies. The fourth strategy,
the repeated codeword strategy (Src), uses the low order bits to address NWs
using a trivial decoder when BRCs are used but requires a translation memory
to select the ohmic region to be activated. It is used to illustrate the point that
other nonobvious addressing strategies may exist that may lead to superior
performance to the four that are examined here.

5.1.1 All Different Codeword Strategy. The all different codeword strategy
Sad is the one used in DeHon et al. [2003] and for differentiated NWs in DeHon
et al. [2005]. It requires that, with probability at least 1−ε within each of the m
ohmic regions all w NWs have different doping patterns when the NWs types
are drawn with equal probability from an ensemble of C different types.

This strategy has no wasted NWs. The number of addressable NWs is Naw =
mw with probability at least 1− ε. We show in the following that the value of C
required for this strategy is at least Naw(w − 1)/(−2 ln(1 − ε)), which is better
by a factor of 2 than the bound given in DeHon et al. [2003]. It requires that
the chip be examined to discover which NW types are present.

THEOREM 5.1. Strategy Sad succeeds with probability 1 − ε when C satisfies
the following bound.

C ≥ Naw(w − 1)/(−2 ln(1 − ε))

PROOF. Under strategy Sad, the values of w and C are chosen so that, with
probability at least 1 − δ, each of the w NWs in each ohmic region is distinct.
The probability that this condition holds in all m ohmic regions is at least
(1 − δ)m = 1 − ε. Thus, ln(1 − δ) = ln(1 − ε)/m. By Lemma 4.1, to achieve
probability 1−δ in each region requires that that C ≥ mw(w−1)/(−2 ln(1−ε)).
Since the number of addressable NWs is Naw = N = mw, the result follows.

When ε is small, say ε ≤ 0.01, ln(1 − ε) is closely approximated by −ε. In
this case, the lower bound becomes C ≥ Naw(w − 1)/2ε which is too large to be
practical.

5.1.2 Most Different Codeword Strategy. The most different codeword
strategy Smd requires that, with probability at least 1 − ε within each of the
m ohmic regions, at least (w + 1)/2 of the w NWs have different doping pat-
terns when the NWs are drawn with equal probability from an ensemble of C
different types.
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This strategy has Naw ≥ m(w + 1)/2 NWs with distinct addresses with
probability at least 1 − ε. The remaining NWs are duplicates of NW types.
Following, we show that the value of C required for this strategy is at least
e(w−1)/(w+1)−2 ln δ/(w+1)(w − 1)/2, where δ satisfies ln(1 − δ) = ln(1 − ε)/m (or δ is
approximately ε/m). This quantity is much smaller than the lower bound on
C for strategy Sad . That is, a factor of about two reduction in the number of
addressable NWs results in a very large decrease in the number of NW types
that need to be manufactured. The strategy requires that the chip be examined
to discover which NW types are present.

THEOREM 5.2. Strategy Smd succeeds with probability 1−ε when C is chosen
to satisfy the following bound where ln(1 − δ) = ln(1 − ε)/m.

C ≥ e(w−1−2 ln δ)/(w+1)(w − 1)/2

PROOF. With strategy Smd, let w and C be chosen so that there are at least
(w + 1)/2 distinct NWs in an ohmic region with probability at least 1 − δ. The
probability that this is true for all ohmic regions is at least (1 − δ)m = 1 − ε for
ln(1 − δ) = ln(1 − ε)/m. The result follows directly from Lemma 4.2.

When ε is small, say, ε ≤ 0.01, ln(1 − δ) = ln(1 − ε)/m yields δ = ε/m to very
good approximation. When ε = .01, the lower bound on C ranges from 15 to 30
for 20 ≤ m ≤ 500 and 10 ≤ w ≤ 20, very practical ranges for these parameters.
When ε = .001 and the same range of values for m and w, the lower bound
on C ranges from 23 to 45. These values of C make this a practical addressing
method.

5.1.3 All Present Codeword Strategy. The all present codeword strategy
Sap requires that with probability at least 1 − ε, within each of the m ohmic
regions every one of the C NW types appears among the w NWs when the NWs
are drawn with equal probability from an ensemble of C different types.

This strategy results in many duplicates of each NW type within an ohmic
region. In the following, we show that it succeeds with probability 1 − ε when
N ≥ mC ln(C/δ), where (1−δ)m = 1−ε (or δ is approximately ε/m). The number
of addressable NWs satisfies Naw = mC with probability 1−ε. Thus, the number
of NWs in each dimension, N , is larger than the number of addressable NWs
by a factor of approximately ln(mC/ε). The advantage of this strategy is that
a standard decoder can be used to address ohmic regions and a trivial decoder
can be used to address NWs if BRCs are used. That is, the decoding process is
very simple and no translation memory is needed. The strategy does not require
that the chip be examined to discover which NW types are present if ε is small
enough.

THEOREM 5.3. Strategy Sap succeeds with probability 1−ε when N is chosen
to satisfy the following bound where (1 − δ)m = 1 − ε.

N ≥ mC ln(C/δ)

Here Naw = mC is the number of addressable NWs.

PROOF. Under strategy Sap, the values of w and C are chosen so that with
probability at least 1−δ, each of the C different codewords appears at least once
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in each ohmic region. The probability that this condition holds in all m ohmic
regions is at least (1 − δ)m = 1 − ε. This implies that δ ≤ − ln(1 − ε)/m. From
Lemma 4.3 it follows that w ≥ C ln(C/δ) for one ohmic region. Since N = mw,
the result follows.

When ε ≤ 0.01, δ ≈ ε/m and the lower bound on N becomes N ≥
mC ln(mC/ε). Since Naw = mC, this is equivalent to N ≥ Naw ln(Naw/ε).

5.1.4 Repeated Codeword Strategy. The repeated codeword strategy (Src)
requires that with probability at least 1 − ε, each of the C codeword types
appears at least once in at least p different ohmic regions where p = 0.3 ∗ r,
where r = m(1 − (1 − 1/C)w is the average number of ohmic regions in which
each NW falls.

Since every possible codeword appears multiple times, if the axial code is a
BRC, the low-order external binary bits can be used to select a NW by supplying
the bits and their complements. A translation memory is needed to choose the
ohmic region to activate based on the value of the remaining external bits. The
strategy does require that the chip be examined to discover which NW types
are present in which ohmic regions.

We now show that this strategy succeeds with a very small number of NW
types, C. In particular, if C = 2w, Naw ≥ .15N (or N ≤ y Naw) NWs are
addressable with probability at least 1 − ε, when m ≥ 11.8 ln(2w/ε). (These
bounds hold when ν = 1/2.) Here N is the number of NWs in each dimension.
When the size of the code space is an issue, this may be the best strategy to use.

THEOREM 5.4. Strategy Src succeeds with probability 1−ε when the number
of ohmic regions, m, satisfies

m ≥ 2.952(ν(1 − ν))−1 ln(w/(νε)),

where ν = w/C. The number of addressable NWs satisfies Naw ≥ 0.3(1 − ν)N,
where N = mw is the number of NWs in each dimension.

PROOF. The ith codeword occurs in a given ohmic region with probability
1 − (1 − 1/C)w, and it occurs in r = m(1 − (1 − 1/C)w) regions on average.
As shown in Lemma 4.4, the probability that it occurs in at most θr regions,
0 ≤ θ < 1, is at most e−r(1−θ+θ ln θ ). When θ = 0.3, (1 − θ + θ ln θ ) = 0.3388. The
probability that any of the C codewords fails to occur in at least θr ohmic regions
is at most Ce−0.3388r . Since the goal for strategy Src is that it be successful with
probability at least 1 − ε, it follows that this condition will be satisfied if w and
C satisfy the following bound.

Ce−0.3388r ≤ ε (3)

When this bound holds, which is equivalent to r ≥ ρ ln(C/ε) for θ = 0.3 and
ρ = 2.952, each of the C codewords exists in at least θr ohmic regions with
probability at least 1 − ε.

Let f (w, C) = (1 − (1 − 1/C)w). Then r = mf (w, C). It is easy to show by
induction that f (w, C) ≥ (w/C)(1 − w/C). This implies that r ≥ m(w/C)(1 −
w/C). In particular, if m(w/C)(1 − w/C) ≥ ρ ln(C/ε), then (3) holds. Under these
conditions, each of the C codewords will appear at least 0.3r times and the
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number of addressable wires satisfies Naw ≥ 0.3rC, all with probability at least
1−ε. Given the lower bound on f (w, C), this implies that Naw ≥ 0.3mw(1−w/C).

If w is fixed at w = νC, 0 < ν < 1, the condition m(w/C)(1−w/C) ≥ ρ ln(C/ε)
holds when m ≥ (ν(1−ν))−1ρ ln(w/(νε)). It follows that C can be a small multiple
of w and m a slowly growing function of w and ε, and the number of addressable
NWs will be Naw ≥ 0.3(1 − ν)mw.

5.1.5 Other Addressing Strategies. The four strategies described are rep-
resentative. Many other types are possible. For example, instead of requiring
that all or half of the NWs in every ohmic region be different as in the all differ-
ent and most different strategies, we could ask that these conditions apply to
some fraction of the ohmic regions. This would reduce the code space required
but increase the burden on the translation memory. Similarly, in the repeated
codeword strategy, we could use a more sophisticated translation memory to
utilize codewords that appear more than p times.

Another very different approach is to encode NWs so that groups of them
can be formed with the property that all NWs in each group can be activated
simultaneously without activating NWs in other groups. Also, the numbers of
codewords should be chosen so that with high probability, each ohmic region
contains at least one NW from each group. Then, the high-order bits of an
external address could be used to choose an ohmic region and low-order bits
used to activate all NWs in one group.

6. AREA ESTIMATES FOR NANOARRAYS

A nanoarray-based memory, NanoMem, is an N × N nanoarray that has a set
of crosspoints, two sets of address decoders, and two copies of a translation
memory, MesoMem, to map external binary addresses to internal addresses.
The internal addresses generally must be discovered and their identities pro-
grammed into each copy of MesoMem. Thus, each nanoarray has two sets of
M address wires, two sets of m ohmic regions, each with w NWs, and two
MesoMems. In each dimension, the number of NWs is N = mw and the num-
ber of addressable NWs is Naw ≤ N . The pitch of NWs and MWs are λnano and
λmeso, respectively.

We compare strategies for addressing nanoarrays by the area, AT , needed
to implement them. This area accounts for the area used by array crosspoints,
decoders, and the translation memories. The area is compared to nanoarrays
that have the same number of addressable crosspoints.

To accurately calculate the area of a nanoarray would require that a full
layout be done. Since this isn’t possible, we estimate the area by adding the
areas of the crosspoints, decoders, and translational memories.

The area Anano of the crosspoints and decoders satisfies Anano ≈ (λmesoM +
λnanoN )2 because one side of the nanoarray has length approximately λmesoM +
λnanoN .

Let Ameso be the area of a standard decoder and a translation memo
MesoMem. We approximate the area of a standard decoder by λ2

mesom log2 m and
the area of MesoMem by χ Nawβ, where β is the of number of bits associated
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with each addressable NW and χ is the area used to store one mesoscale bit.
Thus, Ameso ≈ χ Nawβ + λ2

mesom log2 m.
The area AT of the NanoMem is approximated by 2Ameso + Anano because it

uses two decoders and two copies of MesoMem. Thus,

AT ≈ 2χ Nawβ + 2λ2
mesom log2 m + (λmesoM + λnanoN )2,

where χ is the area of a mesoscale memory cell, λmeso and λnano are the pitch of
MWs and NWs, Naw is the number of addressable NWs, N is the total number
of NWs, M is the number of address wires, m is the number of ohmic regions,
w is the number of NWs per ohmic region, and N = mw. As mentioned at the
beginning of Section 5, we assume that M = 2 log2 C.

7. QUANTITATIVE ASSESSMENT OF DESIGN STRATEGIES

We now examine the performance of the four strategies under the assumption
that each strategy achieves its objective with probability at least (1 − ε). With
each strategy, the goal is to minimize, AT , the area of a nanoarray for a given
number of addressable NWs, Naw.

We find that Smd is always superior to Sad and Sap. Also, Src is superior
to Sad. The analysis isn’t strong enough to determine which of Smd or Src is
superior. However, Src can be implemented with a C = 2w codewords, a very
small number. This alone favors its further study.

When the pitch of NWs is 10nm, strategy Sap uses considerably less area
than that forecast over the next couple of years by the ITRS Roadmap [2001]
for standard DRAMs. Because Sap doesn’t require a translation memory, it may
be a practicable first type of nanoarray memory to implement.

7.1 Performance of Strategy Sad
In strategy Sad, there are no wasted wires, that is, Naw = N = mw. The NWs
can be addressed with external binary addresses by supplying log2 m of the
log2 Naw = log2 m + log2 w bits to a standard decoder to activate one ohmic
region and by supplying all the bits to a translation memory to provide the
M = 2 log2 C bits to select individual NWs within ohmic regions.

The area AT required is given as follows. Here N = Naw, and C ≥ Naw(w −
1)/2ε was derived in Section 5.1.1.

AT ≈ 2χ Naw log2 C + 2λ2
mesom log2 m + (2λmeso log2 C + λnanoNaw)2 (4)

7.2 Performance of Strategy Smd
In strategy Smd, we guarantee that at least d = (w +1)/2 NWs will be address-
able. Thus, Naw > N/2 or N < 2Naw. At most half the NWs are wasted. The
use of external binary addresses is the same as in strategy Sad.

The area AT required by this strategy is given as follows where C ≥
e(w−1−2 ln δ)/(w+1)(w−1)/2, derived in Section 5.1.2 where δ ≈ ε/m when ε ≤ 0.01.

AT ≈ 2χ Naw log2 C + 2λ2
mesom log2 m + (2λmeso log2 C + 2λnanoNaw)2 (5)
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Table I.

Year 2005 2006 2007

λnano\λDRAM 160 140 130
10 88,862 12,206 4,424
20 30 11 7

7.2.1 Comparison of Sad and Smd. The formulas for the area used by strate-
gies Sad and Smd are the same except that the last term for Smd is twice that
for Sad. However, the value of C needed for Sad is much larger than that for
Smd when Naw is fixed, as we show.

The lower bound on C in Sad is Cad = Naw(w − 1)/2ε whereas in Smd, it is
Cmd = e(w−1−2 ln δ)/(w+1)(w − 1)/2 for δ = ε/m.

When ε = .01, Cad is about 50Naww whereas Cmd is about e(w−1)/(w+1)

(100m)2/(w+1)(w − 1)/2. If w ≥ 10 and m ≤ 5, 000, Cmd is no more than
3.14(w − 1)m0.182 ≤ 15w. In other words, Cmd is smaller than Cap by a factor of
3.4Naw. Thus, Smd is clearly superior to Sap.

7.3 Performance of Strategy Sap
Strategy Sap uses no translation memory. The input bits are split between the
ohmic regions and the NWs. The ohmic region bits are supplied to a standard
decoder. Since C = Naw/m for this strategy, from Section 5.1.3 the area required
satisfies the following bound, where N ≥ Naw ln(Naw/ε) is required for the
strategy to succeed with probability at least 1 − ε.

AT ≈ 2λ2
mesom log2 m + (2λmeso log2(Naw/m) + λnanoN )2 (6)

7.3.1 Comparison of Sap and Standard RAM. A nanoarray-based memory
designed using strategy Sap is superior in the use of area to a standard RAM
using current or projected technology parameters when λnano is small, as we
show. We model the area of a RAM holding N 2

aw bits by χ N 2
aw where χ is the

area per RAM bit.
Since the first term in the expression AT for Sap is small by comparison with

χ N 2
aw, the conclusion follows if the second term (2λmeso log2(Naw/m) + λnanoN )2

is significantly smaller than χ N 2
aw. Since we can expect λmeso/λnano ≤ 20, we

can expect that 2λmeso log2(Naw/m) will be significantly smaller than λnanoN .
If N ≤ Naw

√
χ/λ2

nano, the nanoarray memory NanoMem uses less area than
a DRAM. Given the lower bound on N ≥ Naw ln(Naw/ε), this is equivalent to
Naw ≤ εe

√
χ/λ2

nano . Because a cell in standard memory DRAM memory uses area
χ = λ2

DRAM, the condition becomes Naw ≤ εeλDRAM/λnano .
The ITRS Roadmap [2001] predicts λDRAM = 160nm, 140nm, and 130nm for

2005, 2006, and 2007. Shown in Table I are the values of Naw below which a
NanoMem is predicted to be superior to a DRAM in terms of areal density when
ε = 0.01. The storage capacity of memories using Naw NWs in each dimension
is N 2

aw.
It follows that design strategy Sap will yield a nanoarray memory that uses

less area than a standard DRAM memory when ε = 0.01 if the pitch of NWs can
be kept as small as 10nm because a NanoMem with Naw ≥ 2, 000 is thought
to be impractical due to the likelihood of faults [DeHon et al. 2005]. When the
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pitch of NWs is 20nm, the analysis, which is approximate, suggests that it is
not likely that strategy Sap will prevail over DRAMs.

7.3.2 Comparison of Smd and Sap. The area used by Sap, Aad
T , given in

(6) is approximated by 2λ2
mesom log2 m+λ2

nanoN 2
ap because 2λmeso log2(Naw/m) is

dominated by λnanoNap. (Nap is the number of NWs used by Sap.) This follows
because for Sap to be successful with probability at least 1 − ε requires that
Nap = mw ≥ Naw ln(Naw/ε).

In the area estimate for Smd, Amd
T , given in (5), the term λmeso log2 Cmd is

dominated by λnanoNaw because Cmd is small. (Cmd is the number of codewords
used by Smd.) Thus, Amd

T is approximated by 2χ Naw log2 Cmd +2λ2
mesom log2 m+

4λ2
nanoN 2

aw.
Sap uses more area than Smd if N 2

ap ≥ 2(χ/λ2
nano)Naw log2 Cmd + 4N 2

aw, where
Nap ≥ Naw ln(Naw/ε), and χ/λ2

nano = (λDRAM/λnano)2. Combining the first two
inequalities, Naw(ln2(Naw/ε)−4) ≥ 2(λDRAM/λnano)2 log2 Cmd, Sap uses more area
than Smd. As shown at the end of Section 7.2, under reasonable conditions, Cmd
is no more than 15w when ε = .01. Also, for the data given, λDRAM/λnano ≤ 16.
Under these assumptions, it is easy to show that the condition holds if Naw ≥
100 and ε = 0.01. We conclude that strategy Smd is superior to strategy Sap.

7.4 Performance of Strategy Src
In strategy Src, the number of wasted wires is substantially less than strategy
Sap. However, a translation memory is needed. The external bits are separated
into two sets, one set identifying a NW and a second identifying a group. The
first set of 2 log2 C bits are used directly to activate a NW. Both sets of bits
are used to address the translation memory and select the log2 m bits needed
to activate an ohmic region. Thus, each translation memory has Naw words of
length log2 m. The area AT required by this strategy is given as:

AT ≈ 2χ Naw log2 m + 2λ2
mesom log2 m + (2λmeso log2 C + λnanoN )2.

7.4.1 Comparison of Smd, Sap and Src. If in strategy Src, we require that
each NW encoding occur in m ohmic regions, it would be equivalent to Sap.
Thus, Sap is inferior to Src.

Strategies Smd and Src use the areas shown here.

Amd
T ≈ 2χ Naw log2 Cmd + 2λ2

mesom log2 m + (2λmeso log2 Cmd + 2λnanoNaw)2

Arc
T ≈ 2χ Naw log2 m + 2λ2

mesom log2 m + (2λmeso log2 Crc + λnanoNrc)2

Cmd and Crc are the sizes of the code spaces for Smd and Src. Nrc is the number
of NWs for Src. As shown in Section 5.1.4, Nrc ≤ 7Naw when Crc = 2w. Also, as
shown in Section 7.2.1, Cmd ≤ 15w when ε = .01, w ≥ 10 and m ≤ 5, 000.

If the area of the nanoarray (the squared term on the right) dominates the
area of the translation memory, strategy Smd is superior in the use of area
because log2 Cmd is small, and Naw is smaller than Nrc. When the area of the
translation memories dominate, it again appears that Smd is superior to Smd.
However, the area bounds are too close to make a determination based on the
analysis that we have available.
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Fig. 5. Standard decoder implemented with wildcards. The address word a = (a0, a1, ..., ab−1) and
its complement is ORed with the wildcard word w = (w0, w1, ..., wb−1), and then all 2b combinations
of the b inputs and their complements are ANDed to form the output word O = (o0, o1, ..., o2b ). The
x’s on a vertical wire, labeled o j , represent ANDs.

It should be noted again that strategy Src can be used with C as small as 2w.
This very small value of C, which reduces the cost of manufacturing NWs, may
make Src a superior overall strategy.

8. WILDCARDING

Because nanoarray-based memories may be very large, writing or even reading
them, one bit at a time, may be expensive. To cope with this problem, we examine
the use of wildcarding in which the memory address input is augmented by
a binary wildcard word of the same length in which a 1 indicates that the
corresponding address bit is allowed to assume both values. It follows that a
wildcard word containing k bits defines 2k addresses when combined with an
address word.

Wildcarding may prove invaluable in some applications, including codeword
discovery (see Section 9) and fast ROM programming. We investigate the archi-
tectural support needed for wildcarding for each of the four designs previously
visited. Wildcarding can be done by a standard decoding circuit augmented
with ORs on the input, as shown in Figure 5. A standard decoder with b inputs
can be implemented by forming the AND of all 2b combinations of the b inputs
and their complements. A wildcard decoder can be implemented by ORing the
bits of the wildcard word w = (w0, w1, . . . , wb−1) with the bits of the address
word a = (a0, a1, . . . , ab−1) and their complements.

8.1 Wildcarding on Strategy Sad and Smd
In these two cases, each ohmic region has a stochastically chosen subset of
all the codes. As a result, wildcarding is not possible within an ohmic region.
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Wildcarding, however, is possible over the portion of the address that corre-
sponds to the ohmic regions. This is useful if it is desirable to activate all the
nanowires in the ohmic regions that are addressed and for code discovery.

8.2 Wildcarding on Strategy Sap
For this strategy, codewords and ohmic regions are specified independently by
sub-sequences of the external binary address. Thus, if binary reflected codes are
used, wildcarding can be done on both codewords and ohmic regions simultane-
ously. Moreover, the decoding circuitry remains simple since we only replace the
two standard decoders for the ohmic regions and codes with wildcard decoders.

8.3 Wildcarding on Strategy Src
In this strategy, it is assumed that each codeword appears in at least p ohmic
regions, p about one third of the average number of ohmic regions in which
a given NW type appears. These codewords are organized into p groups each
containing C different codewords. If a codeword appears in different groups, it
occurs in different ohmic regions.

Although many types of wildcarding, such as over ohmic regions and code-
words, cannot be implemented efficiently, there is one type of wildcarding that
is suitable, namely, when a single codeword is activated in a set of groups
defined by wildcards. We describe several new designs that support this type
of wildcarding.

The first type of wildcarding uses a C-word memory with m-bits per word
that, when given the address for the j th codeword, produces an m-tuple O of
1s that identifies the ohmic regions containing the j th codeword. Let the kth
instance of the j th codeword zbe associated with the kth group. Using a decoder
of the type shown in Figure 5, specify a set of groups using wildcards with a
0-1 p-tuple P that specifies which of the p groups is to be activated. A circuit
is then designed to match up the entries in P with the 1s in O to identify those
ohmic regions containing the codeword z associated with the groups specified
by P.

To illustrate this operation, suppose that the NWs are subdivided into four
groups and that the output of the memory is O = (0, 1, 0, 1, 1, 1), meaning that
the instances of the chosen codeword occur in four ohmic regions, namely, the
second, fourth, fifth, and sixth regions. Suppose also that the output of the
wildcard decoder is P = (1, 1, 0, 0), meaning that the first and second groups
are selected. If we align the bits in P with the 1s in O and AND them together,
the resulting 1s identify the ohmic regions that need to be activated to activate
the specified NW in the groups identified by wildcarding. In this example, the
resulting word is (0, 1 ∧ 1, 0, 1 ∧ 1, 1 ∧ 0, 1 ∧ 0) = (0, 1, 0, 1, 0, 0) which means
that the second and fourth ohmic regions are activated.

We now describe a circuit to match up the components of a 0-1 p-tuple P
with the p 1s in a 0-1 m-tuple O = (o1, o2, . . . , om). Such a circuit shifts the
ith component of P by the number of 0s before the first i 1s in O. The number
of 0s before the ith 1 in O can be obtained by forming the prefix sum [Savage
1998, p. 55] on the Boolean complement of O. (The prefix sum on an m-tuple w
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is an m-tuple S= (s1, s2, . . . , sm), where sj is the sum of the first j components
of w. For example, if O = (0, 1, 0, 1, 1, 1), its complement is (1, 0, 1, 0, 0, 0) and
its prefix sum is (1, 1, 2, 2, 2, 2).) Next use the prefix sum, say (1, 1, 2, 2, 2, 2),
to produce m shifts of P = (P (s1), P (s2), . . . , P (sm)) by the m values in S. Form
an m-tuple, R= (r1, r2, . . . , rm), containing in the ith position the bit in the ith
position of P (si), the shift of P by si places. The positions in R that correspond
to 1s in O determine which ohmic regions are activated. Thus, combine these
two m-tuples by ANDing them together componentwise.

While computing P (s1), P (s2), . . . , P (sm) can be done in parallel as just de-
scribed, it can also be done serially. P (s1) can be obtained by shifting or not
shifting P right by one place, depending upon whether o1 is 1 or 0. Similarly,
we can obtain P (si) by shifting or not shifting P (si−1) right by one place. We
may now form R as suggested previously where ri is the bit in the ith position
of P (si). This design uses m two-bit multiplexers to select the correct bit from
P (si−1) to create P (si) and does this p times, for a total of pm two-bit multi-
plexers. However, it takes more time than the design that uses prefix sums and
shifters by multiple positions.

The designs previously mentioned compute an m-tuple based on shifts of
P, the p-tuple computed by the group wildcard decoder. However, the amount
of shift is independent of the wildcard pattern selected and only depends on
which ohmic regions contain the j th codeword. Furthermore, the computation
can be seen as selecting one of the p locations in P for each of the m locations
of R. We can form the m-tuple R ∗ = (r∗

1 , r∗
2 , . . . , r∗

m) where r∗
i is 0 if oi is 0, and

otherwise it is j if oi is the j th 1 in O. For example, if O = (0, 0, 1, 0, 1, 1),
then R ∗ = (0, 0, 1, 0, 2, 3) which identifies for each of the m locations the pth
location to select from the wildcard decoder to create R. Finally, we can AND

the components of R with O to generate which ohmic regions to activate given
the groups and code selected. It is possible to precompute R ∗ and store it along
with O in a memory with word length m log2 p+m. With this information, using
a multiplexer for each ohmic region, we can compute the desired output. This
design uses a larger memory but is faster then the previous two.

Finally, it is also possible to reduce the size of the memory by reducing the
length of words in the memory from m to p log2 m. This can be done by encoding
the 0s in O. Such an encoding can consist of p integers having values in the
range [0, . . . , m] and represented by log2 m bits. If such a representation is used,
then a circuit is needed to expand this representation into the m-tuple with 1s
representing the ohmic regions containing the j th codeword.

9. CODEWORD DISCOVERY

In this section, we describe efficient codeword discovery algorithms for the four
address mapping strategies previously presented.

9.1 Exhaustive Search

The assembly of nanoarrays is stochastic. In order to determine which NW
code-words are present in the various regions, testing must occur. Recall that a
NW address is determined by its ohmic region and codeword. Data is stored at

ACM Journal on Emerging Technologies in Computing Systems, Vol. 1, No. 2, July 2005.



96 • B. Gojman et al.

the intersection of two NWs. The existence of a NW address in one dimension
of the memory can be tested by activating a wire (or all the wires in an ohmic
region) in the other dimension, writing a 1 and then reading from that address.
If a 1 is returned, the NW address exists.

Addresses do not need to be tested one at a time. Wildcarding allows for a 1
or a 0 to be written to multiple addresses at once. Similarly, it allows for reading
from multiple addresses simultaneously. A multiple-read operation outputs the
OR of the values stored at the multiple addresses. A 1 is returned if any of the
addresses contains a 1. By writing to and then reading from multiple addresses
at once, one can verify that at least one of the addresses exists. If many possible
addresses are missing (as in strategies Sad, Smd, and Src), multiple address
testing can dramatically reduce the time to test for the existence of NWs. For
these cases, we describe how wildcarding along one dimension of the array can
be employed to determine addresses efficiently.

It should be noted that, in this section, we assume that all address wires and
ohmic regions are accessible externally. This will allow multiple ohmic regions
and address to be activated via wildcarding. Our final search strategy, described
in Section 9.3, only requires wildcarding over ohmic regions.

9.1.1 Exhaustive Search for Sap. Exhaustive search for Sap is quite effi-
cient. In the case where all codewords are expected to be present in each ohmic
region. Along each dimension, every possible address is expected, and thus they
must be tested one at a time. This could be done with Naw read/write operations.
A better approach, however, would be to first write 1s to all NWs in one ohmic
region of the array at a time, and then read from the addresses one at a time.
If all addresses are present, each read operation will yield a 1. This algorithm
requires O(Naw) steps.

9.2 Searching Across the Code Space

In case Sad, because all addresses that are present are very likely unique, it is
natural to search across the code space within each ohmic region.

In Sad, the number of codewords used is roughly C = 50Naww = 50mw2

(when ε = 0.01). If a search is done for each of the C codewords one at a time
in each ohmic region, about mC = 50N 2

aw read operations will be required.
Fortunately, wildcarding provides a significant improvement.

Our improved method is based on the search for a single codeword in a single
ohmic region. Write 1’s to every codeword in the region and use wildcarding to
read from all codewords with a first bit of 1. If a 1 is returned, a codeword is
present whose first bit is 1; otherwise, all codewords present have a first bit
of 0. Once the first bit of a codeword has been determined, fix its value and
use wildcarding to test for the value of the second bit. If the codewords contain
b-bits, b read operations will be required to determine the value of a single
codeword. With binary reflected codes, b = log2 C.

To search for multiple addresses, use the same procedure. First all bits are
set to 1. Next a series of log2 C read operations are used to locate a single
codeword. Once the codeword is found, it is set to 0. The search procedure can
then be repeated to find a new codeword. Once w codewords have been found, or
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all codewords present have been written with 0’s, the search ends. All codewords
will be identified in at most w log2 C + w steps.

Using this binary style search, each ohmic region will require w log2 C +
w steps. When done over all ohmic regions, at most mw log2 C + mw =
Naw log2(2C) ≈ Naw log2(100wNaw) when ε = 0.01. This represents a substan-
tial improvement over the 50N 2

aw operations required by a sequential search
algorithm.

9.3 Searching Across Ohmic Regions

Instead of searching for codewords within ohmic regions, we can search for
code-words across multiple ohmic regions. This strategy is better suited to Smd,
although it can also be used with Sad.

In case Sad, the number of codewords C needed far exceeds the total num-
ber of addressable wires. In case Smd, C is much smaller which means that a
different type of binary search can be used. We now describe a procedure that
works for either case but which is more efficient for strategy Smd.

The procedure searches through all C codewords. It writes value 1 to each
NW codeword in turn (this writes 1 to all NWs in all ohmic regions containing
that codeword), and then reads from all regions at once to see if that codeword is
present. If a codeword is absent from all regions, one test suffices to determine
this. Let C′ be the number of NW codewords that are not present. Thus, C′ read
tests suffice for the C′ codewords that are absent.

If the ith codeword is present in ki regions, we show that at most ki�log2 m�
read operations suffice to identify the ohmic regions containing it. To see this,
search for codeword i in each half of the ohmic regions. If both halves contain
such a codeword, search the lexicographically first half. Otherwise, search the
half containing codeword i. Applying this procedure recursively uses �log2 m�
tests to find a region containing the ith codeword. Write a 0 to ith in the discov-
ered ohmic region. Repeat the procedure on the remaining ki − 1 instances of
codeword i. When done,

∑
i ki�log2 m� = Naw�log2 m� read operations are used

to determine the ohmic regions containing codewords that are present.
It follows that Naw log2 m + C′ read operations are required to identify the

Naw addresses that are present, and the C′ codewords that are absent.
In case Sad, C′ is a very large fraction of C because there are Naw addressable

NWs with probability 1 − ε and C ≥ 50Naw. Thus, it is not an effective code
discovery algorithm for case Sad.

In case Smd, under reasonable conditions, C is not more than 15w and we
can expect all codewords to be present in some region with high probability. In
other words, C′ is close to zero with high probability. As a result, approximately
Naw log2 m read operations will be required to determine which codewords are
present. Note that Naw ≥ m(w + 1)/2. Although more than Naw addresses are
likely to be present, searching for these addresses can be avoided if every time
(w+1)/2 codewords are discovered within a particular ohmic region, the region
is overwritten with 0’s. If m < C, this algorithm provides a savings over the
one used in Sad since the latter uses Naw log2(2C) operations. However, the new
algorithm can be made even more efficient.
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The algorithm’s effectiveness hinges on the fact that C′ remains small (prefer-
ably 0). To improve upon it, note that if Naw is much larger than C, the ohmic
regions can be divided into smaller groups such that within each group all
C codewords are very likely to occur, and C′ is small. A value of n for which
this condition can be met approximately satisfies n(w + 1)/2 = C. Applying
the search algorithm to each group of n regions will take at most approxi-
mately n(w + 1)(log2 n)/2 + C steps (since C′ < C). When the search is done
over m/n groups of ohmic regions, we see that at most m(w + 1)(log2 n)/2 +
mC/n = Naw log2(4C/(w + 1)) tests suffice since mC/n = 2Naw. The factor
log2(4C/(w + 1)) is an improvement over log2 m. For Strategy Smd, we have a
more efficient algorithm than the one used in Strategy Sad.

Because this search strategy involves wildcarding over the ohmic regions
and not the code space, it applies to both (h, b)-hot and binary reflected codes.

9.3.1 Lower Bounds. We show the effectiveness of our algorithms by pro-
viding a lower bound on the number of read operations required to identify the
codewords of Naw addressable wires. Each ohmic region consists of w wires.
Let αw be a lower bound on the number of unique codewords in each ohmic
region. It follows that the NW codewords can be chosen in at least

( C
αw

)
ways

in one ohmic region and at least
( C
αw

)m
ways in m ohmic regions. This is also

the number of distinct outputs of the decoding algorithm. Each read opera-
tion produces a binary output. Thus, to choose between

( C
αw

)m
outputs, at least

log2(
( C
αw

)m
) = m log2

( C
αw

)
reads will be required.

To see that
( C
αw

)
is lower bounded by (C/(αw))αw observe that

(C
n

) = (C/n) ∗
((C − 1)/(n − 1)) ∗ ... ∗ ((C − n + 1)/1). If C > n, C/n < (C − 1)/(n − 1), so(C

n

)
> (C/n)n. From this, we have log2

( C
αw

)
> αw log2(C/αw). The code search

will require more than m ∗ αw log2(C/αw) = Naw log2(C/αw) steps.
Our improved algorithm for strategy Smd requires approximately

Naw log2(4C/(w + 1)) reads which is very close to the lower bound (consider
α = 2). Thus, this algorithm is quite efficient considering that in case Smd,
C is proportional to w and thus log2(4C/(w + 1)) effectively becomes a small
constant.

9.3.2 Strategy Src. Case Src is essentially analogous to case Smd. By
definition, it must have many instances of each codeword and have many more
than C addressable wires. The ohmic regions can be divided up into groups
just as in case Smd. The only difference is that, in this case, the number of ad-
dressable wires per ohmic region is not fixed, thus there is no need to overwrite
entire ohmic regions with 0’s. The algorithm simply finds as many addresses
as possible until the desired Naw addresses have been found.

10. CONCLUSIONS

The nanoarray is one of the most promising new nanotechnologies to emerge
from recent research. It offers the potential for large storage capacities at the
expense of having to cope with stochastic self-assembly. Nanoarrays are as-
sembled from randomly selected subsets of encoded NWs. As a result, it is
not possible to guarantee their exact storage capacity. Storage capacities are
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instead assured with some probability determined by address decoding circuitry
and the size of the code space.

One characteristic of stochastically assembled nanoarrays is that end-to-
end registration of NWs cannot be controlled. To cope with this issue, we have
designed binary reflected codes which are closed under shifting and have the
attractive property that they represent binary numbers. We have also demon-
strated how binary reflected codes and h-hot codes can be efficiently manufac-
tured using a reduced number of encodings which shift to produce all codewords.

Because the stochastically assembled nanoarrays vary greatly, a common
interface must be provided in the form of a programmable address decoder. To
program this interface, a codeword discovery process is required to determine
which NW encodings are present in each ohmic region of the array. We have
given an efficient binary search algorithm for codeword discovery and shown
that as array size increases, its runtime approaches the lower bound.

Given the parameters of the nanoarray and the size of the code space, sev-
eral decoding strategies can be employed to provide a common interface to the
nanoarray. We have chosen to examine four of them. The first, the all different
strategy, assumes that w, the number of NWs per ohmic region, and C, the size
of the code space, are such that each NW in each ohmic region has a unique
encoding with probability at least 1−δ. The second, the most different strategy,
chooses the same parameters so that about half of the NWs in each ohmic region
have a unique encoding with the same probability. The third, the all present
strategy, assumes that w and C are chosen so that, with the same probability,
each NW encoding occurs at least once in each ohmic region. Finally, the fourth,
the repeated code-word strategy, assumes that the parameters are set so that,
with the same high probability, each NW encoding appears at least once in at
least p ohmic regions, where p is a parameter of the design.

To analyze each of the four strategies, we have developed bounds on rele-
vant probabilities. Each probability is a variant of the classic coupon collector
problem which asks how many trials are needed to ensure with probability at
least 1 − δ that each of the C different coupons will be collected when each of
the C coupons is equally likely to be drawn on each of trial. Two of the variants
we consider involve the probability that all and half of the coupons drawn in T
trials are unique.

Analytical bounds on these probabilities allow us to compare the size of the
decoder memory required for each of the four strategies. Based on this, we con-
clude that the most different strategy is preferable to the all different strategy
because the same storage capacity can be provided with a much smaller code
space. This reduces decoder size and the number of NW encodings that must
be manufactured.

The all present strategy, while inferior to the most different strategy, is
expected to use less area than conventional DRAM memories. Since it requires
minimal address decoding, it might serve as a bridging technology between the
fully-realized nanoarrays and conventional memories.

The repeated codeword strategy may be superior or inferior to the second,
depending on the parameters of the nanoarray. Regardless, it has the distinct
advantage that it succeeds with a very small number of codewords.
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This is the first systematic study of nanoarrays that explores a variety of ad-
dress mapping strategies and takes into account the area required for transla-
tion memories. We have demonstrated that a wide range of mapping strategies
are possible and have considered four strategies in detail. Our investigation
offers concrete examples of the type of modeling and analysis that is likely to
be needed to understand other nanoscale computing devices.

APPENDIX

A. BOUNDS ON THE TAIL OF THE COUPON COLLECTOR’S DISTRIBUTION

The Coupon Collector problem [Feller 1968] is to determine the number of trials,
T , that are needed to ensure that with probability at least 1 − ε all C coupons
are drawn at least once when trials are statistically independent and coupons
are drawn according to the uniform distribution. Here we derive a tight lower
bound on T as well as tight upper bounds on (a) the probability P (d ) that d
different coupons are drawn in T = d , trials, and (b) the probability Q(d , T, C)
that more than T trials are needed to generate d different coupons when T
is a fraction of at least twice the number of trials. In both cases, coupons are
drawn on each trial with statistical independence according to the uniform
distribution.

A.1 A Bound on the Probability that All Outcomes are Distinct

Consider the probability P (d ) that d distinct coupons are drawn in T = d
trials with statistical independence according to uniform distribution. If ( j −1)
different coupons have been drawn in the first ( j −1) trials, the probability that
the coupon drawn on the j th trial is new is (1 − ( j − 1)/C). It follows that P (d )
satisfies the following expression.

P (d ) = �d
j=2(1 − ( j − 1)/C) (7)

We derive two bounds to this probability by bounding the sum ln P (d ). The first
bound is obtained by applying the inequality ln(1 − x) ≤ −x which holds for all
real values of x. The second is obtained by overbounding a sum by an integral,
as illustrated in Figure 6.

LEMMA A.1. The probability P (d ) that a new coupon is produced in each
trial satisfies the following bounds.

P (d ) ≤ e−φ(d ,C), (8)

where φ(d , C) = max{d (d − 1)/(2C), q(d , C)}, and q(d , C) = C [(1 − (d − 1)/C)
ln(1 − (d − 1)/C) − (d − 1)/C ].

PROOF. The bound is the smaller of two bounds, namely, the first which uses
the blackinequality (1−x) ≤ e−x and

∑d−1
i=1 i = d (d −1)/2. The second inequality

bounds an integer sum by an integral, as illustrated in Figure 6(b).

d∑
j=2

ln(1 − ( j − 1)/C) ≤
∫ d

1
ln(1 − (x − 1)/C) dx = C

∫ 1

1−(d−1)/C
ln ydy
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Fig. 6. When f (x) is increasing,
∑b

a f (x) ≤ ∫ b+1
a f (x) dx, as suggested in (a). When f (x) is de-

creasing
∑b

a f (x) ≤ ∫ b
a−1 f (x) dx, as suggested in (b).

Here, we substituted y = 1 − (x − 1)/C. Since
∫ b

a ln ydy = ( y ln y − y)|ba, it
follows that

d∑
j=2

ln(1−( j −1)/C) ≤ q(d , C)=−C [(1−(d −1)/C) ln(1−(d − 1)/C)+(d − 1)/C].

The smaller of the two bounds is the value of φ(d , C).

Using the first of the two bounds, we see that P (d ) ≥ 1 − ε when C ≥
d (d − 1)/(−2 ln(1 − ε)).

A.2 Bounds on Q(d , T, C)

Q(d , T, C) is the probability that more than T trials are needed to produce d
different coupons. This is equivalent to the probability that in T trials at least
C − d + 1 different coupons are missing.

We derive an upper bound on Q(d , T, C) by relating it to the probability that
a specific set of C − d + 1 coupons is missing which is easy to compute. We also
derive a lower bound using the principle of inclusion and exclusion. The bounds
are tight when d is close to C.

Although we can’t guarantee that the upper bound remains tight when d is
a small fraction of C, our empirical data, obtained by comparing the analytical
upper bound with the exact value of Q(d , T, C), demonstrates that it gives very
good results for the range of parameters likely to be in use in nanoarray-based
memories.

THEOREM A.1. The probability Q(d , T, C) that more than T trials are needed
to produce d different coupons when coupons are selected independently and
uniformly satisfies the following bounds.(

C
d − 1

) (
d − 1

C

)T
(

1 − 1
2

(
C

d − 1

) (
1 − 1

d − 1

)T
)

≤ Q(d , T, C)

Q(d , T, C) ≤
(

C
d − 1

) (
d − 1

C

)T
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PROOF. Q(d , T, C) is the probability that at least C−d +1 different coupons
are missing in T trials. Let P ( j , T ) be the probability that exactly j coupons
are missing in T trials. Thus, Q(d , T, C) = ∑C

j=C−d+1 P ( j , T ).
Let c = {c1, c2, . . . , ck} denote a set of k coupons, and let Fc be the event that

coupons {c1, c2, . . . , ck} are missing in T trials where k = C − d + 1. It follows
that Q(d , T, C) is the probability of the union of the events Fc for all

(C
k

)
choices

of c. In other words,

Q(d , T, C) = Pr

(⋃
c

Fc

)
.

The sum of the probabilities of the events Fc provides an upper bound for
Q(d , T, C). A lower bound is obtained using the principle of inclusion and ex-
clusion. These bounds are shown here.

∑
c

Pr (Fc) − 1
2

∑
c�=c′

Pr (Fc ∩ Fc′ ) ≤ Q(d , T, C) ≤
∑
c

Pr (Fc)

The probability that a specific set of l coupons is missing in T trials is
obviously (1 − l/C)T . Thus, Pr (Fc) = (1 − k/C)T . Let pairs (c, c′) have s
coupons in common. Thus, they have 2k − s distinct coupons between them.
The probability that coupons in both c and c′ are missing, Pr

(
Fc ∩ Fc′

)
, is

(1 − (2k − s)/C)T .
The number of pairs with s coupons in common is

(C
k

)(k
s

)(C−k
k−s

)
because there

are
(C

k

)
ways to choose c,

(k
s

)
ways to choose the s common coupons from c to

form c′, and
(C−k

k−s

)
ways to choose the k − s remaining coupons that are in c′ but

not in c.
Combining these observations, we have the following bounds on Q(d , T, C)

where k = C − d + 1.

Q(d , T, C) ≤
(

C
k

) (
1 − k

C

)T

(
C
k

) ((
1 − k

C

)T

− 1
2

k−1∑
s=0

(
k
s

)(
C − k
k − s

) (
1 − (2k − s)

C

)T
)

≤ Q(d , T, C) (9)

We derive a lower bound to Q(d , T, C) by deriving an upper bound to the term
L defined as:

L =
k−1∑
s=0

(
k
s

)(
C − k
k − s

) (
1 − (2k − s)

C

)T

. (10)

This bound is derived by observing that (1− (2k−s)
C )T is largest when s = k−1,

as shown.

L ≤
(

1 − (k + 1)
C

)T k−1∑
s=0

(
k
s

)(
C − k
k − s

)
=

(
C
k

) (
1 − (k + 1)

C

)T

(11)
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Fig. 7. Each pair of entries n/m is a value of d , the number of distinct codewords that occur with
probability .99 when T trials are run over an ensemble of C codewords, when the probability of
success is computed with the upper bound to Q(d , T, C) given in Theorem A.1, the value of n, and
the exact formula, the value of m. In this table, n/m ≥ .8.

Substituting this result in (9) and simplifying, we have the following bound on
Q(d , T, C).(

C
k

) (
1 − k

C

)T
(

1 − 1
2

(
C
k

) (
1 − 1

C − k

)T
)

≤ Q(d , T, C) (12)

When the term
(C

k

)
(1−1/(C −k))T is small, the upper and lower bounds match.

The result follows from the substitution of k = C − d + 1.

The bounds are tight when
( C

d−1

)
(1 − 1/(d − 1))T is less than 1. This is the

case when d is close to C, if T is on the order of C ln C/ε.
Comparisons have been made between the exact value of Q(d , T, C) and

the approximation given by the upper bound in Theorem A.1. (See Figure 7.)
This has been done by determining the smallest value of d that ensures that
Q(d , T, C) ≤ .01 for a variety of values of T and C. The exact value of Q(d , T, C)
has been computed from a recurrence for P (d , n) [DeHon and Wilson 2004]
which is the probability that exactly d distinct NWs will occur in n trials when
C codes are used.

P (1, 1) = 1
P (d , 1) = 0 (for d > 1)
P (1, n) = (1/C) ∗ P (1, n − 1)
P (d , n) = (d/C)P (d , n − 1) + (1 − (d − 1)/C)P (d − 1, n − 1)

As the data indicate, the upper bound gives very good results. We use it in our
analysis because of the simplicity that it offers.

COROLLARY A.1. The number of trials TC needed to ensure that the probabil-
ity Q(C, T, C) of failing to produce all C ≥ 2 coupons is at most ε satisfies the
following bounds.

C
(1 + 1/C)

ln(C/Q(d , T, C)) ≤ T ≤ C ln(C/Q(d , T, C))
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If the number of trials T satisfies T ≥ C ln(C/ε), all C coupons will be drawn
with probability at least 1 − ε.

PROOF. The bounds given on Q(d , T, C) given in Theorem A.1 are specialized
to d = C. Using the well known inequality (1 − x) ≤ e−x , the upper bound
becomes Q(C, T, C) ≤ Ce−T/C. Using this inequality and the inequality (1−x) ≥
e−x(1+x) which holds for 0 ≤ x ≤ .65, the lower bound becomes the following.

Q(C, T, C) ≥ C
(

1 − 1
C

)T
(

1 − C
2

(
1 − 1

C − 1

)T
)

≥ Ce−(T/C )(1+1/C)
(

1 − C
2

e−T/(C−1)
)

If T ≥ (C−1) ln C, the term in parentheses is at least 1/2. In this case, the lower
bound becomes Q(C, T, C) ≥ (C/2)e−(T/C )(1+1/C) from which the lower bound on
T follows. It remains to show that, when T satisfies this lower bound, T also
satisfies T ≥ (C − 1) ln C. This only requires that Q(C, T, C) be at most 1/2.

Set this upper bound to be at most ε when d = C from which the desired
blackconclusion follows.

LEMMA A.2. The probability Q(d , T, C) that more than T trials are needed to
produce d different coupons satisfies the following bound when C ≥ 1.54(d −1).

Q(d , T, C) ≤
(

C
d − 1

) (
d − 1

C

)T

≤ e−(T−d+1) ln(C/(d−1))+(d−1)(1−
(

(d−1)/C)2
)

(13)

The bound of Lemma A.2 is very tight. As shown in Figure 8, it gives an estimate
on the number of distinct codewords to appear in T trials with probability .99,
that is, 0, 1, 2, or 3 smaller than the estimate given in Lemma A.1 which is
already tight.

PROOF. It is well known that
(C

k

) ≤ eCH(k/C), where H(x) = −x ln x − (1 −
x) ln(1 − x). To see this, observe that when ρ ≥ 0, the following bounds apply.(

C
k

)
≤

C∑
j=k

(
C
j

)
≤ e−ρkeρk

C∑
j=k

(
C
j

)
≤ e−ρk

C∑
j=1

(
C
j

)
eρ j = e−ρk(eρ + 1)C

The result follows by setting ρ = ln k/(C − k).
Combining this bound with Theorem A.1, we have Q(d , T, C) ≤ eE(d ,T,C),

where

E(d , T, C) = (T − (d − 1)) ln
(

d − 1
C

)
−C

(
1 − d − 1

C

)
ln

(
1− d −1

C

)
. (14)

It is easy to show that − ln(1 − x) ≤ x(1 + x) when x ≤ .65 from which the
following holds when C ≥ 1.54(d − 1).

−C
(

1 − d − 1
C

)
ln

(
1 − d − 1

C

)
≤ C

(
1 − d − 1

C

)
d − 1

C

(
1 + d − 1

C

)
(15)

≤ (d − 1)

(
1 −

(
d − 1

C

)2
)

(16)

Combining the above bounds we have the desired result.
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Fig. 8. The difference between the value of n shown in Figure 7 and that computed from the
approximation Q(d , T, C) ≤ e−(T−d+1) ln(C/(d−1))+(d−1)(1−((d−1)/C)2) when d , the number of distinct
codewords, is chosen so that d distinct coupons occur in T trials with probability at least .99.

The bound on E(d , T, C) given in (13) can be further simplified, as shown in
the following. As this result indicates, as T is decreased from 2d to guarantee
that Q(d , T, C) ≤ ε, the value of C needs to grow rapidly. The lower bound on
C, given as follows, requires that C ≥ ed , e = 2.718. This bound is weaker than
that implied by (14) because the term −(d −1)3/C2 has been dropped. The error
introduced by this change is largest in the range d ≤ T ≤ 2d when T = 2d .

COROLLARY A.2. When T ≤ 2d and d ≥ 4, if the number of coupons, C,
satisfies the following bound, at least d distinct coupons will occur in T trials
with probability at least 1 − ε.

C ≥ (d − 1)e((d−1)−ln(ε))/(T−d+1)

PROOF. Let E(d , T, C) be the exponent in the bound of Lemma A.2. Clearly,

E(d , T, C) ≤ (T − (d − 1)) ln
(

d − 1
C

)
+ (d − 1)

(
1 −

(
d − 1

C

)2
)

≤ (T − (d − 1)) ln
(

d − 1
C

)
+ (d − 1).

The bound of the corollary follows when E(d , T, C) ≤ ln(ε) and C ≥ 1.54(d −1).
Examination of the lower bound on C demonstrates that C ≥ 1.54(d −1), when
d ≥ 3 for all ε ≤ 1.

A.3 The Chernoff Bound

Because the probability in Case (b) is harder to compute, we use the Chernoff
bound [Chernoff 1960]. This bound uses the moment generating function g (ρ) =
eρx = ∑

x P (x)eρx and is sketched here.

g (ρ) =
∑

x
P (x)eρx ≥

∑
x≥x0

P (x)eρx ≥ eρx0
∑
x≥x0

P (x),

when ρ ≥ 0. This implies that

Pr [x ≥ x0] ≤ e−ρx0 g (ρ) = eE(ρ), (17)
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where E(ρ) = −ρx0 + ln g (ρ). Since ρ ≥ 0 is arbitrary, it is chosen to minimize
E(ρ), a convex function1 whose minimum occurs at ρ for which d E(ρ)

dρ
= 0.

A.4 Bound on the Tail of the Binomial Distribution

LEMMA A.3. Let x be the sum n 0-1 valued variables with value 1 occurring
with probability p. Then,

Pr [x ≤ θnp] ≤ e−np(1−θ+θ ln θ ),

where 0 ≤ θ < 1 and np is the mean value of the sum.

PROOF. We apply the Chernoff bound of (17) to the binomial distribution
P (x) = (n

x

)
px(1 − p)n−x that models the sum of n independent, identically-

distributed random variables that have value 1 with probability p, and 0 with
probability 1 − p. In this case, g (ρ) = (eρ p + (1 − p))n and E(ρ)/n = −ρα +
ln(eρ p + (1 − p)) where α = x0/n. Without loss of generality, let α = θp or
x0 = θnp. Clearly, the minimum value of E(ρ) occurs when ρ satisfies

eρ p(1 − α) = α(1 − p).

It follows that E(ρ)/n = (1 − α) ln[(1 − p)/(1 − α)] + α ln p/α.
We show that E(ρ)/n ≤ −p(1 − θ + θ ln θ ) when α = θp, 0 ≤ θ ≤ 1. Since

E(ρ)/n = (1 − θp)(ln(1 − p) − ln(1 − θp)) − θp ln θ , to show the desired result, it
suffices to show that f (θ ) = (1 − θp)(ln(1 − p) − ln(1 − θp)) + p(1 − θ ) ≤ 0. Since
∂ f (θ )
∂θ

= −p ln[(1 − p)/(1 − θp)] > 0 and f (1) = 0, the result follows directly.

B. A BOUND ON A BINOMIAL COEFFICIENT

LEMMA B.1. Let H(x) = −x log2 x − (1 − x) log2(1 − x), the binary entropy
function. Then, (

b
h

)
≤ 2bH(h/b).

PROOF. The following inequality follows from the binomial theorem when
x, y ≥ 0. (

b
h

)
xh yb−h ≤ (x + y)b

Rewriting this inequality as shown.(
b
h

)
≤

(
x

x + y

)−h (
y

x + y

)−(b−h)

,

and letting x = h and y = b − h, we have the desired conclusion.
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