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Abstract

We explore the storage of data in very large crossbars with dimensions measured
in nanometers (nanoarrays) when h-hot addressing is used to bridge the nano/micro
gap. In h-hot addressing h of b micro-level wires are used to address a single nanowire.
Proposed nanotechnologies allow subarrays of 1s (stores) or 0s (restores) to be written.
When stores and restores are used, we show exponential reductions in programming
time for prototypical problems over stores alone. Under both operations, it is NP-
hard to find optimal array programs. Under stores alone it is NP-hard to find good
approximations to this problem, a question that is open when restores are allowed.
Because of the difficulty of programming multiple rows at once, we explore the pro-
gramming of single rows under h-hot addressing. We also identify conditions under
which good approximations to these problems exist.

1 Introduction

The end of photolithography as the driver for Moore’s Law is predicted within eight to
thirteen years [1]. Although this might be seen as an ominous development, nanotech-
nologies are emerging that are expected to continue the technological revolution. One
of the most promising nanotechnologies is the crossbar [17, 23], a two-dimensional array
(nanoarray) formed by the intersection of two orthogonal sets of parallel and uniformly-
spaced nanometer-sized wires, nanowires, as suggested in Figure 1 (a). Nanowires can be
built from carbon nanotubes [9] and semiconducting materials [5, 21]. Experiments have
shown that nanowires can be aligned in parallel with nanometer spacings using a form of
directed self-assembly (the dimensions are too small for photolithography to be used) and
that two such layers of nanowires can be assembled at right angles [14, 20]. Materials have
been developed that permit nanoarrays to store binary data [2, 4, 22] at crosspoints, the
intersection of a pair of orthogonal nanowires. Thus, nanoarrays for data storage are a
realistic possibility. (See Section 2.)
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Figure 1: (a) A nano-array and (b) 2-hot addressing of six nanowires {nw1, . . . , nw6} with
four micro-level address wires {aw1, . . . , aw4}. In practice the microwires would be much
larger than the nanowires.

Nanoarrays offer both an opportunity and a challenge. The opportunity is to store
enormous quantities of data. (A density of 1011 crosspoints per cm2 has been achieved
[20].) The challenge is to enter the data efficiently. We address the latter problem in
this paper. If the time to enter data into big nanoarrays is very large, their use may be
limited, especially if their contents change frequently, as in field programmable gate arrays.
However, given the very large storage capacities envisioned, reductions in programming
time by constant factors may be important.

The nanoarray technologies that have been proposed by Kuekes et al [17] and Rueckes
et al [23] allow the crosspoints between two orthogonal nanowires to be made conducting
(denoted by 1) or non-conducting (denoted by 0) by applying a large positive or negative
voltage between them. The technologies also allow subarrays of 1s (stores) or 0s (restores)
to be written at the intersection of sets of rows and columns. We explore array pro-
gramming using h-hot addressing, a technique in which each nanowire has b potentially
active regions (each associated with an orthogonal microwire) exactly h of which must be
“hot” (turned on) to address a nanowire [8], as suggested in Figure 1 (b) and described in
Section 3.

In this paper we consider the following questions: a) “How efficiently can particular
arrays be programmed?”, b) “How difficult is it to find a minimal or near minimal number
of stores and restores to program an arbitrary array?’

In Section 3.3 we use counting arguments to develop lower bounds that apply to most
array programming problems under h-hot addressing for h ≥ 1. It is not surprising that

2



most arrays require a large number of programming steps. However, it is very probable
that particular arrays of interest are not among the arrays for which these lower bounds
apply.

We address question a) by identifying a set of structured prototypical arrays in Sec-
tion 3.4 and develop efficient programs for many of them in Section 4. We find that when
only stores are used, 1-hot programs for these prototypical arrays require a number of steps
proportional to the number of rows and columns in the arrays. However, when restores are
also used, dramatic reductions in the number of steps are possible. Under 1-hot addressing
we show that diagonal n×n arrays can be programmed in 2dlog2 ne steps (see Section 4.4).
When h-hot addressing is used, the number of steps is no more than 2 log2 n + 2h (see
Section 4.5). We also show that these bounds are optimal to within a factor of two by
deriving lower bounds on the number of operations that is needed (see Section 4.7). We
obtain similar results for lower-full and upper-full matrices (see Sections 4.8 and 4.9).
Under 1-hot addressing, we show that banded arrays can be programmed in 6(log n + 2)

steps but that this number grows to O
(

3h(1 + β/n1−1/h) 1
h log2 n

)

, a function that grows

exponentially in h (see Sections 4.10 and 4.11). Finally, we derive upper bounds on the
number of steps to program s-sparse arrays, arrays that have at most s 1s in each row and

column and show that O
(

s2 log2(n/s2)
)

steps suffice under 1-hot addressing. No results

have been obtained for this problem under h-hot addressing when h ≥ 2.
We address question b) by studying the complexity of array programming in Section 5.

Through a series of steps we show that the array programming decision problem is NP-
complete under stores and restores. The first of these steps is to show that the problem
is equivalent to known problems from which we conclude that it is NP-complete under
stores alone. In three additional steps we show that it is NP-complete under both stores
and restores. We first show that it is NP-complete when the number of operations is
logarithmic in the size of an array. This is done via a reduction from three edge
covering. We then identify a specific array for which the unique optimal algorithm
under stores and restores uses only stores and combine this information with the above
result to complete the proof.

In Section 6 we explore the approximability of array programming and equivalent
optimization problems. We show that under stores alone they are not approximable to
within a factor of N ε of optimal for some ε > 0 in polynomial time if P 6= NP where
N is the size of the problem. The question of approximability when stores and restores
are used is open. The good news here is that under specialized conditions, some of which
may prevail in practice, the array programming problem is log-approximable under stores
alone. We show that this is true when a) the number of 1s in rows or columns of an array
is bounded, b) the stores and restores are restricted to programming subarrays of bounded
size, or c) h = b/2, a case for which optimal algorithms may require many more steps than
when h is small by comparison with b.

Because array programming with h-hot addressing is hard, we explore the complexity
of programming arrays by single rows or columns. We show in Section 7 that h-hot row
programming is NP-hard under stores and restores and, when only stores are used, is
hard to approximate in polynomial time unless P= NP. As with array programming, the
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approximability question is open under stores and restores.
Because it is hard to program arrays, in Section 8 we explore heuristics for this problem

under both stores and restores. Our approach assumes the existence of a good heuristic
to find the largest subarray of 1s or 0s in an n × n array, a challenging computational
problem in its own right.

Conclusions and open problems are presented in Section 9.

2 Nanoarray Technologies

Kuekes and Williams [17] propose placing a supramolecular layer between the vertical and
horizontal sets of wires in a nanoarray. A supramolecule consists of a molecular chain
on which a dumbbell-type ring is located. The position of the ring on the chain can be
raised or lowered through the application of a large positive or negative electric field.
In one position the supramolecule is conducting; in the other it is not. When a large
positive electric field is placed between orthogonal nanowires, the supramolecules in the
vicinity of their intersection enter one of two states; when a large negative electric field is
applied, they enter the other state. Data is stored in the array in this fashion. The state
of supramolecules in the vicinity of the intersection of two orthogonal nanowires can be
sensed by applying a voltage that is large enough to detect whether or not current will
flow but not so large that it changes the state of the supramolecules.

Rueckes et al [23] have proposed a second technology based on carbon nanotubes
to record one of two states at the intersection of two orthogonal wires. They suspend
one carbon nanotube on insulators above a second nanotube. When a sufficiently large
attractive electric force is applied, the two nanotubes come into contact and a current
can flow. When the force is released, the van der Waals force maintains contact. This
process can be reversed by applying a sufficiently large repulsive force. The new position,
in which no current can flow, is maintained by the elastic force in the nanotube. Data is
stored in the array by closing and opening contacts. Data can be sensed by applying a
voltage that is large enough to produce a detectable current without changing the state
of intersections.

Recently Nantero (see http://www.nantero.com) has announced that it “is developing
. . . a high-density nonvolatile random access memory device using nanotechnology” that
“involves the use of suspended nanotube junctions as memory bits.” The device is said to
have a total storage capacity of 1010 bits.

2.1 Related Results

Few results related to those presented here are known to the authors. This is likely due
to the fact that data storage time has not been a limiting resource. However, the im-
portance of data storage time has increased in the context of field-programmable gate
arrays (FPGAS). In a pair of papers, Hauck and co-authors ([11, 18]) have explored con-
figuration compression for the Xilinx XC6200 FPGA, a problem of increasing importance
now that FPGAs are being dynamically reconfigured. Modules in FPGAs, each of which
has a binary address, are configured by writing words into them. The Xilinx chip has a
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wildcard register that allows multiple modules to be configured at the same time. The
set of binary addresses consistent with all values of the bits whose positions are 1 in the
wildcard register are activated and the data word supplied as input is written into all
modules with these addresses. Hauck et al have modeled this use of wildcards as a logic
minimization problem, which is NP-hard. Using the Espresso heuristic logic minimizer
[3] they show a reduction in the number of configuration steps by a factor of four to seven
over the non-compressed method. While their model is related to our model, they are
not the same. We allow arbitrary groups of horizontal and vertical lines to be addressed,
which provides much more flexibility than they allow.

3 Array Programming

In this section we formally model the array programming problem when row and column
wires in an array are either controlled individually or using h-hot addressing. We also
derive lower bounds on the number of programming steps for most n × n binary arrays
when h = 1, 2, 3 and h = O(log n). Finally, we introduce structured array programming
problems that are used in later sections to show that restores can have a dramatic effect
on the number of operations to program arrays.

3.1 h-Hot Addressing

Definition 3.1 The h-hot addressing scheme on b address wires, h < b, assigns a
unique weight-h binary b-tuple a to each integer in the set N = {1, 2, . . . , n}, n ≤

(b
h

)

. If
aj is the index of the jth 1 in a, then a is uniquely represented by the address h-tuple
(a1, a2, . . . , ah) of distinct integer addresses in the set A = {1, 2, . . . , b}. Denote with

(a
(i)
1 , a

(i)
2 , . . . , a

(i)
h ) the address h-tuple for integer i.

Address wire awj is associated with address j in A. Nanowire nwi is associated
with integer i in N . (See Figure 1 (b).) An address wire is either active or inactive and
a nanowire is either “addressed” or “not addressed”.

Nanowire nwi is addressed if the set of activated address wires includes every address

wire awj with j ∈ {a(i)
1 , a

(i)
2 , . . . , a

(i)
h }.

3.2 Array Programming Under h-Hot Addressing

Definition 3.2 In an n × n array W let R ⊆ {1, 2, . . . , n} and C ⊆ {1, 2, . . . , n} be sets
of rows and columns, respectively. A store (restore) is a single-step operation in which
wi,j ∈ W is set to 1 (0) for all i ∈ R and j ∈ C. A program for an n × n array W is a
sequence of store and restore operations that produces the n × n array W when applied to
an n × n array whose entries are initially all zero.

We represent a store (restore) operation on an array W associated with rows R ⊆
{1, . . . n} and columns C ⊆ {1, . . . , n} by an n×n (de)activation matrix AR,C =

[

aR,C
i,j

]

(DR,C =
[

dR,C
i,j

]

) in which all entries are 0 (1) except those at the intersection of rows i ∈ R
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and columns j ∈ C, which are 1 (0) where the rows and columns are addressed by h-hot
addressing. The addressable sets of rows and columns are restricted by h-hot addressing.

The goal of the array programming optimization problem is to find the smallest
number of operations needed to program a given binary n × n array when the entries in
the array are initially 0.

The following decision problem captures the essential difficulty of the h-hot array
programming problem. Later we refer to ap which is the problem h-ap when h = 1.

h-hot array programming(h-ap)
Instance: Four-tuples (W, h, b, k) where W is an n × n array over {0, 1}, h ≤ b, and
k are integers. The n rows and columns are addressed using h-hot addressing with b
address lines where n ≤

(b
h

)

.
Answer: “Yes” if W can be programmed with at most k operations under h-hot
addressing.

In this paper we examine array programming under stores alone and under both stores
and restores. We study stores alone for two reasons. First, array programming under
stores is used to establish that array programming under stores and restores is NP-hard
(see Section 5.4). Second, a store operation under some technologies may require much
more time than a restore [7]. If so, we may be restricted to using restores alone, which is
equivalent to programming with stores alone.

3.3 Most Problems Require Many Steps

We use a counting argument to show that most n×n instances of the array programming
problem under h-hot addressing require a large number of programming steps. When
h = 1 and n is large, this number is close to n/2. (n steps always suffice when h = 1;
program the array by rows.) As h increases, the minimum number of steps for most arrays
approaches n2/ log n.

Theorem 3.1 For 0 < ε < 1 and n large, a fraction of at least 1 − 2−εn2

of the 2n2

n× n arrays require at least (1− ε)n2/(2b + 1) steps to program where b = n when h = 1,
b =

√
2n when h = 2, b = (6n)1/3 when h = 3, and b = log2 n when h = (log2 n)/2.

Proof Let ν0
h(k) (let ν1

h(k)) be the number of n × n arrays that can be programmed

in k steps under stores alone (both stores and restores). Because there are 2n2

possible
such arrays, if νj

h(k) ≤ 2(1−ε)n2

, a fraction of at least 1− 2−εn2

of the arrays will require

more than kj
0 programming steps where kj

0 satisfies νj
h(kj

0) = 2(1−ε)n2

.
The first step in a program must be a store. Subsequent steps are stores or restores,

if the latter are allowed. Let Γh be the number of subsets of rows or columns of an n×n
array that can be selected under h-hot addressing. Then, at most Γ2

h different stores and

restores can be specified on any one step. It follows that νj
h(k) = 2j(k−1)Γ2k

h because,
when restores are allowed, each operation other than the first can be either a store or
a restore. (Note: j = 0 when only stores are used.) Combining these observations we
have that kj

0 satisfies
j(kj

0 − 1) + 2kj
0 log2 Γh = (1 − ε)n2
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Since the value of kj
0 when j = 1 is smaller than when j = 0, we use it as the lower bound.

Thus 1−2−εn2

of the arrays require k1
0 or more steps. Since Γh =

(b
h

)

+
( b
h+1

)

+. . .+
(b
b

)

≤ 2b

where n =
(b
h

)

, if we replace Γh by 2b the solution k1 satisfies k1 ≤ k1
0 where

(k1 − 1) + 2k1b = (1 − ε)n2 or k1 ≥ (1−ε)n2

2b+1

In summary, a fraction of at least 1 − 2−εn2

of the n × n arrays requires at least
(1 − ε)n2/(2b + 1) steps.

To complete the analysis, we relate h and b to n =
(b
h

)

when n is large. Then, b = n

when h = 1, b =
√

2n when h = 2, and b = (6n)1/3 when h = 3. This implies that
when b is large, almost all n × n arrays require at least (1 − ε)n/2 steps when h = 1,
(1−ε)n1.5/2.83 steps when h = 2, and (1−ε)n5/3/3.63 steps when h = 3. When h = b/2,
we use Stirling’s approximation [10] for the factorial function n!, which is given below.

√
2πn nne−neε2(n) ≤ n! ≤

√
2πn nne−neε1(n)

Here ε1(n) = 1/(12n) and ε2(n) = 1/(12n + 1). This yields

n =

(

b

h

)

= α
2bH(h/b)

√

2πb(h/b)(1 − h/b)

where H(x) = −x log2 x − (1 − x) log2(1 − x) is the entropy function and .97 ≤ α ≤ 1
when b ≥ 8. When h = b/2, n = α2b/

√

πb/2 or b = log2 n and h = (log2 n)/2 when n
is large. Thus, almost all n × n arrays require at least (1 − ε)n2/2 log2 n programming
steps in this case.

Although most arrays require many steps to program, we show that strongly structured
arrays are not among the hardest to program. We believe that many arrays of interest
have a strong structure that makes them easier to program.

3.4 Structured Arrays

To acquire experience in array programming and understand the savings obtained from the
exploitation of structure, we now introduce several simple n × n binary arrays A = [ai,j ]
that are analyzed in later sections. They are the diagonal (ai,j = 1 only when i = j), half-
full (ai,j = 1 when j ≤ i), ρ-lower-full (ai,j = 1 when j ≤ i−ρ and −(n−1) ≤ ρ ≤ (n−1),
see Figure 5 (a)), ρ-upper-full (ai,j = 1 when j ≥ i − ρ and −(n − 1) ≤ ρ ≤ (n − 1)),
bandwidth-β (ai,j = 1 when |i−j| ≤ β), and s-sparse (ai,j = 1 for at most s elements in
each row and column) arrays. A ρ-lower(upper)-triangular array is a ρ-lower(upper)-
full array when ρ ≥ 0.

It is easy to see how these simple structures could appear in stored data patterns
such as images or could arise when a crossbar is used to implement connections between
horizontal and vertical wires, for example, to allow a set of parallel wires to “turn the
corner.”
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4 Programming Structured Arrays

We now develop programs for structured arrays under stores and restores beginning with
programs under 1-hot addressing. First, however, we derive lower bounds on the number
of steps to program these arrays when only stores are used.

4.1 Programming Structured Arrays With Stores

The above structured arrays require at least proportional to n operations when only stores
are used to program them.

Lemma 4.1 When only stores are allowed, programming of n × n diagonal and half-full
arrays under 1-hot addressing requires at least n operations. The ρ-lower(upper)-full arrays
and the bandwidth-β arrays require at least n− |ρ| and n−β operations, respectively. The
s-sparse arrays require at least dn/se stores.

Proof Since no two 1s in the diagonal array fall into a common activation matrix, each
entry must be inserted with a separate store operation. The same statement applies to
the main diagonal of a half-full array, the top (bottom) diagonal of the ρ-lower(upper)-
full array which has (n − |ρ|) 1s, and the top diagonal of the bandwidth bounded array
of bandwidth-β array which has (n − β) 1s.

For s-sparse arrays if we maximize the number of 1s in an activation matrix, we
minimize the number of such matrices. Since an activation matrix cannot have more
than s rows and s columns, the largest possible activation matrix involves s rows. Thus,
at least dn/se activation matrices are needed to cover the n rows in the array.

4.2 Programming Structured Arrays with Stores and Restores

We now show that restores can dramatically reduce the number of operations required to
program many common arrays. We give O(log n) time algorithms to program diagonal,
half-full, and banded n × n arrays and derive lower bounds under stores and restores
showing that these upper bounds are best possible within a factor of two. We also present
efficient algorithms to program s-sparse arrays.

The h-hot addressing scheme introduces dependencies between nanowires that make
programming of arrays difficult. We simplify the programming of such arrays by using the
nested blocks model.

4.3 Nested Blocks Model for h-Hot Addressing

In the nested blocks model the b address wires are partitioned into h equal-sized disjoint

sets each containing b̄ = bb/hc integers,
{

A(1), A(2), . . . , A(h)
}

. The ith component ai of an

address (a1, a2, . . . , ah) is chosen from A(i). Under this model n = b̄h ≤ (b/h)h nanowires
can be addressed, which is smaller than

(b
h

)

but still large, and b̄ = n1/h.
This model naturally divides the column (row) nanowires into groups associated with

the value of a1 ∈ A(1). Within the group associated with a particular value for a1 are
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Figure 2: Illustration of the three components of a 3-hot nested blocks encoding

b̄ groups associated with the value of a2, etc., as is illustrated in Figure 2 for h = 3
and b̄ = 27. In this model the b̄ = n1/h outer groups (determined by a1) each contain
n1 = b̄h−1 = n1−1/h nanowires. These nanowires are further subdivided into b̄ groups each
containing n2 = b̄h−2 = n1−2/h nanowires. In general, the first j components of an h-tuple
specify a group containing nj = b̄h−j = n1−j/h nanowires, 0 ≤ j ≤ h. Note that n0 = n.

To activate the group of nj = n1−j/h column (row) nanowires defined by fixing the
first j values of a nanowire address h-tuple, the address wires corresponding to the values
of the first j components are activated along with all the address wires that correspond to
all values of the last h− j components of a nanowire address. Note that it is not possible
to activate a contiguous set of nanowires without also activating other wires.

A block of an n × n array, n = b̄h, may be specified by fixing the first r components
of a row address h-tuple and the first c components of a column address h-tuple. Such a
specification identifies a nr × nc subarray of the n × n array.

When h = 1, this model imposes no restrictions on the addressing of nanowires.

4.4 Diagonal Arrays Under 1-Hot Addressing

As shown in Lemma 4.1, n stores are required to program the n × n diagonal when only
stores are allowed. We now show that this can reduced to O(log n) when restores are also
allowed. This result obviously applies to any array with a single 1 in each row and column.

Theorem 4.1 An algorithm exists to program the n × n diagonal array under 1-hot ad-
dressing using 2dlog2 ne stores and restores.

Proof Below is a sketch of a recursive procedure D(n) to program the n × n diagonal
array D in T (n) steps when n = 2p. (See Figure 3 (b).)

1. In parallel execute D(n/2) in each quadrant of D in T (n/2) steps.
2. Restore the lower left n/2 × n/2 quadrant in one step.
3. Restore the upper left n/2 × n/2 quadrant in one step.

The parallel execution of D(n/2) in all four quadrants is done as follows: Assume
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Figure 3: Arrays involved in the programming the diagonal array

that D(n/2) consists of a sequence of k stores and restores defined by the matrices
E1

R1,C1
, E2

R2,C2
, . . ., Ek

Rk,Ck
where each Ej

Rj ,Cj
denotes either an activation or deactiva-

tion matrix. When U ⊆ {1, 2, . . . , n/2}, let (U +n/2) denote the set of integers obtained
by adding n/2 to every entry in U . Let R∗

j = Rj ∪ (Rj +n/2) and C∗
j = Cj ∪ (Cj +n/2).

Then, parallel execution of D(n/2) in each quadrant of D means we apply the same se-
quence of stores and restores used by D(n/2) to (R∗

1, C
∗
1 ), (R∗

2, C
∗
2 ), . . ., (R∗

k, C
∗
k), that is,

we execute E1
R∗

1
,C∗

1

, E2
R∗

2
,C∗

2

, . . ., Ek
R∗

k
,C∗

k
. These operations program a diagonal subarray

into each quadrant of D.
The running time of the above procedure satisfies the recurrence T (n) = T (n/2)+2.

Since the 2 × 2 array can be programmed in two steps, T (2) = 2. (See Figure 3 (a).) It
follows that T (n) = 2 log2 n. When n is not a power of two, we can program the array
as if it were an 2m×2m array, m = dlog2 ne and discard operations on non-existing rows
and columns. Simple but careful analysis shows that this algorithm uses two stores and
2(log2 n − 1) restores.

A slightly less efficient algorithm programs the n×n diagonal array using one store to
fill the array with 1s and restores all off-diagonal positions using 2dlog2 ne restores. We
use this fact when programming other arrays.

Corollary 4.1 An algorithm exists to program the n × n diagonal array in which all
diagonal elements are entered in one store step and off-diagonal elements are restored in
2dlog2 ne restore steps.

4.5 Diagonal Arrays Under h-Hot Addressing

We show that it is possible to program a diagonal array in 2 log2 n + 2h steps, which is at
most 2h + 1 more steps than is used for 1-hot array programming.
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Theorem 4.2 The n×n diagonal array can be programmed using 2hd 1
h log2 ne operations

when h-hot addressing is used on b address wires where n = (bb/hc)h.

Proof Our algorithm for h-hot addressing is recursive and based primarily on the al-
gorithm of Corollary 4.1. This algorithm programs a diagonal n × n array using 1-hot
addressing with one store operation and 2dlog2 b̄e restores. Let Th be the number of
operations to program a diagonal b̄h × b̄h array using this algorithm. For our base case,
namely, to program diagonal a b̄× b̄ diagonal array, we use the algorithm of Theorem 4.1.
It uses T1 = 2dlog2 b̄e operations.

The algorithms of Theorem 4.1 and Corollary 4.1 treat a b̄ × b̄ array as if as if it
had 2t rows and columns, t = dlog2 b̄e, but ignores operations on rows and columns that
don’t exist.

To program a complete diagonal b̄h × b̄h array we view it as a b̄ × b̄ array whose
entries are b̄h−1 × b̄h−1 arrays. We invoke the algorithm of Corollary 4.1. In Th−1 steps
(replacing the one store) the algorithm programs a diagonal array into each b̄h−1 × b̄h−1

subarray. It then executes 2dlog2 b̄e restore operations in which individual elements in
the algorithm of Corollary 4.1 are replaced by b̄h−1 × b̄h−1 subarrays. It follows that
Th = Th−1 + 2dlog2 b̄e or Th = 2hd 1

h log2 ne.

4.6 Diagonal Arrays with Missing Elements

Clearly, the upper bound of Theorem 4.1 can be generalized to diagonal arrays when not
all diagonal elements are 1. If such an array has m 1s, it can be programmed under 1-hot
in at most 2dlog2 me store and restore steps. It is much harder to program a diagonal
array with stores and restores under h-hot when the array has missing 1s, as shown below.

Theorem 4.3 The n × n diagonal array with missing elements can be programmed with
n1−1/h + 2hd 1

h log2 ne store and restore operations.

Proof We use the recursive algorithm of Theorem 4.2 to produce a diagonal array.
Then, we restore the missing 1s. There are n1−1/h innermost n1/h × n1/h blocks on the
diagonal. In one step per block we restore all diagonal elements that are missing along
with the entries in the subarray defined by these elements. Since the off-diagonal entries
in each block that are restored are required to be 0, the desired result is produced.

We establish a connection between the 2-hot version of this problem and the 1-hot
array programming of an n1/2×n1/2 array with stores and restores thereby demonstrating
that if the latter problem can be solved quickly, then with an additional O(log n) restores
we can quickly program the diagonal array with missing elements.

Theorem 4.4 In the 2-hot addressing model a general n×n diagonal array with missing
diagonal 1s can be programmed using at most as many stores and restores as are needed to
program a related

√
n ×√

n array using 1-hot addressing followed by 2d 1
2 log2 ne restores.

Proof Consider the algorithm of Theorem 4.2 when h = 2. It operates on n× n arrays
that are viewed as

√
n × √

n arrays whose entries are
√

n × √
n subarrays. Let Ci,

1 ≤ i ≤ √
n, denote the ith diagonal subarray and observe that the diagonal 1s in each
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Figure 4: A subarray of 1s on which off-diagonal restores are needed

subarray can be specified by giving just their column positions. If several of the diagonal
subarrays have 1s in the same column, they can be entered together in one step. The
overlap between columns in different diagonal subarrays is made explicit in a

√
n ×√

n
array in which the ith row has a 1 in the jth position if the jth column of Ci has 1 on
its diagonal.

If we can program this array with a sequence of stores and restores using 1-hot ad-
dressing, the same sequence can be used to program the full array using 2-hot addressing.
Off-diagonal 1s are restored in 2d 1

2 log2 ne operations following Corollary 4.1.

4.7 Lower Bound on the Complexity of Diagonal Array Programs

We now show that the upper bound on the number of operations to program the full
diagonal array is tight within a factor of two.

Theorem 4.5 At least dlog2 ne+ 1 operations are required to program the n×n diagonal
array under 1-hot addressing using stores and restores.

Proof It suffices to consider the n × n diagonal array that has n 1s in every diagonal
position. Let q be the number of store operations that are used by the algorithm.

The algorithm may insert a 1 in a given diagonal position multiple times. For each
i there is a last time when the ith diagonal element is inserted by the algorithm. Let
mj be the number of diagonal elements that are inserted for the last time by the jth
store operation, 1 ≤ j ≤ q. Since

∑q
j=1 mj ≥ n, it follows that there exists j0 such that

mj0 ≥ n/q.
The j0th store operation not only inserts mj0 diagonal elements, it fills an mj0 ×mj0

subarray with 1s, mj0 ≥ n/q, as suggested by the bold 1s in Figure 4. Subsequent
operations must contain sufficiently many restore operations to delete all the off-diagonal
1s in this subarray. The total number of restore operations to program the n×n diagonal
array must be at least as large as the number to eliminate these 1s from this subarray.

Given an m × m array M of 1s, we derive a lower bound on D(m), the number of
restores needed to delete the off-diagonal 1s.

12



Let the first restore be on an r×c subarray N . Since N does not include any diagonal
elements, it contains at most m− r columns because if it contained more columns, these
columns would contain diagonal elements of M . Thus, r + c ≤ m. Without loss of
generality, let r ≤ c. Consequently, r ≤ m/2.

Remove from M the r rows of N and the r columns containing the diagonals in
these r rows, the resultant (m − r) × (m − r) array is full of 1s and has on its diagonal
m−r of the original diagonal elements. Since the off-diagonal 1s in this array are among
those that must be restored, it follows that D(m) ≥ 1 + D(m − r). Since D(m) is a
monotonically non-decreasing function of m and r ≤ m/2, D(m) ≥ 1+D(dm/2e). Since
D(2) = 1, this implies that D(m) ≥ dlog2 me.

It follows that L(n), the total number of operations to program the n × n diagonal
array, satisfies L(n) ≥ q + dlog2 n/qe. The right-hand side is a non-decreasing function
whose minimum, 1 + dlog2 ne, occurs at q = 1 and q = 2.

Clearly the lower bound on the number of steps to program arrays under 1-hot applies
to h-hot array programming as well.

4.8 Lower-Full and Upper-Full Arrays Under 1-Hot Addressing

To derive an upper bound on the number of steps to program a lower-full array under
1-hot, instead of restoring both the lower-left and upper-right quadrants of the array, as
in the proof of Theorem 4.1, store 1s in the lower-left quadrant and restore 0s in the
upper-right quadrant. To derive a lower bound, note that in the above proof only the
1s in the full (n/q) × (n/q) subarray above the diagonal need to be removed using only
restores. Again, a lower bound of the form D(m) ≥ 1 + D(dm/2e) exists on the number
of restores to eliminate 1s above the main diagonal. We summarize these results below.

Theorem 4.6 The n × n half-full array can be programmed using 2dlog2 ne store and
restore operations under 1-hot addressing. At least dlog2 ne + 1 operations are needed to
program any such n × n array for any value of n.

To program a ρ-upper-full array, use the algorithm for a ρ-lower-full array with the
order of rows and columns inverted. To program an n × n ρ-lower-full array when ρ > 0,
observe that it constitutes a (n − ρ) × (n − ρ) half-full array when the first ρ rows and
the last ρ columns of the array are deleted. To program an n × n ρ-lower-full array when
ρ < 0, observe that it is the complement of a (|ρ| + 1)-upper-full array. Thus, it can be
programmed by executing a store to fill the array with 1s followed by the operations to
program a (|ρ| + 1)-lower-full array in which stores and restores are exchanged and the
row and column orders are reversed. A lower bound on the number of steps to program
ρ-upper(lower)-full arrays is implied by Theorem 4.6.

Theorem 4.7 The n × n ρ-lower(upper)-full array can be programmed using at most
2dlog2(n − |ρ|)e + 1 store and restore operations. At least dlog2(n − |ρ|)e + 1 operations
are needed to program any such n × n array for any value of n.
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Figure 5: (a) A 2-lower-full 12 × 12 array blocked into 3 × 3 subarrays showing the four
types of subarray that results. (b) A block b̄ × b̄ array of n1 × n1 subarrays containing
full subarrays (F s), a diagonal of −(n1 − ρ mod n1)-lower-full (Ds) and a diagonal of
(ρ mod n1)-lower-full arrays (As and Bs). The three subarrays that have As, Bs, and Ds
on their main diagonal all intersect either in full or empty blocks.

4.9 Lower-Full and Upper-Full Arrays Under h-Hot Addressing

We now describe highly efficient algorithms to program lower-full and upper-full structured
arrays under h-hot addressing when both stores and restores are available.

The upper bound for h-hot programming of the diagonal array obtained in Theorem 4.2
is easily extended to the half-full array. Instead of restoring the lower left quadrant, 1s
are stored in it. The same number of steps is used.

Theorem 4.8 The n × n half-full array under h-hot addressing can be programmed in
2hd 1

h log2 ne operations.

We now derive an upper bound on the number of steps to program to n×n ρ-lower-full
array. This bound grows exponentially in h.

Theorem 4.9 The n×n ρ-lower-full array under h-hot addressing can be programmed in
at most 2 · 3hd 1

h log2 ne operations.

Proof We develop a T (h, ρ)-step algorithm A for ρ-lower-full arrays when ρ ≥ 0 (the
1s fall below the main diagonal) and n = b̄h. To program such arrays when ρ ≤ 0 (the
0s fall above the main diagonal), fill the array with 1s and then write 0s in a triangle in
the upper right corner of the array by applying a variant of algorithm A that uses the
same number of steps. Thus, T (h,−ρ) ≤ T (h, ρ) + 1 when ρ ≥ 0.
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Represent a ρ-lower-full array M , ρ ≥ 0, as a b̄ × b̄ array MB of n1 × n1 subarrays.
(An example of a 2-lower full array is shown Figure 5 (a).) Let σ1 = (ρ mod n1) ≥ 0 and
σ2 = (n1 − ρ mod n1) ≥ 0. The subarrays of MB are of four types (see Figure 5 (b)): a)
a full array F of 1s, b) an empty array of 0s, c) a σ1-lower-full array (As and Bs), and
d) a (−σ2)-lower-full array (Ds).

Let q = d(n− ρ)/n1e. The first column of MB contains q non-zero subarrays. Thus,
the number of instances of D is q− 1. The number of instances of A and B is dq/2e and
d(q − 1)/2e, respectively.

Let M(m, h, σ) be an m × m array of n1 × n1 subarrays that has the σ-lower-full
n1 × n1 array in each diagonal position, full arrays below it, and empty arrays above it
and which is programmed using h-hot addressing. Observe that instances of the Ds, the
F s below them, and 0 subarrays above them form an M(q − 1, h,−σ2) subarray of M .
Similarly, the blocks of M at the intersection of the rows and columns containing the
As (Bs) form an M(dq/2e, h, σ1) (M(d(q − 1)/2e, h, σ1)) subarray.

To program M we program in sequence M(q − 1, h,−σ2), M(dq/2e, h, σ1), and
M(d(q − 1)/2e, h, σ1). Because the last two subarrays intersect only on blocks where
M(q − 1, h,−σ2) is either full or empty, M will be programmed correctly.

Consider the recursive algorithm for M(2k, h, σ) that programs M(2k−1, h, σ) into
each of the four 2k−1 × 2k−1 quadrants of MB, stores 1s into the lower left quadrant
and restores entries in the upper right quadrant. This algorithm eventually requires the
programming of M(1, h−1, σ), a single σ-lower-full n1×n1 array addressed with (h−1)-
hot addressing. This can be done in T (h − 1, σ) steps. Let TL(2k, h, σ) be the running
time of this algorithm. It follows that TL(2k, h, σ) = TL(2k−1, h, σ)+2 = 2k+T (h−1, σ).
The three matrices that are programmed to program MB each have at most q − 1 rows
of n1 × n1 blocks. Thus, in each case it suffices to let k = dlog2 qe.

Using the observation that T (h,−ρ) ≤ T (h, ρ) + 1 it follows that

T (h, ρ) ≤ 6dlog2 qe + 2T (h − 1, σ1) + T (h − 1, σ2) + 1

Instead of computing the running time exactly, we compute T (h) = maxρ T (h, ρ). Using
the fact that q ≤ b̄, we have the following bound on T (h).

T (h) ≤ 6dlog2 b̄e + 3T (h − 1) + 1 ≤ 3h−1T (1) + (6dlog2 b̄e + 1)(3h−1 − 1)/2

When h = 1, the arrays are b̄ × b̄. T (1) is the number of steps to program ρ-lower-full
array maximized over ρ when 1-hot addressing is used. From Theorem 4.7, this number
is at most 2dlog2 b̄e + 1 since the innermost blocks are b̄ × b̄ arrays. It follows that
T (h) ≤ 3h(2dlog2 b̄e). Finally, we note that b̄ = n1/h.

Since a ρ-lower-full n×n array under 1-hot addressing can be programmed in 2dlog2 ne
steps, it is clearly more difficult to program such arrays under h-hot addressing unless h
is small. This argues for limiting the number of hot regions on nanowires.

4.10 Banded Arrays Under 1-Hot Addressing

Similar results can be obtained for banded arrays of bandwidth β. We generalize the
results to the case in which some band entries are 0.
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Figure 6: Decomposition of a banded array into subarrays

Theorem 4.10 The n × n banded array with bandwidth β, in which all band entries
are 1 and 2β divides n, can be programmed using at most 6(log2 n + 2) store and restore
operations. If some band entries are 0, at most 6β additional operations suffice to program
the array.

Proof Let M be an n×n array of bandwidth β and let 2β divide n. The band elements
(not all of which need to be 1) occupy the first β + 1 positions of the first row, the first
β + 2 positions in the second, and 2β + 1 in the β + 1st and later rows except for the
last β rows where the number decreases by one until it reaches β + 1 in the nth row, as
suggested in Figure 6 (a) for an array of bandwidth β = 2.

The array M can be written as the block array shown in Figure 6 (b) where X and
Y are β × 2β arrays and Ai, Bi, and Ci are 2β × 2β arrays. The subarrays {Bi} and
{Ci} form the diagonals of non-intersecting block subarrays that can be programmed
without affecting any of the subarrays in {Ai}.

The arrays {Ai} are reflections about the diagonal of half-full arrays and the arrays
{Bi} and {Ci} are half-full. Each can be programmed in 2dlog2 2βe steps. The array X
is the bottom half of a half-full array and Y is the top half of a reflected half-full array.

To program M we treat Y as a complete reflected half-full 2β × 2β subarray and
view it and the 2β × 2β subarrays in {Ai} as the diagonal of an n/2β ×n/2β array MA.
We also treat X as a complete half-full 2β × 2β subarray and view it and the 2β × 2β
subarrays in {Ci} as the diagonal of an nc × nc array MC where nc < n/2β. Similarly,
we view the {Bi} as the diagonal of an nb × nb array MB, nb < n/2β.

When the band is full of 1s we program MA using the algorithm of Theorem 4.6 on
all the diagonal blocks in parallel. This programs MA in 2dlog2 2βe steps but leaves non-
zero entries outside of the block diagonal. We then invoke the algorithm of Corollary 4.1
which uses 2dlog2 n/2βe restores (array elements in this algorithm are replaced by 2β×2β
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Figure 7: Banded array with q0 = 1 and either (β mod n1) = 0 or (β mod n1) = n1 − 1.

subarrays) to restore all off-diagonal elements. Thus, a total of 2dlog2 2βe+2dlog2 n/2βe
steps suffice. We then program MB and MC in the same fashion. Since there is no overlap
between them and they don’t intersect with Y or the {Ai}, M can be programmed in
6dlog2 2βe + 6dlog2 n/2βe steps.

When the entries in the band are not all zero, we replace the stores in the algorithm
of Theorem 4.6. For each of MA, MB, and MC we program their 2β×2β diagonal arrays
not in two steps but row by row in 2β parallel steps. Thus, at most 6β additional steps
are necessary in this case.

4.11 Banded Arrays Under h-Hot Addressing

We now derive a bound on the number of steps to program a banded array when h-hot
addressing is used. This bound is exponential in h.

Theorem 4.11 The n×n banded array of bandwidth β in which all band entries are 1 can

be programmed using O
(

3h max(β/n1−1/h, 1) 1
h log2 n

)

operations under h-hot addressing.

Proof Recall that nj = b̄h−j for 0 ≤ j ≤ h − 1. Thus, n0 = n. We present a T (h, β)-
step algorithm to program a banded array M of bandwidth β using h−hot addressing.
Let qj = bβ/nj+1c − 1 for 0 ≤ j ≤ h − 1. qj is a non-decreasing function of j and
q0 = bβ/n1c − 1. Represent M as a b̄ × b̄ array MB containing n1 × n1 subarrays.

Consider five different cases for β, namely, I) β = 0, II) (β mod n1) = 0 but β 6= 0,
III) (β mod n1) = n1 − 1, IV) 0 < (β mod n1) < n1 − 1 and q0 ≥ 0, and V) 0 <
(β mod n1) < n1 − 1 and q0 = −1.

Case I is the diagonal array under h-hot addressing for which an algorithm has been
given as well as an upper bound derived of 2hd 1

h log2 ne (see Theorem 4.2).
Case II (see Figure 7) contains a block banded array of bandwidth q0 that has full

arrays (F ) within the band and a diagonal of half-full arrays (Di) above the band and
a diagonal of upper half-full arrays (Di) below the band. Each of these diagonals has
d = b̄ − (q0 + 1) blocks. (The numbering of these arrays is explained below.) The
following algorithm will program the array MB in this case:

1. Program the banded array of F s in 6(log2 b̄ + 2) steps (see Theorem 4.10.)
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2. Organize blocks on the upper diagonal into 2q0 + 2 groups separated by 2q0 + 1
rows and columns. (In Figure 7 the arrays in the ith group are labeled Di.) The
ith subarray containing instances of half-full Di on its diagonal, 1 ≤ i ≤ 2q0 + 2,
does not intersect another such subarray nor the band of F s. This subarray has
at most m = dd/(2q0 + 2)e ≤ b̄ rows and columns.

Program the ith m×m block subarray using (h−1)-hot addressing by programming
the n1 × n1 half-full array Di into every block in 2(h − 1)d 1

h−1 log2 n1e = 2(h −
1)dlog2 b̄e steps (see Theorem 4.8) and then restore all blocks outside the diagonal
in 2dlog2 me ≤ 2dlog2 b̄e steps (see Corollary 4.1). The number of steps is bounded
by 2hdlog2 b̄e. All (2q0 + 2) groups of subarrays can be programmed in 2(2q0 +
2)hdlog2 b̄e steps.

3. Program the Ds in 2q0 + 3 groups. (In this case, the lower diagonal blocks are
organized into groups that do not intersect any of the other blocks except for
common empty blocks.)

The bound on the number of steps used here is obtained from that of the previous
step in which we replace 2q0 + 2 by 2q0 + 3 or 2(2q0 + 3)hdlog2 b̄e steps.

Thus, 6(log2 b̄ + 2) + 2(4q0 + 5)hdlog2 b̄e steps suffice to program Case II.

Case III, illustrated in Figure 7 for q0 = 1, applies when (β mod n1) = n1 − 1. This
array is essentially the same as the one in Figure 7 except that the Di and Di arrays are
not half-full arrays. Di is 1-lower-full and Di is 1-upper-full.

The time bounds given above apply after replacing the time to program a half-full
array by the time to program a ρ-lower-full array. That is, we replace 2(h − 1)dlog2 b̄e
by 2 · 3h−1dlog2 b̄e. Thus, the total number of steps to program the array in this case is

at most 6(log2 b̄ + 2) + (4q0 + 5)
[

2 · 3h−1dlog2 b̄e + 2dlog2 b̄e
]

.

Case IV, which holds when 0 < (β mod n1) < n1 − 1 and q0 ≥ 0, is illustrated in
Figure 8. The band and the diagonals immediately above and below can be programmed
exactly as in Case III in the same number of steps. The top and bottom diagonals are
programmed the same way as diagonals in Case III except that the top diagonal is
covered by 2q0 +4 block subarrays and the bottom is covered by 2q0 +5 block subarrays.

Thus, in this case, the array can be programmed in 6(log2 b̄ + 2) + (8q0 + 14)[2 ·
3h−1dlog2 b̄e + 2dlog2 b̄e]. Thus, that the number of steps here is O

(

3h(q0 + 1) log2 b̄
)

.

Note that q0 + 1 ≥ 1 in this case.
Case V holds when 0 < (β mod n1) < n1−1 and q0 = −1. Here the main diagonal is

composed of banded n1×n1 arrays of bandwidth β. The diagonals above and below the
main diagonal can be programmed in the same manner as the corresponding diagonals
in Case III with q0 = 0.

Since T (h, β) is the number of steps to program a banded n0 × n0 array using h-hot
addressing, Case V requires T (h − 1, β) + [10 · 3h−1dlog2 b̄e + 2dlog2 b̄e].

In summary, if Case V does not apply, T (h, β) is no more than the largest of
the bounds for the other four cases, which occurs in Case IV. Since qj is a non-

decreasing function, if q0 ≥ 0, Case V doesn’t occur and T (h, β) = O
(

3h(q0 + 1) log2 b̄
)

.
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0 0 0 0 0 0 0 B1 A4 F F F

0 0 0 0 0 0 0 0 B2 A5 F F
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Figure 8: Banded array satisfying 0 < (β mod n1) < n1 − 1 and q0 = 1.

If Case V does occurs then T (h, β) = T (h − 1, β) + O
(

3h log2 b̄
)

. Since T (1, β) ≤
6 log b̄ + 2, this recurrence implies that T (h, β) = O

(

3h log2 b̄
)

. Thus, T (h, β) =

O
(

3h max(β/n1−1/h, 1) 1
h log2 n

)

.

4.12 Sparse Arrays Under 1-Hot Addressing

An s-sparse array is an array that has at most s 1s in each row and column. We derive
an upper bound on the number of operations to program such an array.

Theorem 4.12 Every s-sparse n×n array, n = µk for µ = s(s−1)+1, can be programmed

with O
(

s2 log2(n/s2)
)

operations.

Proof To program an arbitrary s-sparse n×n array, group the rows into sets such that
within each set no two rows have 1s in common columns. The rows in each set form a
subarray.

The first such subarray has at least m1 = dn/µe rows. This follows because a) for
each row in the subarray, there are at most s(s − 1) other rows that may overlap with
it, s − 1 rows for each of the s 1s in a row (each column contains at most s 1s), b) to
ensure no overlap between rows, µ = s(s− 1)+1 rows may have to be excluded for each
row in the array, and c) if m1µ < n, an additional non-overlapping row could be added.

After removing the first subarray, the array has n−m1 remaining rows. The process
can be repeated to identify a subarray with m2 = d(n − m1)/µe rows. In general, a jth
subarray with mj rows can be identified where

mj = d(n − m1 − m2 − . . . − mj−1) /µe

When n = µk, mj = (n/(µ − 1))((µ − 1)/µ)j for j ≥ 1, as can be shown by induction.
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Thus p = max{j | mj ≥ 1} = blog2(n/(µ − 1))/ log2(µ/(µ − 1))c. We now bound the
number of stores and restores to program one mj × n subarray.

We permute the columns within each subarray so that the 1s in the first row are in the
first s columns, those in the second row are in the next s columns, etc. If the jth row has
less than s 1s, some entries in column (j−1)s+1 through column js may be zero. Let bj

be the 1 × s block consisting of these entries in the jth row. To program this subarray,
view it as a diagonal mj × mj array whose diagonal elements are b1, b2, . . . , bmj

. In
parallel in one step program bj into the jth set of columns for j = 1, 2, . . . , mj . Restore
off-diagonal blocks in at most 2dlog2 mje steps using the algorithm of Corollary 4.1.
Thus, 2dlog2 mje+ 1 = 2dlog2 n/(µ− 1)− j log2 µ/(µ− 1)e+ 1 steps suffice to program
the jth subarray.

Let T (s, n) be the total number of operations to program the s-sparse n × n array
when n = µk. It follows that T (s, n) has the following bound (dxe ≤ x + 1)

T (s, n) ≤
p
∑

j=1

2 (log2 n/(µ − 1) − j log2(µ/(µ − 1)) + 2)

= 2p log2 n/(µ − 1) − p(p − 1) log2 (µ/(µ − 1)) + 2p

Here p = blog2(n/(µ− 1))/ log2(µ/(µ− 1))c. Since ln(1 + ε) ≥ 0.8 · ε for ε ≤ .5, if we let
ε = 1/s(s − 1), 1/ ln(µ/(µ − 1)) ≤ 1.25 s(s − 1) and we have the following inequality

T (s, n) = O
(

(log2(n/(µ − 1))2/ log (µ/(µ − 1))
)

= O
(

s2 log2(n/(µ − 1))
)

which is the desired conclusion.

5 The Complexity of Array Programming

In Section 3.3 we show that most arrays require many steps whereas in Section 3.4 we
show that some structured arrays can be programmed with a small number of steps. In
this section we ask how difficult it is to identify the minimum number of steps to program
arbitrary arrays. Below we show that this problem is NP-hard under stores and restores.
As a consequence, good approximation algorithms are desirable. Unfortunately, as shown
in Section 6, good approximations cannot be found under stores alone in polynomial time
(assuming P 6= NP) unless special conditions exist on a) the arrays being programmed, b)
the operations being performed, or c) the size of h relative to b. The question of whether the
approximation problem is hard under stores and restores remains open. These negative
results lead us to examine in Section 8 heuristics for array programming that exploit
structure.

5.1 Continuous Reductions Between Problems

We employ Simon’s [24] classification of optimization problems with respect to their ap-
proximability. Instances of maximization and minimization problems are defined by pairs
(I, b) in which I has a value denoted ν(I). The “Yes” instances of such minimization
(maximization) problems are those for which ν(I) ≤ b (ν(I) ≥ b).
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Consider a polynomial-time reduction ρ : A 7→ B between two maximization (or min-
imization) problems A and B that maps an instance (I, b) of A to an instance (I ′, b′) =
ρ(I, b) of B such that the former is a “Yes” of A if and only if the latter is a “Yes” instance
of B.

Definition 5.1 A reduction ρ : A 7→ B between two maximization (or minimization)
problems (I, b) and (I ′, b′) is (a, c)-bounded if ν(I ′) ≥ (ν(I)/a− c) (or ν(I ′) ≤ (ν(I)/a−
c)). A reduction ρ is asymptotically continuous if there is an inverse reduction γ :
B 7→ A such that ρ is (a, c)-bounded and γ is (d, e)-bounded for a, d > 0 and c, e ≥ 0.

Note that if ρ is asymptotically continuous and (I ′, b′) = ρ(I, b), the values of ν(I) and
ν(I ′) are linearly bounded by one another. Thus, a good approximation for one problem
is a good one for the other.

We show that d-set basis and covering by complete bipartite subgraphs, two
NP-complete problems, are equivalent to array programming. The reductions given
between these problems are asymptotically continuous. We use the reductions to show
that array programming is NP-complete and, in Section 6, that it is NP-hard to find
a close approximation to the related minimization problem.

d-set basis
Instance: Triples (U,S, k) where U = {e1, . . . , em} and S is a collection of sets, S =
{S1, . . . , Sn}, Si ⊆ U , |Si| ≤ d for 1 ≤ i ≤ n, and k is an integer.
Answer: “Yes” if (U,S, k) has a basis of size l ≤ k, that is, a collection of subsets
B = {B1, . . . , Bl}, Bi ⊆ U , such that for each i, Si ∈ S is the union of some sets in B.

set basis is a generalized form of d-set basis in which no limit is placed on the size d
of basis sets. Stockmeyer [25] has shown that d-set basis and set basis are NP-complete.

A biclique is a complete bipartite subgraph. A set of bicliques covers a graph G if
each biclique edge is in G and every edge in G is in some biclique. Clearly, some edges
may be in multiple bicliques.

covering by complete bipartite subgraphs (ccb)
Instance: Pairs (G, k) where G = (X ∪ Y, E), E ⊆ X × Y is a bipartite graph and k
is an integer.
Answer: “Yes” if there exists a set of at most k bicliques of G that covers all the edges
of G.

5.2 Reductions Between ap Under Stores Alone, set basis, and ccb

We now show that there are asymptotically continuous reductions between array pro-
gramming under stores alone, set basis and ccb. Because ap is in NP, it is NP-
complete.

Theorem 5.1 There exist asymptotically continuous reductions between ap under stores
alone, set basis and ccb.
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Proof set basis is equivalent to ap. Equate an instance (U,S, k) of ap, where U =
{e1, . . . , em} and S = {S1, . . . , Sn}, with an instance (W, k) where W is an n × n array
over {0, 1} such that Si corresponds to the ith row in W, that is, wi,j = 1 if ej ∈ Si.
If {B1, . . . , Bl} is a basis for S, then, for 1 ≤ j ≤ l, Bj defines an activation matrix
containing row i if Bj ⊆ Si and contains the columns corresponding to entries in Bj .
Similarly, given an activation matrix, a corresponding basis set exists. Thus, (U,S, k) is
a “Yes” instance of set basis if and only if (W, k) is a “Yes” instance of ap.

ap is also equivalent to ccb. Equate an instance of ((X ∪ Y, E), k) of ccb with
an instance (W, k) of ap where vertices in X correspond to rows in W, vertices in Y
correspond to columns in W, and an edge exists between vertices in X and Y if and
only if there is a 1 at the intersection of the corresponding row and column in W. Since
bicliques of ((X ∪ Y, E), k) correspond to activation matrices of W, ((X ∪ Y, E), k) is a
“Yes” instance of ccb if and only if (W, k) is a “Yes” instance of ap.

Corollary 5.1 array programming is NP-complete under stores alone.

5.3 1-Hot Array Programming with O(log n) Steps

A restricted version of array programming under stores, namely, when the number
of operations is logarithmic in the size of an array, is also NP-complete, a result that is
used below to show that array programming is NP-complete under both stores and
restores. This result also implies that ccb is NP-complete when restricted to bipartite
graphs that can be covered by a number of bicliques logarithmic in |V |, and set basis is
NP-complete when restricted to a collection of sets for which there is a basis containing
a number of sets logarithmic in the cardinality of the universe.

array programming with O(log n) stores (ap-log)
Instance: (W, k) where W is an n × n array over {0, 1} and k = O(log n).
Answer: “Yes” if W can be programmed with at most k operations.

Theorem 5.2 ap-log is NP-complete under stores alone.

Proof See Appendix A.

5.4 Array Programming Under Stores and Restores

We use the above fact and knowledge of a particular array for which the optimal algorithm
under stores and restores uses only stores to show that under stores and restores array
programming is NP-complete when “don’t cares” are allowed. A don’t care is an entry
in an array W that is not specified; it may be programmed as either 0 or 1. Allowing don’t
cares in the array programming problem with only stores does not change its complexity;
the problem remains NP-complete.

Our approach has two steps. First we show the existence of an n× n array A, n = 2p,
that has a unique optimal program under stores and restores that uses only log2 n stores.
Second, we reduce in polynomial time the ccb-log decision problem under just stores to

22



the problem of programming under stores and restores an array Q shown in Figure 9 that
may contain don’t cares.

Theorem 5.3 There exists an n × n array A, n = 2p, for which the optimal program
under stores and restores uses log2 n stores and no restores.

Proof We prove the existence of an array A with the stated properties that has don’t
cares, although there exists another array with this property that doesn’t have don’t
cares.

Let B have 1’s on its diagonal, 0’s above the diagonal and don’t cares below the
diagonal. Analysis identical to that of Theorem 4.5 except that D(m) has 1s above
its diagonal and don’t cares below, which doesn’t change the result, demonstrates that
programming this array requires precisely 1 + log2 n store and restore steps. More
specifically, the array may be programmed in one of only two ways: a) one store that
fills the array with 1s followed by log2 n restores or b) two stores that don’t fill the entire
array, followed by log2 n−1 restores. If follows that if we were to start with a array filled
with 1’s instead of one filled with 0s, an optimal algorithm under stores and restores
would use log2 n restores to program the array.

Consider the array A that has 0’s on the diagonal, 1’s above the diagonal and don’t
cares below the diagonal. A is the complement of B, that is, all but the don’t care
entries are complemented. It follows that exactly log2 n stores are required to program
array A under stores and restores.

Theorem 5.4 1-hot array programming under stores and restores is NP-hard.

Proof We reduce ap-log under stores alone to ap under stores and restores. Let M be
an n × n array that is an instance of ap-log. We create the array Q of Figure 9 that
is composed of the array M in its upper left corner and the m × m array A described
above, m = 2k, in the lower right corner, and don’t cares elsewhere.

Since array A requires exactly k store steps under stores and restores and array A is
a subarray of array Q, it follows that if array Q can be programmed in k steps, then all
these steps must be store steps. Note that the don’t care matrices allow any store step
on subarray A to be programmed simultaneously with any store step on subarray M
without affecting any components of array Q. It follows that array Q can be programmed
with k store and restore steps if and only if array M can be programmed with k stores.

It follows that ap under stores and restores can be used to solve ap-log under stores
alone. It follows that ap under stores and restores is NP-hard. Since the number of
rows and columns of Q is polynomial in the number of rows and columns of M, the
reduction can be done in polynomial time.

Because it is NP-hard under stores and restores to find optimal solutions to the 1-hot
n × n array programming problem, the same is true for h-hot array programming, h > 1.

Theorem 5.5 h-hot array programming under stores and restores is NP-hard.

This result follows because an instance of a 1-hot problem can be embedded in an
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Q =

[

M Φ

Φ A

]

Figure 9: The Q array.

instance of an h-hot problem. This motivates the study of programming of individual
rows of an array under h-hot addressing in Section 7.

6 Approximation Algorithms Under Stores

The complexity of array programming and related problems naturally suggests that good
approximation algorithms be sought. Unfortunately, such algorithms are not possible
under stores alone unless P = NP. The question of whether such good approximation
algorithms exists under stores and restores is open.

Simon [24] has shown that ccb is NP-complete by asymptotically continuous reduction
from clique partition defined below.

clique partition (cp)
Instance: Pairs (G, k) where G = (V, E) is a graph and k is an integer.
Answer: “Yes” if there exists a set of at most k vertex-disjoint cliques in G such that
every vertex of G is covered by some clique.

Since clique partition is not approximable in polynomial time to within a multi-
plicative factor of |V |ε for some ε > 0 if P 6= NP [19], the continuous reduction to ccb
implies that the inapproximability of clique partition applies to ccb, as has been noted
by Hochbaum [12], and also to ap and set basis.

Corollary 6.1 ccb, ap and set basis are not approximable to within N ε of optimal for
some ε > 0 in polynomial time if P 6= NP, where N is |V | for ccb, n + m for ap, and
the number of sets plus the cardinality of the universe for set basis.

Because ccb, ap and set basis are very difficult to approximate using a determin-
istic algorithm if P6= NP, one asks if good randomized algorithms might be found for
them. This question is equivalent to the same question for clique partition and graph
coloring because of the asymptotically continuous reductions that exist between them
and ccb [24]. It follows that if a good randomized algorithm exists for any of these five
problems, a good randomized algorithm exists for all of them. In Section 8 we explore
heuristics for array programming when both stores and restores are allowed.

6.1 Bounded Arrays and Bounded Activation Matrices

While there exist strong inapproximability results for array programming and covering
by complete bipartite graphs, in this section we demonstrate that good bounds can be
obtained when the number of 1s in each row and column of an array are bounded (the
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degree of vertices in bipartite graphs is bounded) or the numbers of rows or columns of
the activation matrices are bounded. These bounds are log-approximate, that is, they
are within a factor of O(log N) of the optimal bounds where N is the size of a problem
description. For n × n arrays, N = n2.

6.1.1 The d-ap and d-ccb Problems

There is a possibility that technology may impose a limit on the number of 1s in each row
or column of an array. Since 1s correspond to connections, too many 1s may result in a
voltage drop that is excessive. Motivated by these considerations, we define the following
problems.

Definition 6.1 d-ap consists of instances (W, k) of ap in which the number of 1s in each
row (or column) of W is at most d. d-ccb is the version of ccb in which the degree of
each xi ∈ X (or yj ∈ Y ) is less than or equal to d.

Theorem 6.1 There exist asymptotically continuous reductions between d-ap, d-set ba-
sis and d-ccb.

Proof The proof is identical to that of asymptotically continuous reductions between
ap, set basis and ccb.

6.1.2 Approximations to d-ap, d-set basis and d-ccb

Although there exist strong inapproximability results for ccb, ap and set basis, the
problems d-ap, d-set basis and d-ccb admit log-approximation algorithms in polynomial
time. This follows from a recasting of d-ap as a version of set cover, a well studied
problem for which a log-approximation exists.

set cover
Instance: Triples (U,S, k) where U = {e1, . . . , em} and S is a collection of sets S =
{S1, . . . , Sn}, Si ⊆ U , and k is an integer.
Answer: “Yes” if there exists a collection S ′ ⊆ S, |S ′| ≤ k, such that the union of all
sets in S ′ is equal to U .

Karp [16] demonstrated that set cover is NP-complete. Johnson [15] has shown
that it admits a log-approximation.

We now demonstrate that d-ap, d-set basis and d-ccb may each be modeled as
instances of the set cover problem.

Theorem 6.2 d-ap, d-set basis and d-ccb each admit a log-approximation algorithm
under stores alone.

Proof Since there are asymptotically continuous reductions between all three problems,
it suffices to demonstrate a log-approximation algorithm for d-ap. We cast an instance
(W, k) of d-ap as an instance (U,S, k) of set cover. Here W = [wi,j ] is an n × n
array over the set {0, 1} with at most d 1s in each row (column). In the instance of set
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cover U = {(i, j) | wi,j = 1} and S is a collection of subsets of U corresponding to stores.
Without loss of generality we assume that each store is maximal, that is, it involves all
the rows having 1s in a given set of columns.

A “Yes” instance of (W, k) is one can be programmed with at most k stores. A
“Yes” instance of (U,S, k) is one for which there exists a set cover of U , a collection of
at most k sets from S that covers all the elements of U . Clearly there is a one-to-one
correspondence between the “Yes” instances of the two problems. We now show that
this reduction can be implemented in polynomial time.

The reduction is obtained by constructing U and S from W. To construct U we
enumerate all pairs of indices corresponding to non-zero elements of W. To assemble
the set of possible maximal stores we enumerate the sets of d or fewer columns of W
and for each set find the rows of W that have 1s in each column in the set. It follows
that n comparisons suffice to find the rows containing 1s in a given set of columns.

The number σ(m, d) of subsets of U (m columns) containing d or fewer column
indices satisfies σ(m, d) =

(m
d

)

+
( m
d−1

)

+ . . . +
(m

1

)

. It is easy to demonstrate that

σ(m, d) = O(md), when d is a constant, which is polynomial in the size of an instance
(W, k).

Combining these observations we conclude that we can construct an instance (U,S, k)
of set cover in time polynomial in the size of an instance (W, k).

It follows that the well known greedy algorithm [15] for set cover provides a log-
approximation for d-ap, d-set basis and d-ccb.

6.2 Approximability of ap with Bounded Activation Matrices

Alternatively, there is a possibility that technology may impose a limit on the number of
1s in each row or column of an activation matrix. Since 1s correspond to connections, it is
more likely that a voltage drop will limit the size of activation matrices than it will limit
the number of 1s in an array. The next result follows immediately from Theorem 6.2.

Theorem 6.3 Array programming where the size of the activation matrices is bounded is
log-approximable under stores alone.

We next show that h-hot array programming becomes log-approximable when h and
b, the number of address wires, are both logarithmic in n for n × n arrays.

6.3 Log-Hot Programming is Log-Approximable

While the problem of finding a near minimum number of steps to program an array under
h-hot addressing is hard, the problem becomes log-approximable when h is large, as we
show in this section.

An instance of log-hot programming (log-hp) is an instance (W, k) of h-hot pro-
gramming on b address wires when h = b/2 = dlog2 ne. We show that n different nanowires
can be addressed with these values of h and b.

Lemma 6.1 When h = b/2 = dlog2 ne, n different nanowires can be addressed.
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Proof As shown in the proof of Theorem 3.1, N(b) =
( b
b/2

)

= α2b/
√

πb/2, an increasing

function of b where .97 ≤ α ≤ 1. Replacing b = 2dlog2 ne by 2 log n decreases this
function and yields N(2dlog2 ne) ≥ αn2/

√

π log2 n, which is an increasing function of n.
It has a value greater than n because αn/

√

π log2 n ≥ 1 for n ≥ 2, which is the desired
conclusion.

Now that the number of address wires needed has been determined, we demonstrate a
log-approximation algorithm for log-hp programming similar to the greedy algorithm for
d-ap (see the proof of Theorem 6.2).

Theorem 6.4 log-hp admits a log-approximation algorithm under stores alone.

Proof We follow the proof of Theorem 6.2 in which an asymptotically continuous re-
duction is given from d-ap to set cover. To establish the reduction from an instance
of log-hp to an instance (U,S, k) of set cover we draw a one-to-one correspondence
between an h-hot activation matrix of W and a set cover of U , as shown there. To show
that log-hp admits a log-approximation algorithm we need only show that S can be
constructed in time polynomial in the size (W, k).

As shown in Theorem 6.2, the set U consists of index pairs (i, j) for which wi,j = 1.
The set S consists of subsets of U associated with h-hot activation matrices of W.

Since there are b address wires, the number of combinations of columns that can
be addressed by activating sets of b or fewer address wires is at most 2b. Because
b = 2dlog2 ne, it follows that at most 22dlog

2
ne ≤ 2log

2
(4n2) ≤ (4n)2 combinations of

columns of W are possible. It follows that the reduction Theorem 6.2 can be done
in O(n(4n)2) comparisons and a number of steps that is polynomial in the size of an
instance (W, k) of log-hp.

It follows that the well known greedy algorithm for set cover provides a log-
approximation for log-hp.

7 The Complexity of h-Hot Row Programming

In this section we examine programming of individual rows of an array when h-hot address-
ing is used. We show that an instance of 1-hot array programming is embedded in 2-hot
row programming from which we conclude that 2-hot row programming is NP-complete
under stores and restores and NP-hard to approximate under stores alone unless P = NP.
We also reduce 2-hot row programming to h-hot row programming, thereby showing
that these results carry over to h-hot row programming.

h-hot row programming is the decision problem associated with the optimization
problem that seeks to find the smallest number of h-hot operations to program a given
row of a nanoarray. Let S be the set of column nanowires that must be addressed to insert
1s into a given row of a nanoarray.

h-hot row programming (h-hrp)
Instance: (S, h, b, k) where the integers in S ⊆ N = {1, 2, . . . , n} are addressed by an
h-hot addressing scheme on b address wires, h < b and n ≤

(b
h

)

.
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Answer: “Yes” if S can be programmed using at most k h-hot operations.

clique cover defined below can be reduced to 2-hot row programming by equat-
ing each edge (v, w) with a pair of address wires in 2-hot addressing.

clique cover
Instance: Pairs (G, k) where G is a graph and k is an integer.
Answer: “Yes” if there exists a set of at most k cliques in G such that every edge of
G is covered by some clique.

It follows that 2-hot row programming is NP-complete under stores alone, since
this is true of clique cover. Also, when only stores are used, the problem on n×n arrays
is not approximable to within a factor of nε for some ε > 0 in polynomial time unless P
6= NP. We obtain stronger results by a reduction from 1-hot array programming to 2-hot
row programming, a method that may have promise to simplify row programming.

Theorem 7.1 There exists an (a, c)-bounded reduction from 1-hot array program-
ming to 2-hot row programming.

Proof In an instance of 2-hot row programming each nanowire is addressed by
activating two address wires (a1, a2). The 1s and 0s in the given row can be placed in a
symmetric b × b array whose axes are labeled by a1 and a2 and for which the diagonal
entries are don’t cares. (No nanowire is activated by activating one address wire.) The
bb/2c × bb/2c array in the upper right-hand quadrant of this b × b array is arbitrary.
Thus, an instance of 1-hot array programming can be solved by embedding it in
the upper right-hand quadrant of an instance of 2-hot row programming and its
reflection about the diagonal embedded in the lower left-hand quadrant, replacing the
other entries with “don’t cares” and solving the latter problem.

The general case of h-hot row programming is NP-hard.

Theorem 7.2 There exists an (a, c)-bounded reduction from 2-hot row programming
to h-hot row programming.

Proof Each integer i in the set S of an instance (S, 2, b, k) of 2-hrp is associated with

a pair (a
(i)
1 , a

(i)
2 ) of distinct integers, each drawn from a set of b integers. Each inte-

ger i in the set S∗ of an instance (S∗, h, b∗, k) of h-hrp is associated with an h-tuple

(a
(i)
1 , a

(i)
2 , . . . , a

(i)
h ) of distinct integers, each drawn from a set of b∗ integers.

We reduce an instance (S, 2, b, k) to an instance of (S∗, h, b∗, k), b∗ = b + h − 2, by

encoding each pair (a
(i)
1 , a

(i)
2 ) associated with an integer in S as an h-tuple (a

(i)
1 , a

(i)
2 , b +

1, b + 2, . . . , b + h − 1) associated with an integer in S∗.
It follows that there exist an activation of at most k address wires that covers all

integers in S if and only if there exist an activation of at most k address wires that cover
all integers in S∗.

Since it is obvious that h-hot row programming is in NP and the reduction from
2-hot row programming to h-hot row programming is (a, c)-bounded, the following
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is immediate.

Corollary 7.1 h-hot array programming is NP-complete under stores alone. Fur-
thermore, under stores alone the minimal number of h-hot activations to program a row
is not approximable to within a factor of nε for some ε > 0, n the number of nanowires,
in polynomial time if P 6= NP.

8 Heuristic Array Programming

Given the complexity of array programming, it is important to explore heuristics. Experi-
ence with other hard problems indicates that good solutions can often be found in practice
even when the problem type is known to be NP-hard.

In this section we explore heuristics for array programming under h-hot addressing.
It may be possible to leverage the results given above for programming structured arrays
under 1-hot addressing to program arrays under h-hot addressing.

8.1 An h-Hot Array Programming Heuristic

We propose the following general heuristic to program an n × n array W. Here Φ is the
n × n array of “don’t cares.” When (de)activation matrices are chosen, they must be
consistent with the h-hot addressing scheme.

let V = W and j = 0.
while V 6= Φ,

let S be the (de)activation matrix that covers the most 1s (0s)
in V when don’t cares may be included.

let j = j + 1.
let Ej = S.
in V replace the entries covered by S by don’t cares.

If the sequence of steps E1, E2, . . . is applied in reverse order, the array W will be generated.
Since at least one entry of V is replaced on each step, the loop in this heuristic will execute
at most n2 times on an n × n array.

It follows that an efficient heuristic to find the largest subarray of 1s or 0s that may
contain don’t cares can lead to an efficient heuristic to program an array. However, this
problem is equivalent to max edge weight biclique where edges have a weight of 0
or 1. (The 0’s correspond to don’t cares.) Dawande et al [6] have shown that the latter
problem is NP-complete by asymptotically continuous reduction from max clique. Since
the latter problem is hard to approximate within a factor of nε for some ε > 0 unless P
= NP, the same is true for the maximum size (de)activation matrix. Thus, it is better to
search for an efficient probabilistic heuristic for this problem.

There remains to show how a heuristic for max clique can be used to derive a maxi-
mum h-hot (de)activation matrix.

Given an n × n array W that is addressed under h-hot, create the graph G that has a
vertex vi,j for each (i, j) for which wi,j = 1. Insert an edge between vertices vi,j and vk,l if
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and only if wi,j and wk,l can be in the same h-hot (de)activation matrix. This is possible
when both wi,l and wk,j are either 1 or don’t cares. Then a clique on G corresponds to an
activation matrix of W. The reduction when the largest deactivation matrix is sought is
almost identical; subarrays of zeros are identified instead of 1s.

8.1.1 Exploiting Strongly Structured Arrays

We have demonstrated in Section 4 that strongly structured arrays are relatively inexpen-
sive to program. It follows that identifying structure in arrays allows algorithms similar
to those developed in that section to be utilized. Therefore, before applying our heuristic
it is desirable to search for similarities to known arrays.

In the absence of known structure, our heuristic for array programming will neverthe-
less yield highly efficient results when a strong heuristic for max edge weight biclique
exists. For example, the heuristic is capable of discovering the optimal program for a
banded array even when rows and columns are permuted.

9 Conclusions

In this paper we explore the computational complexity of finding optimal or near optimal
solutions to the array programming problem under h-hot addressing. Our results for the
general case build on results for the 1-hot model. We show that array programming is
NP-complete when stores and restores are allowed but that it is not possible to find good
approximations in polynomial time unless P = NP when stores alone are used.

To understand the power of restores, we show that programs for structured prototypical
arrays with stores and restores use dramatically fewer steps than programs using stores
alone, an improvement that did not seem possible a priori.

Given the difficulty of finding optimal programs, we explore special cases. We show
that log-approximate bounds can be found in polynomial time for the following problems:
a) 1-hot programming when the number of 1s (0s) in (de)activation matrices is bounded,
b) 1-hot programming when the number of 1s in each row and column is bounded, and c)
h-hot addressing when h and b are both proportional to log n.

We also examine h-hot row programming and show that it is NP-hard under both
stores and restores and hard to approximate in polynomial time when only stores are
allowed. However, because k-hot array programming reduces to 2k-hot row programming,
fast algorithms for the former may help solve the latter.

Our last topic is a discussion of heuristics to program arrays and rows using heuristics
to locate the largest subarray of 1s or 0s in an array of 1s, 0s and don’t cares.

A number of open problems have been identified that are enumerated below.

• Give a good polynomial-time approximation algorithm to the h-hot array program-
ming problem under stores and restores or prove that such an algorithm does not
exist unless P = NP.

• It has been suggested by André DeHon [7] that the time to write 1s in nanoarrays may
be much larger than the time to write 0s. How would this affect the programming
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of nanoarrays?

• Determine if an efficient algorithm for s-sparse matrices under h-hot addressing can
be found.

• Analyze the performance of heuristic algorithms of the type described in Section 8.
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A Appendix

We prove that instances (G, k), G = (X ∪Y ), of ccb in which k is logarithmic in |X|+ |Y |
is NP-hard. It follows that ap is NP-hard even if the array can be covered by a number
of activation matrices logarithmic in the size of the problem.

Our starting point is to define the notion of a gregarious clique partition, establish
its relationship to biclique covers, and apply this relationship to a specific class of sparse
graphs. A biclique cover is a set of bicliques that includes every edge of G.

gregarious clique partition (gcp)
Instance: Pairs (G, k) where G = (V, E) is a graph and k is an integer.
Answer: “Yes” if there exists a set of at most k vertex-disjoint cliques in G such that
every vertex of G is included in some clique and for each vertex in a clique there is at
most one vertex in each other clique with which it is non-adjacent.

Theorem A.1 If G = (V, E) has a gregarious clique partition of size c, it also has a
biclique cover of size at most

(c
2

)

dlog2 |V |e.
Proof We consider first the case in which G is itself a clique. Without loss of generality,
assume that |V | = 2p. (If |V | is not a power of two, embed it in a larger clique that does
satisfy this condition and remove the extra vertices and edges later.) We now show that
G has a biclique cover of size at most p.

In the base case construct a biclique by partitioning V evenly between sets X and
Y and including all edges between these two sets of vertices. This biclique does not
cover edges of G that exist between vertices in X nor between vertices in Y , two sets
of 2p−1 vertices. Split each of X and Y into two sets of equal size, namely, {X1, X2}
and {Y1, Y2}, and form a biclique on the sets X1 ∪ Y1 and X2 ∪ Y2. All edges of G are
now covered except for those between the vertices within the 22 sets X1, X2, Y1, and
Y2, each of which has 2p−2 vertices. Repeat this process by dividing each of these sets
into two equal-sized subsets and placing one subset on one side of a bipartite graph and
the other subset on the other side and including all edges between them. This results
in all edges being covered except for those between vertices in 23 sets each of size 2p−3.
Repeat this process until all edges in the clique G are covered by some biclique. Clearly,
a total of p steps suffice to do this.

Consider the case in which G = (V, E) has a gregarious clique partition containing
two cliques G1 = (V1, E1) and G2 = (V2, E2). We show that it is possible to find a
biclique cover of size dlog2 |V3|e where V3 = V1 + V2.

• If vi ∈ V1 has one vertex in V2 with which it is not adjacent, let vj(i) be that vertex.
Form G′ from G by coalescing each vi and vj(i) into vi as well as coalescing edges
(v, vi) and (v, vj(i)) into (v, vi) for every v ∈ (V −{vi, vj(i)}). Since G contains two
cliques, G′ is a single clique.

• In each biclique covering G′, separate vi into vi and vj(i) and split each edge
adjacent to vi thereby converting a biclique cover for G′ into one for G.
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Given a gregarious clique partition for G of size c, a biclique cover for G is obtained
by combining the biclique covers for each pair of cliques in the partition. Since there are
(c
2

)

pairs, there is a biclique cover of size
(c
2

)

dlog2 ne that covers all edges of G.

three edge coloring (3-ec)
Instance: Graphs G = (V, E) of degree three.
Answer: “Yes” if there exists a three-coloring of the edges of G such that no two
adjacent edges have the same color.

The following result is due to Holyer [13]. Vizing [26] has shown that a four-coloring
of the edges of a graph of degree three can be found in polynomial time.

Lemma A.1 three edge coloring is NP-complete.

Let H1 denote the set of graphs G of maximum degree three. Let H2 denote the
complements of line graphs in H1, that is, G′ = (V ′, E′) is in H2 if each vi ∈ V ′ corresponds
to an edge in E and vi and vj ∈ V ′ are adjacent if and only if the edges corresponding to
vi and vj are not adjacent in G.

three-clique partition
Instance: Graphs G = (V, E).
Answer: “Yes” if there exists a three-clique partition of G.

Lemma A.2 three-clique partition is NP-complete.

Proof Translate G ∈ H1 into G′ ∈ H2. Then G′ has a three-clique partition of its
vertices if and only if G has a three-coloring of its edges. Furthermore, three-clique
partition is in NP.

We now demonstrate that each graph in H2 has a small gregarious clique partition.

Theorem A.2 Every graph in H2 has a gregarious clique partition of size at most 13,
and this partition can be discovered in polynomial time.

Proof Let H3 be the set of graphs G′′ constructed from G ∈ H1 in which G′′ has a
vertex vi for each edge of G and vertices vi and vj are connected if and only if the edges
of G to which they correspond are not adjacent to each other nor to a common edge.

Let G′ in H2 be obtained from G in H1. Clearly, a clique partition for G′′ is also
a clique partition for G′. However, it is actually a gregarious clique partition for G′.
To show this, consider vertices vi and vj in a common clique of G′′. They are in the
same clique of G′. If there is no edge in G′ between both of them and a vertex vk in
another clique of G′, then there is a common edge in G that is adjacent to the two edges
corresponding to vi and vj . But this would imply that there cannot be an edge between
vi and vj in G′′, which is a contradiction.

It remains to demonstrate that a clique partition for a graph in H3 can be found
in polynomial time. Since the maximum degree of a graph in H1 is three, it follows
that a vertex of a graph in H3 is nonadjacent to at most 12 other vertices in that
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graph. Therefore, the complement of a graph in H3 has degree 12. For a graph with
maximum degree k it is possible in polynomial time to identify a graph coloring of
size k +1. Because graph coloring and clique partition are identical problems on
complementary graphs, it is possible to identify a clique partition of size 13 in polynomial
time for any graph in H3.

Combining Theorems A.1 and A.2 we have the following lemma.

Lemma A.3 Every graph G = (V, E) in H2 has a biclique cover of size at most 78dlog2 |V |e,
which can be discovered in polynomial time.

covering by O(log n) complete bipartite subgraphs (ccb-log)
Instance: Pairs (G, k) where G = (X ∪ Y, E), E ⊆ X × Y is a bipartite graph and
k = O(log(|X| + |Y |)).
Answer: “Yes” if there exists a set of at most k bicliques of G that covers all the edges
of G.

Theorem A.3 ccb-log is NP-hard.

Proof We give a reduction from three-clique partition to ccb-log.
Given a graph G = (V, E) ∈ H2, create a bipartite graph P = (A ∪ B, A × B) with

|A| = |B| = n as follows. For each vertex vi ∈ G, create vertices ai ∈ A and bi ∈ B.
Connect ai to bi with edge ei,i. Connect ai to bj with edge ei,j if there is an edge between
vi and vj .

It follows from this construction that if all the edges in Es = {ei,i | 1 ≤ i ≤ |V |}
can be covered with three bicliques that may include edges from Ed = {ei,j | i 6= j},
then a clique partition of size three can be found for G, which is an NP-hard problem.
However, a partition of size four can always be found [26].

We show that edges Ed in P can covered with 156dlog2 ne bicliques that do not cover
any edges in Es. We add vertices and edges to P to form the new bipartite graph P ′.
We show that P ′ requires exactly 156dlog2 ne bicliques to cover all edges except for those
in Es and that none of the edges in these bicliques cover edges in Es. Thus, we conclude
that P ′ has a complete bipartite cover of size 156dlog2 ne+ 3 if and only if G has clique
partition of size three. Furthermore, P ′ always has a complete bipartite cover of size
156dlog2 ne + 4. Finally, P ′ has n + 156 vertices in each of its two sets of vertices.

To show that edges Ed in P can covered with 156dlog2 ne bicliques that do not cover
any edges in Es we start with a biclique cover for G of size 78dlog2 ne that covers all
the edges of G. (See Lemma A.3.) For each biclique (X ∪ Y, X × Y ) in this cover, we
define two bicliques for the graph P as follows: If vi ∈ X and vj ∈ Y , the first biclique
associates ai ∈ A with vi and bj ∈ B with vj . The second associates ai with vj and bj

with vi. Since the biclique cover of G covered all edges in G, these new bicliques will
cover all edges in Ed. It is obvious by construction that these bicliques do not cover
edges in Es.

The bipartite graph P ′ is constructed by adding one vertex ak to A and one vertex
bk to B for each of the c ≤ 156dlog2 ne bicliques. We also add an edge between ak and
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Figure 10: The B and A matrices. The “d” entries are don’t cares.

bk and an edge from ak (bk) to each bj (ai) in the kth biclique. It follows that exactly
c bicliques are needed to cover the edges in Ed as well as the new edges and that these
new bicliques do not cover any of the edges in Es. If c < 156dlog2 ne, add bicliques
consisting of one new pair of vertices and an edge between them to bring the number of
bicliques up to 156dlog2 ne. Clearly, P ′ can be constructed in polynomial time.

It follows that all edges of P ′ may be covered by 156dlog2 ne+3 bicliques if and only
if edges in Es can be covered by three bicliques (they will also include edges in Ed).
We have already shown that it is NP-hard to determine whether edges in Es can be
covered by three bicliques, so it is NP-hard to determine whether P may be covered by
156dlog2 ne + 3 bicliques.

Because there is an asymptotically continuous reduction from ccb to ap, the following
holds.

Theorem A.4 ap-log is NP-complete under stores alone.
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