
Strong I/O Lower Bounds for Binomial and FFT
Computation Graphs

Desh Ranjan1, John Savage2, and Mohammad Zubair1

1 Old Dominion University, Norfolk, Virginia 23529
2 Brown University,Providence, Rhode Island 02912

Abstract. Processors on most of the modern computing devices have
several levels of memory hierarchy. To obtain good performance on these
processors it is necessary to design algorithms that minimize I/O traffic
to slower memories in the hierarchy. In this paper, we propose a new
technique, the boundary flow technique, for deriving lower bounds on
the memory traffic complexity of problems in multi-level memory hier-
archy architectures. The boundary flow technique relies on identifying
sub-computation structure corresponding to equal computations with a
minimum number of boundary vertices, which in turn is related to the
vertex isoperimetric parameter of a computation graph. We demonstrate
that this technique results in stronger lower bounds for memory traffic on
memory hierarchy architectures for well-known computation structures:
the binomial computation graphs and FFT computation graphs. For bi-
nomial computation we improve the lower bound by a factor of three.
This reduces the gap between the lower and upper bound from a factor
of 4 to a factor of 4/3. For FFT computation, past work has mostly fo-
cused on asymptotic lower bounds. We improve the best known previous
lower bound for FFT computation by a factor of 8. The lower bound es-
tablished is almost optimal as there exists a simple FFT algorithm that
nearly achieves this bound.

1 Introduction

Modern processors have several levels of memory hierarchy. To obtain good per-
formance on these processors it is necessary to design algorithms that minimize
I/O traffic to slower memories in the hierarchy [9, 12]. The memory traffic that
is required between different levels of memory depends on the application, mem-
ory hierarchy architecture, and the effectiveness of the blocking algorithm. To
evaluate the effectiveness of the blocking algorithm for a given application, it
is of interest to know what is the lower bound on the memory traffic between
different levels of memory. We refer to this lower bound as the memory traffic
complexity of the application. A formal definition of memory traffic complexity
is given later in the paper.

A number of important straight line computations such as matrix multipli-
cation, FFT, and several financial computations are modeled using DAGs[17].
A DAG captures the data dependency at various stages of the computation
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and helps in analyzing performance on modern computer architectures, which
is determined to a large extent by the memory traffic[9, 19]. Given a DAG, the
computation for DAG can be carried out in many different ways, essentially de-
termined by the order in which computations corresponding to various vertices
on the DAG are done. The fast memory in the memory hierarchy has limited
capacity and for many large computations is not big enough to hold interme-
diate results during the computation. This forces the architecture to use slower
memory for storing intermediate results. Different orderings results in different
memory traffic to the slower memory [9]. The key in developing a high perfor-
mance algorithm for a DAG is to identify the order that results in minimum
memory traffic to the slower memory. To evaluate the effectiveness of different
orderings and also to gain insight into the structure of the DAG and its rela-
tionship to the memory traffic, it is desirable to find minimum possible memory
traffic to slower memory for any ordering.

Hong and Kung [10] used the red-blue pebble game to derive memory com-
plexity on a two level memory hierarchy for matrix multiplication and FFT.
Savage [16, 17] introduced the S-span of a DAG and generalized the Hong-Kung
lower-bound method [10] to multiple levels of memory hierarchy. The S-span in-
tuitively represents the maximum amount of computation that can be done after
loading data in a cache at some level without accessing higher level memories.
We propose a new technique, the boundary flow technique, for deriving lower
bounds on the memory traffic complexity of computations that can be repre-
sented as DAGs in multi-level memory hierarchy architectures. The boundary
flow technique relies on identifying sub-computation structure corresponding to
equal computations with a minimum number of boundary vertices. The notion
of finding minimum number of boundary vertices for a fixed size computation
structure is related to determining the vertex isoperimetric parameter of a graph
[11, 15]. The VIP is related to separators in graphs. The separators have been
used to establish lower bounds, for example[3, 21, 20, 5, 7].

For simplicity, in this paper we will only consider two levels of memory hier-
archy. The results for two levels can be extended to multiple levels of memory
hierarchy using the multiple-level memory hierarchy model outlined in [16]. (See
also [17, Chapter 11].) We demonstrate that this technique results in stronger
lower bounds for memory traffic on memory hierarchy architectures for two com-
putations with binomial and FFT as underlying DAGs.

The lower bound bound for memory traffic for both binomial and FFT com-
putations have been addressed in the literature [1, 10, 17]. For binomial compu-
tation we improve the lower bound by a factor of three. This reduces the gap
between the lower and upper bound significantly. We now have an upper bound
that results in memory traffic which is 4/3 times the lower bound established in
this paper. For FFT computation, past work has mostly focused on asymptotic
lower bounds [1, 10, 17]. We improve bounds for FFT computations by a factor
of 8 compared to the FFT bound established in [17]. In fact, this bound is al-
most optimal as there exists a simple FFT algorithm that achieves this bound.
Strengthening the lower bound by a constant factor, besides being of theoretical



Strong I/O Lower Bounds for Binomial and FFT Computation Graphs 3

interest, is important for practical reasons. Deriving these strong bounds gives
insight into deriving better algorithms, which are a factor of four to eight times
better than the existing algorithms. These factors may look small but are sig-
nificant in terms of cost saving for applications with real time constraints, such
as financial applications.

The rest of the paper is organized as follows. The required definitions and
the memory hierarchy model that is used in developing memory complexity is
discussed in Section 2. In Section 3 we define the S-span of a graph and cite
previous lower bounds on memory complexity derived using it. In Section 4 our
new boundary flow technique for deriving improved lower bounds is presented
and applied to the r-pyramid and FFT graphs. Finally, in Section 5 we present
our summary and conclusions.

2 Background

We first give formal definitions of computation graph, computation structure,
and memory traffic complexity. Next we briefly describe the red-blue pebble
game for deriving lower-bounds.

2.1 Computation Graphs, Structures, and Memory Traffic
Complexity

A computation graph is a directed acyclic graph G = (V,E). The vertices of G
with in-degree zero are called the input vertices and the vertices with out-degree
zero are called the output vertices. The goal is to compute the values at the
output vertices given the values at the input vertices. The value at a vertex
can be computed if and only if the value at all its predecessor vertices have been
computed and are available. We say that the computation on G is complete if the
values at all its output vertices have been computed. A computation structure
is a parametric description of computation graphs. Formally, a computation
structure is a function G̃ : Nk → {G |G is a computation graph }, where k is the
number of parameters used to describe G.

Given a computation graph G, the computation on G can be carried out in
many different ways. A computation scheme for a computation structure G̃ is an
algorithm that completely specifies how to carry out the computation for each
G̃(t) where t ∈ Nk.

An input in a two level memory hierarchy refers to a read from secondary
memory, and an output refers to a write to the secondary memory. The I/O
associated with a computation on a graph G is the total number of input and
output operations used during the computation. We now define the memory
traffic complexity for a single processor with 2-levels of memory hierarchy with
σ̂ = 〈σ0, σ1〉 where σ0 is the primary memory size, and σ1 is the secondary
memory size. Let G̃ : Nk → {G |G is a computation graph} be a computation
structure. Let T1(σ̂, G̃)(t) be the minimum I/O required by any computation
scheme for G̃ on input G̃(t) where t ∈ Nk. The function T1(σ̂, G̃) : Nk → N
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as defined above is called the memory traffic complexity of G̃. A computation
scheme that matches the memory traffic complexity for G̃ is called a memory
traffic optimal scheme for G̃.

Binomial and FFT Computation Graphs
Binomial option valuation is a popular approach that values an option contract
using a discrete time model [13, 6]. The binomial option pricing computation is
modelled by a directed acyclic pyramid graph Gb(n) with depth n and n + 1
leaves as shown in Figure 1. FFT computation graph occurs in many scientific
and financial computations[2, 4]. The n-point FFT computation is modelled by
a directed acyclic graph Gf (n) with n(log n+ 1) vertices as shown in Figure 2.
Note that in Gf (n), there are n input vertices with zero in-degree at level-1, and
n output vertices with zero out-degree at level-(n+ 1).

Fig. 1. The binomial graph Gb(n) with depth n and n + 1 = 8 leaves.

2.2 The Reb-Blue Pebble Game

The red-blue pebble game models data movement between adjacent levels of a
two level memory hierarchy. In the red-blue game, red pebbles identify values
held in a fast primary memory whereas blue pebbles identify values held in a
secondary memory. An input refers to a read from the secondary memory, and
an output refers to a write to a secondary memory. Since the red-blue pebble
game is used to study the number of I/O operations necessary for a problem,
the number of red pebbles is assumed limited and the number of blue pebbles
is assumed unlimited. Before the game starts, blue pebbles reside on all input
vertices. The goal is to place a blue pebble on each output vertex, that is, to
compute the values associated with these vertices and place them in long-term
storage. These assumptions capture the idea that data resides initially in the
most remote memory unit and the results must be deposited there.
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Fig. 2. The FFT graph Gf (2s) for s = 22.

Red-Blue Pebble Game Rules

– (Initialization) A blue pebble can be placed on an input vertex at any time.
– (Computation Step) A red pebble can be placed on (or moved to) a vertex

if all its immediate predecessors carry red pebbles.
– (Pebble Deletion) A pebble can be deleted from any vertex at any time.
– (Goal) A blue pebble must reside on each output vertex at the end of the

game.
– (Input from Blue Level) A red pebble can be placed on any vertex carrying

a blue pebble.
– (Output to Blue Level) A blue pebble can be placed on any vertex carrying

a red pebble.

A pebbling strategy P is the execution of the rules of the pebble game on the
vertices of a computation graph. We assign a step to each placement of a pebble,
ignoring steps on which pebbles are removed. The I/O time of P on the graph
G is the number of input and output (I/O) steps used by P.

3 The S-Span Approach to Deriving Lower Bounds

The S-span [16, 17] is a measure that intuitively represents the maximum amount
of computation that can be done after loading data in a cache at some level
without accessing higher level memories (those further away from the CPU).
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Definition 1. The S-span of a DAG G, ρ(S,G), is the maximum number of
vertices of G that can be pebbled starting with any initial placement of S red
pebbles and using no blue pebbles.

The S-span is a measure of how many vertices can be pebbled without doing
any I/O. S pebbles are placed on the most fortuitous vertices of a graph and
the maximum number of vertices that can be pebbled without doing I/O is the
value of the S-span. Clearly, the measure is most useful for graphs that have a
fairly regular structure. We now state lower bound results for binomial and FFT
computation graphs which have been derived based on the S-span approach.

Theorem 1 ([18]). The memory traffic complexity of Gb(n) on a 2-level mem-
ory hierarchy system satisfies

T1(σ̂, Gb)(n) ≥ n(n+ 1)
4σ0 + 2

.

The following result is from on the S-span for an FFT computation graph.

Theorem 2 ([17]). The memory traffic complexity of Gf (n) on a 2-level mem-
ory hierarchy system satisfies

T1(σ̂, Gf )(n) ≥ n log n
4(log σ0 + 1)

.

4 Boundary flow technique for deriving lower bounds

An important class of pebbling strategies is the non re-pebbling strategies. In-
tuitively, these schemes never repeat a computation step. More formally, these
pebbling strategies never pebble a node twice using a computation step.

Definition 2. A non re-pebbling strategy is a pebbling strategy that never pebbles
any vertex more than once using a computation step.

The boundary flow technique currently works for non-repebbling strategies. It
works by subdividing the pebbling into sub-pebblings and then deriving an I/O
lower bound for each of the sub-pebblings. The overall I/O lower bound for the
pebbling is obtained by summing the individual lower bounds. The individual
lower bounds for the sub-pebblings are related to the notion of boundary of a
subset of vertices in a computation graph and the fact that the number of red
pebbles is limited.

Definition 3. Let G = (V,E) be a directed graph and S ⊂ V . Then

out(S) = {u ∈ S | v ∈ S̄ and (u, v) ∈ E}
in(S) = {u ∈ S̄ | v ∈ S and (u, v) ∈ E}

boundary(S) = in(S) ∪ out(S).
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Note that in(S) ∩ out(S) = ∅ and consequently |boundary(S)| = |in(S)| +
|out(S)|.

The following lemma relates the boundary to the minimum memory traffic
required for pebbling a computation graph.

Lemma 1. Let G = (V,E) be any computation graph and let P be any pebbling
of G. Consider subdivision of the pebbling P into consecutive sequential sub-
pebblings P1, P2, . . . , Ph. Let Vj be the set of vertices that are newly pebbled (i.e.
red pebbled using the computation rule) in sub-pebbling Pj. Then the number of
I/Os used in pebbling P to pebble G is at least

h∑
j=1

(|boundary(Vj)| − 2σ0).

V1 V2 Vh

P1 P2 Ph

Fig. 3. Subdivision of pebbling P into sub-pebblings Pis. Vi is the set of new vertices
pebbled in Pi.

Proof. Consider vertices in in(Vj) at the start of sub-pebbling Pj (Figure 3).
All of these vertices are predecessors to some vertices in Vj that will be pebbled
during the jth sub-pebbling. Hence, we need to have red or blue pebbles on
these |in(Vj)| vertices at the start of Pj . As we only have σ0 red pebbles, at least
|in(Vj)| − σ0 of the vertices in in(Vj) have only blue pebbles when Pj starts.
Each such vertex leads to at least one input operation during sub pebbling Pj .
Similarly, consider vertices in out(Vj). All of these vertices are predecessors to
vertices that will be pebbled in some kth sub-pebbling Pk, where k > j. Thus,
we need to have red or blue pebbles on these |out(Vj)| vertices at the end of
the jth sub-pebbling. As we have only σ0 red pebbles, we need to use at least
|out(V (j)|−σ0 blue pebbles. Each blue pebble on a vertex of Vj is a result of an
output operation during the sub-pebbling Pj . Hence during the sub-pebbling Pj

we do at least |in(Vj)| − σ0 + |out(Vj)| − σ0 I/Os. This establishes the lemma.

Next we look at how to obtain lower bound for the boundary size, |boundary(Vj)|,
for a fixed size |Vj |. The notion of boundary of a set of vertices of a graph has
been extensively studied especially in the context of expander graphs[11]. Isoperi-
metric parameter of a graph is a way of capturing the notion of the minimum
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boundary of subgraphs (of the graph) of a fixed size. In context of computation
graphs, the boundary of a set of vertices S captures the input and output re-
quirements for completing the pebbling (computation) of the set S. In deriving
lower bounds for I/O we focus on a sub pebbling step where we pebble a set of
vertices S. We then use the isoperimetric parameter of the graph to derive the
lower bound for the boundary size of S, and consequently find the I/O lower
bound for the sub pebbling.

Definition 4. The vertex isoperimetric parameter for a directed graph G =
(V,E) is:

ζ(M,G) = min
S⊂V
{|boundary(S)| : |S| = M}

Theorem 3. Let G̃ be a computation structure. Consider any non-repebbling
strategy P for the DAG G̃(t) = (V,E) in a 2-level memory hierarchy game.
Then for any integer M > 0 the memory traffic complexity for G̃, T1(σ̂, G̃),
satisfies the following lower bound:

T1(σ̂, G̃)(t) ≥ b|V |/Mc(ζ(M, G̃(t))− 2σ0).

Proof. Subdivide the pebbling P into consecutive sequential sub-pebblings P1,P2,
. . . ,Ph, where in each sub-pebbling we pebble M new vertices of G̃(t) except pos-
sibly Ph. That defines at least b|V |/Mc sub-pebblings in which M computation
steps occur. From Lemma 1 and definition of vertex isoperimetric parameter,
the number of I/O is bounded by ζ(M, G̃(t)) − 2σ0. Hence, the memory traffic
complexity for G̃, T1(σ̂, G̃), satisfies the following lower bound.

T1(σ̂, G̃)(t) ≥ b|V |/Mc(ζ(M, G̃(t))− 2σ0).

Although this directly provides a lower bound, but this is not the best possible
lower bound that can be obtained using the boundary flow technique. To obtain
better bounds it is useful to define the vertex isoperimetric parameter for a
subset of vertices of a directed graph. This is best illustrated with the help
of binomial computation graph. In this graph almost all vertices are internal
vertices, and then there are vertices at the ”fringes” of the computation graph
which constitute a very small fraction (which goes to zero as size of the binomial
graph increases) of the total number of vertices see Figure 4. If we use the
ζ(M,G) for the entire graph the set of M vertices that results in minimum
boundary size is rooted at the top vertex and is aligned with the two slanted
edges (Figure 5). This result is non-optimal because this minimum boundary size
is obtained boundary size is obtained only at the fringes and is not representative
of minimum boundary size for subsets of size M . On the other hand a typical
subset of size M in this graph consists of only of internal vertices. For these
subsets of size M the set that gives minimum boundary looks quite different - in
fact a hexagonal arrangement of internal vertices gives the minimum boundary
size (Figure 5). Hence, to derive strong lower bounds it is necessary to find
isoperimetric parameter of the computation graph over a subset of dominating
vertices (internal vertices), and then take into account of vertices at the fringes
of the computation graph.
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Vertices at fringes of the 

computation graph

Internal vertices of the

computation graph

Fig. 4. Binomial computation graph with fringe and internal vertices.

Set including vertices at 

fringes and having 

minimum boundary size

Set including only internal 

vertices  and having 

minimum boundary size

Fig. 5. Sets with minimum boundaries with fixed number of vertices. Hexagonal shape
gives minimum boundary when only internal vertices are allowed. Triangular shape
shown gives minimum boundary when all vertices all allowed.
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Definition 5. The vertex isoperimetric parameter for a directed graph G =
(V,E) over a subset Vint ⊂ V is:

ζ(M,G, Vint) = min
S⊂Vint

{|boundary(S)| : |S| = M}

Definition 6. Let G = (V,E) be a directed graph. A partition Vint,Vext of V is
called I -partition if there is no edge (u, v) ∈ E such that u ∈ Vext and v ∈ Vint.

Definition 7. Let G = (V,E) be a directed graph let Vint,Vext be an I -partition
of V . Then for S ⊂ Vext we define

Γ (S,G) = {u ∈ Vint | v ∈ S and (u, v) ∈ E}.

Lemma 2. Consider a directed graph G = (V,E). Let Vint, Vext be any I -partition
of V . Let S ⊂ V . Let Sint = S

⋂
Vint and Sext = S

⋂
Vext. Then,

|boundary(S) ≥ ζ(|Sint|, G, Vint)− |Γ (Sext, G)|.

Proof. Let w ∈ in(Sint). Then w ∈ V − Sint and there is a vertex v ∈ Sint such
that (w, v) ∈ E. We look at two possible cases for w:

(i) w ∈ V − S. Then w ∈ in(S) as (w, v) ∈ E and v ∈ S since Sint ⊂ S.
(ii) w ∈ S. Then w ∈ S −Sint, that is w ∈ Sext ⊂ Vext. Since there are no edges

from a vertex in Vext to a vertex in Vint this case is not possible.

From this it follows that |in(S)| ≥ |in(Sint)|.
Similarly let w be a vertex in out(Sint). Then w ∈ Sint and there exists v ∈
V − Sint such that (w, v) ∈ E. Once again we consider two possible cases for w:

(i) there exists v′ ∈ V − S such that (w, v′) ∈ E. Then w ∈ out(S).
(ii) there is no v′ ∈ V −S such that (w, v′) ∈ E. Hence v 6∈ V −S, that is v ∈ S.

Since v ∈ V − Sint this implies that v ∈ S − Sint that is v ∈ Sext.

From this it follows that |out(S)| ≥ |out(Sint)| − |Γ (Sext, G)|. Hence we can
conclude that,

|boundary(S)| = |in(S)|+ |out(S)|
|boundary(S)| ≥ |boundary(Sint)| − |Γ (Sext, G)|
|boundary(S)| ≥ ζ(|Sint|, G, Vint)− |Γ (Sext, G)|

The following result follows directly from the above lemma.

Theorem 4. Let G̃ be a computation structure and let P be any non-repebbling
strategy for the DAG G̃(t) = (V,E) in a 2-level memory hierarchy game. Let
Vint, Vext be any I -partition of V . Consider subdivision of the pebbling P into
consecutive sequential sub-pebblings P1,P2, . . . ,Ph, where in each sub-pebbling
Pi we pebble |S(i)

int| = M new internal vertices and |S(i)
ext| new external vertices of

G̃(t) except possibly Ph, where S(i)
int ⊂ Vint, and S(i)

ext ⊂ Vext. Then for any integer
M > 0 the memory traffic complexity for G̃, T1(σ̂, G̃), satisfies the following
lower bound:

T1(σ̂, G̃)(t) ≥ b|Vint|/Mc(ζ(M, G̃(t), Vint)− 2σ0)−
d|Vint|/Me∑

i=1

|Γ (S(i)
ext, G̃(t))|.
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4.1 Memory Traffic Complexity for Binomial Computation Graph

For the binomial computation graph Gb(n) = (V,E), we define the I -partition
with Vint consisting of internal vertices and Vext consisting of vertices at the
fringes (Figure 4). More specifically,

Vint = {u ∈ V | in-degree(u) = 2 and out-degree(u) = 2}
Vext = V − Vint.

We first need to find the VIP for the binomial computation graph over a subset
of internal vertices. Our VIP result for binomial computation graph is similar to
a recently solved, long-standing honeycomb conjecture, which states a hexagonal
grid represents the best way to divide a surface into regions of equal area with
the least total perimeter [8]. Somewhat counter-intuitively, we have shown that
the lowest boundary to area ratio in a binomial computation graph (which can
be easily mapped to a grid) over a subset of internal vertices is obtained by a
hexagonal structure[?]. More precisely, we prove the following:

Theorem 5 ([?]). Consider any pebbling of Gb(n) = (V,E) via a non-repebbling
strategy P. Let Vint, Vext be the I -partition of Gb(n). Let S ⊂ Vint be any set of
internal vertices of Gb(n) that are pebbled in a sub-pebbling of P. Assume that
|S| ≥ 3c2 + 3c+ 1. Then ζ(3c2 + 3c+ 1, Gb, Vint) ≥ 6c+ 3.

The ”shape” of pebbled vertices that realizes the above bound turns out to
be a hexagon. The theorem is interesting in its own right and a complete proof
of this theorem is quite involved. A manuscript of the proof is available at [?].
Applying Theorem 4 and selecting c = (2/3)σ0, we have the following result (for
keeping the expression simple, we assume that the primary memory size, σ0, is
such that c = (2/3)σ0 is an integer):

Theorem 6. The memory traffic complexity of Gb(n) on a 2-level memory hi-
erarchy system satisfies

T1(σ̂, Gb)(n) ≥
⌊

(n− 2)(n− 1)/2
(4/3)σ2

0 + 2σ0 + 1

⌋
(2σ0 + 3)− (2n+ 1).

Proof. Let P be any non-repebbling strategy for the DAG Gb)(n) in a 2-level
memory hierarchy game. Let Vint, Vext be the I -partition of V . Consider subdivi-
sion of the pebbling P into consecutive sequential sub-pebblings P1,P2, . . . ,Ph,
where in each sub-pebbling Pi we pebble |S(i)

int| = (4/3)σ2
0 +2σ0 +1 new internal

vertices and |S(i)
ext| new external vertices of Gb)(n) except possibly Ph, where

S
(i)
int ⊂ Vint, and S(i)

ext ⊂ Vext. Observe that for the binomial computation graph,
we have |Γ (S(i)

ext, Gb)(n))| = |S(i)
ext|. As we are pebbling (computation steps) |S(i)

ext|
new external vertices in each sub-pebbling, the total number of external vertices
that are pebbled by P is given by the vertices on the slanted edges of the bino-
mial computation graph, that is 2n + 1. Hence, using Theorem 4 we have the
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following result on the memory traffic complexity of Gb(n) on a 2-level memory
hierarchy.

T1(σ̂, Gb)(n) ≥
⌊

(n− 2)(n− 1)/2
(4/3)σ2

0 + 2σ0 + 1

⌋
(2σ0 + 3)− (2n+ 1).

The above result is roughly three times stronger than the one obtained using
S-span approach. In [14] we provide a simple computation scheme for the bino-
mial computation graph that we believe is memory traffic optimal. The memory
traffic in this scheme is 4/3 times of the lower bound established by the boundary
flow technique. Moreover, the scheme doesn’t use any re-pebbling and places a
red pebble on a blue pebble exactly once.

4.2 Memory Traffic Complexity for FFT Computation Graph

We first introduce the necessary notations.

Definition 8. We identify vertices in Gf (n) with its level number and its po-
sition on this level. For 1 ≤ i ≤ lg n + 1, 1 ≤ j ≤ n, v(i, j) denotes is the jth

vertex on the ith level.

For 1 ≤ j ≤ n, we refer to the set of vertices {v(i, j) | 1 ≤ i ≤ lg n + 1} as
Column(j). Note that, if j 6= j′ then Column(j) and Column(j′) are disjoint.

Definition 9. We say that a vertex u is an ancestor of a vertex v if there is a
directed path from u to v. We include u also in the set of ancestors of u.

We need the lemma below to complete our proof.

Lemma 3.
∀x, y 2x + 2y ≥ 21+ (x+y)

2 .

Proof. Since each of 2x, 2y and 21+ (x+y)
2 is non-negative and (2x + 2y)2 = (2x −

2y)2 + [21+ (x+y)
2 ]2 the inequality follows trivially.

Lemma 4. Let U ⊂ Gf (n) with |U | ≥ k log2 4k for some k ≥ 1/4. Then
|out(U)| ≥ k.

Proof. Partition vertices of U by columns. Notice that the topmost vertex in
any column is an output vertex for U . Hence, if the set U has vertices in k or
more columns of Gf (n), then |out(U)| ≥ k.

Otherwise, all vertices of U are in fewer than k columns. In this case, we
show again that |out(U)| ≥ k. We establish this by defining a process, VAL, on
U (see below) and proving a claim about VAL.

During the process, each vertex v ∈ U stores a value n(v) at all times.
Initially VAL sets n(v) = 1 for all v ∈ U . During the process the values n(v)
are updated. However, during the entire process, the sum of these values over all
vertices remains the same (Σvn(v) = |U |). At the end of the process only vertices
in out(U) have non-zero values. The claim below shows that these values are
bounded above by log2 4k, which gives us the desired lower bound on |out(U)|.
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Process VAL(U):
for each vertex v ∈ U
n(v)← 1

Let b be the bottommost level with a vertex in U
Let h be the topmost level with a vertex in U
i← b
while (i < h)

begin
for each vertex v(i, j) ∈ U at level i do

if v(i, j) 6∈ out(U) then
let v(i+ 1, j1) and v(i+ 1, j2) be the two “children” of v(i, j)
n(v(i+ 1, j1))← n(v(i+ 1, j1) + n(v(i, j))/2
n(v(i+ 1, j2))← n(v(i+ 1, j2) + n(v(i, j))/2
n(v(i, j))← 0

i← i+ 1
end

Note that during the process, for a vertex v at a level i, the value n(v) can be
updated only when either its immediate predecessors (which, if present in U , are
on level i−1) are considered or when v is considered itself. Also, notice that n(v)
for any node v ∈ out(U) changes in a non-decreasing fashion. Moreover, n(v)
for any node v 6∈ out(U) also changes in a non-decreasing fashion until the time
when v is considered at which time it is set to 0 and never changes again. Define
nmax(v) to be the maximum value that n(v) stores during the entire process. It
is easy to see that for a vertex v at level i, n(v) = nmax(v) after level i− 1 has
been considered by VAL and when VAL hasn’t started considering level i.
Claim 1: At the end of the process VAL only vertices in out(U) have non-zero
values. Moreover, for all vertices v, v has ancestors in at least 2nmax(v)−2 different
columns.
Proof (of Claim 1): The process considers each vertex v ∈ U at most once
(vertices at the topmost level h in U are not considered at all). Hence it termi-
nates. At the end of this process, only the vertices in out(U) will have a non-zero
values as the value of each vertex v 6∈ out(U) at a level i gets set to zero when
vertices at level i are considered (and it is never reset again). Note that all ver-
tices at level h are in out(U). We will prove the rest of the claim by induction
on the level number in which the vertex v is located.

Base Case: For any vertex v at the bottom level b, nmax(v) = 1. Hence, for
each vertex v at the bottom level it is trivially true that v has at least 2nmax(v)−2

ancestors since v is its own ancestor and 2nmax(v)−2 = 1
2 .

Induction: Consider a vertex v at level i. Let u, u′ be the two immediate
predecessors of v in Gf (n). The value nmax(v) depends only on the situation of
u and u′ with respect to U . Call u relevant for v if u ∈ U and the two edges
going out of u are to vertices also in U . Similarly u′ is relevant for v if u′ ∈ U
and the two edges going out of u′ are to vertices also in U . Notice that u or u′

can affect n(v) during process VAL only if it is relevant for v. We now consider
three cases:
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(i) Both u, u′ are not relevant for v. In this case nmax(v) = 1 and v trivially has
ancestors in 2nmax(v)−2 different columns.

(ii) u is relevant for v and u′ is not. In this case,
nmax(v) = 1 + nmax(u)/2.
Since u is at level i−1, by induction, u (and hence v) has ancestors in at least
2nmax(u)−2 different columns. We need to show that v has ancestors in at
least 2nmax(v)−2 different columns. If nmax(v) ≤ 2 the statement is trivially
true. Otherwise, nmax(v) > 2 which implies that nmax(u) = 2(nmax(v)−1) =
nmax(v)+nmax(v)−2 > nmax(v). Hence v has ancestors in at least 2nmax(v)−2

different columns.
(iii) Both u, u′ are relevant for v. In this case,

Note that nmax(v) = 1 + nmax(u)/2 + nmax(u′)/2. The ancestors of u and
u′ are disjoint and in different columns. Thus, by the induction hypothesis
v has ancestors in at least 2nmax(u)−2 different columns and u′ has ancestors
in at least 2nmax(u′)−2 different columns. Hence v has ancestors in at least
2nmax(u)−2 + 2nmax(u′)−2 different columns. From Lemma 3, it follows that
2nmax(u)−2 + 2nmax(u′)−2 ≥ 1

4 · 2
1+ (nmax(u)+nmax(u′))

2 = 2nmax(v)−2 or v has
ancestors in at least 2nmax(v)−2 different columns.

This finishes the proof of the claim.
Now, recall that U has vertices in fewer than k different columns. Hence, for

any vertex v, nmax(v) must satisfy 2nmax(v)−2 < k, or that nmax(v) < log2 k+2 =
log2 4k.

Since, Σvn(v) = |U | always and n(v) = 0 at the end of the process for vertices
v 6∈ out(U), it now follows that Σv∈out(U)n(v) = |U |. From this it follows that
|out(U)| ≥ |U |/ log2 4k ≥ k which establishes the lemma.

Lemma 5. Let U ⊂ Gf (n)−{v(1, j) | 1 ≤ j ≤ n } with |U | ≥ k log2 4k for some
k > 1/4. Then |in(U)| ≥ k.

Proof. The proof follows easily by observing that

(i) the graph GR
f (n)obtained by reversing all edges of Gf (n) is isomorphic to

Gf (n)
(ii) for any U ⊂ (Gf (n) − {v(1, j) |1 ≤ j ≤ n }), outGR

f (n)(U ∪ inGf (n)(U)) ⊆
inGf (n)(U).

Using Lemma 4 and Lemma 5, we can state the following theorem.

Theorem 7. The A-boundary for Gf (n) with A ≥ k log 4k satisfies ζ(A,Gf (n)) ≥
2k.

Comment: Using a different approach, it is actually possible to prove a slightly
stronger (and optimal) result. The A-boundary for Gf (n) with A ≥ k log 2k
satisfies ζ(A,Gf (n)) ≥ 2k. This can be used to slightly strengthen the result in
Theorem 6.

Applying Theorem 3 and selecting k = σ0 log 2σ0, we have the following
result.
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Theorem 8. The memory traffic complexity of Gf (n) on a 2-level memory hi-
erarchy system satisfies

T1(σ̂, Gf )(n) ≥
⌊

n log n
(σ0 log 2σ0) log(4σ0 log 2σ0)

⌋
(2σ0 log 2σ0 − 2σ0)

The above result is roughly eight times stronger than the one obtained using
S-span approach, and is nearly optimal as the simple FFT algorithm described
in [17] has a memory traffic complexity of (2n log n)/(log σ0).

5 Conclusion

We presented a new technique for deriving lower bounds on memory traffic
for computations that can be represented by a DAG. We demonstrated the
effectiveness of this technique on two important computation structures. We
improved the best known lower bound for a binomial computation graph by a
factor of three. For an FFT computation graph, we improved the bound by a
factor of 8 to obtain a nearly optimal lower bound. There is a gap of a factor of
4/3 between the upper bound and lower bound for binomial computation graph.
It would be nice to close this gap one way or the other. The bounds derived in
this paper assumes non-repebbling strategies, which form an important class of
strategies. It is of interest to see whether these bounds also hold for pebbling
strategies that allow re-pebbling.
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