
Upper and Lower I/O Bounds for Pebbling

r-pyramids

Desh Ranjan
Old Dominion University, Norfolk, Virginia 23529, United States

Email: dranjan@cs.odu.edu

John Savage
Brown University, Providence, Rhode Island 02912, United States

Email: jes@cs.brown.edu

Mohammad Zubair
Old Dominion University, Norfolk, Virginia 23529

Email: zubair@cs.odu.edu

December 19, 2011

Abstract

Modern computers have several levels of memory hierarchy. To
obtain good performance on these processors it is necessary to design
algorithms that minimize I/O traffic to slower memories in the hier-
archy. In this paper, we present I/O efficient algorithms to pebble
r-pyramids and derive lower bounds on the number of I/O operations
to do so. The r-pyramid graph models financial applications which are
of practical interest and where minimizing memory traffic can have a
significant impact on cost saving.

1 Introduction

Modern computers have several levels of memory hierarchy. To obtain good
performance on these computers it is necessary to design algorithms that
minimize I/O traffic to slower memories in the hierarchy [8, 11]. The cache
blocking technique is used to reduce memory traffic to slower memories in
the hierarchy [8]. Cache blocking partitions a given computation such that

1

the data required for a partition fits in a processor cache. For computations,
where data is reused many times, this technique reduces memory traffic to
slower memories in the hierarchy [8]. The cache blocking technique has been
extensively applied to linear algebra applications [5, 2, 10, 7, 6, 1]. Since
accessing data from a slower memory is expensive, an algorithm that rarely
goes to slower memory performs better. Level-0 blocking helps in reducing
the number of load/store instructions by bringing the data into registers
and reusing it. Blocking for Level-1 and Level-2 caches increases the reuse
from the respective caches and helps in reducing the traffic to the slower
level of memory. The memory traffic reduction that can be obtained using
this technique depends on the application, memory hierarchy architecture,
and the effectiveness of the blocking algorithm.

In this paper, we present I/O efficient algorithms to compute the values
at vertices (“pebble” the vertices) of a computation graph that is an r-
pyramid and derive lower bounds on its memory traffic complexity. A formal
definition of memory traffic complexity is given later in the paper. For
simplicity, in this paper we will only consider two levels of memory hierarchy.
The results for two-levels can be extended to multiple-levels of memory
hierarchy using the multiple-level memory hierarchy model outlined in [14].
(See also [15, Chapter 11].) This model is an extension of the red-blue model
introduced by [9], a game played on directed acyclic graphs with red and
blue pebbles.

The paper is motivated by a practical financial application - that of
computing option prices. An option contract is a financial instrument that
gives the right to its holder to buy or sell a financial asset at a specified price,
referred to as strike price, on or before the expiration date. The current asset
price, volatility of the asset, strike price, expiration time, and prevailing risk-
free interest rate determine the value of an option. Binomial and trinomial
option valuation are two popular approaches that value an option using a
discrete time model [12, 4]. The binomial option pricing computation is

modeled by the directed acyclic pyramid graph G
(n)
biop with height n and

n + 1 leaves shown in Figure 1. Here the expiration time is divided into n
intervals (defined by n + 1 endpoints), the root is at the present time, and

the leaves are at expiration times. We use G
(n)
biop to determine the price of

an option at the root vertex iteratively, starting from the leaf vertices.
The trinomial model improves over the binomial model in terms of ac-

curacy and reliability [12]. The trinomial option pricing computation is

represented using the directed acyclic graph with in-degree 3 denoted G
(n)
triop

of height n on 2n + 1 leaves shown in Figure 1. As in the binomial model,

2

Figure 1: A 2-pyramid representing binomial computation, and a 3-pyramid
representing trinomial computation.

we divide the time to expiration into n intervals and let the root be at
the present time and the leaves be at expiration times. As in the binomial

model, we use G
(n)
triop to determine the price of an option at the root vertex

iteratively, starting from the leaf vertices. The trinomial model assumes that
the price of an asset can go three ways: up, down, and remain unchanged.
This is in contrast to the binomial model where the price can only go two
ways: up and down.

In [17] the authors derived lower bounds for memory traffic at different

levels of memory hierarchy for G
(n)
biop and G

(n)
triop. The technique used in the

paper is based on the concept of an S-span of the DAG [14]. The S-span
intuitively represents the maximum amount of computation that can be
done after loading data in a cache at some level without accessing higher
levels (those further away from the CPU) memories. In this paper we first

define a general family of graphs called r-pyramids. G
(n)
biop and G

(n)
triop are sub

families of this family. We then provide an algorithm to pebble r-pyramids
using S pebbles that requires roughly half the I/O needed by previously
described algorithms [17]. We also provide a lower bound that is twice the
previous best known lower bound for the same problem [17]. With these
improvements, one can prove that the pebbling scheme presented here does
no more than twice the I/O required by an optimal pebbling scheme.

The table below summarizes our results and also highlights the improve-
ment over existing lower and upper bounds. V ∗ in the table denotes the
set of non-input vertices for the corresponding computation graph, and σ0
is the size of Level-0 memory. We have presented simplified expressions for
lower bounds so as to see the comparison more clearly.

3

Earlier results[17] New results in this paper

2-Pyramid lower bound |V ∗|/2σ0 |V ∗|/σ0
2-Pyramid upper bound 4|V ∗|/σ0 2|V ∗|/σ0
3-Pyramid lower bound |V ∗|/σ0 2|V ∗|/σ0
3-Pyramid upper bound 6|V ∗|/σ0 4|V ∗|/σ0
r-Pyramid lower bound NA (r − 1)|V ∗|/σ0
r-pyramid Upper Bound NA 2(r − 1)|V ∗|/σ0

Strengthening the lower bound by a constant factor, besides being of
theoretical interest, is important for practical reasons. Deriving these strong
bounds gives insight into deriving better algorithms, which are a factor of
four to eight times better than the existing algorithms. These factors may
look small but are significant in terms of cost saving for applications with
real time constraints, such as financial application.

The rest of the paper is organized as follows. The required definitions and
the memory hierarchy model that helps in developing memory complexity
is discussed in Section 2. In Section 3 we present an efficient algorithm, in
terms of memory I/O, for pebbling r-pyramids. We compute the S-span of
the r-pyramid in Section 4, which is used later in Section 5 to derive lower
bounds for the r-pyramid graph. Section 5 also describes the new technique
to strengthen lower bounds for r-pyramid. Finally, in Section 6 we present
some open problems.

2 Background

In this section we introduce the computational model including the red-blue
pebble game. The lower bounds on the number of I/O operations needed to
perform straight-line computations are derived in this model.

2.1 Computation graphs, structures and memory traffic com-
plexity

We define here formally what we mean by a computation graph, a computa-
tion structure and the memory traffic complexity of a computation structure.
A computation graph is a directed acyclic graph G = (V,E). The vertices
of G with in-degree zero are called the input vertices and the vertices with
out-degree zero are called the output vertices. The idea here is that we wish
to compute the values at the output vertices given the values at the input
vertices. The value at a vertex can be computed if and only if the value at
all its predecessor vertices have been computed and are available. We say

4

that the computation on G is complete if the values at all its output vertices
have been computed. A computation structure is a parametric description
of computation graphs. Formally, a computation structure is a function
G̃ : Nk → {G |G is a computation graph}.

Given a computation graph G, the computation on G can be carried out
in many different ways. A computation scheme for a computation structure
G̃ is an algorithm that completely specifies how to carry out the computa-
tion for each G̃(t) where t ∈ Nk. An input in a 2-level memory hierarchy
refers to a read from secondary to the primary memory, and an output refers
to a write to the secondary from the primary memory. We now parametrize
the memory traffic complexity for a single processor with 2-levels of mem-
ory with σ̂ = 〈σ0, σ1〉 where σ0 is the primary memory size, and σ1 is the
secondary memory size. Let G̃ : Nk → {G |G is a computation graph} be
a computation structure. Let T1(σ̂, G̃)(t) be the minimum I/O required by
any computation scheme for G̃ on input G̃(t) where t ∈ Nk. The function
T1(σ̂, G̃) : Nk → N as defined above is called the memory traffic complexity
of G̃. A computation scheme that matches the memory traffic complexity
for G̃ is called a memory traffic optimal scheme for G̃.

2.2 The red-blue pebble game

The red-blue pebble game models data movement between adjacent levels
of a two-level memory hierarchy. In the red-blue game, red pebbles identify
values held in a fast primary memory whereas blue pebbles identify values
held in a secondary memory. Recall, that an input refers to a read from the
secondary memory, and an output refers to a write to a secondary mem-
ory. Since the red-blue pebble game is used to study the number of I/O
operations necessary for a problem, the number of red pebbles is assumed
limited and the number of blue pebbles is assumed unlimited. Before the
game starts, blue pebbles reside on all input vertices. The goal is to place a
blue pebble on each output vertex, that is, to compute the values associated
with these vertices and place them in long-term storage. These assumptions
capture the idea that data resides initially in the most remote memory unit
and the results must be deposited there.

Red-Blue Pebble Game Rules

• (Initialization) A blue pebble can be placed on an input vertex at any
time.

• (Computation step) A red pebble can be placed on (or moved to) a

5

vertex if all its immediate predecessors carry red pebbles.

• (Pebble deletion) A pebble can be deleted from any vertex at any time.

• (Goal) A blue pebble must reside on each output vertex at the end of
the game.

• (Input from blue level) A red pebble can be placed on any vertex
carrying a blue pebble.

• (Output to blue level) A blue pebble can be placed on any vertex
carrying a red pebble.

We should make a note here that the red-blue pebbling game assumes
that in a time step only one red pebble can be placed on any vertex carrying
a blue pebble (input from blue level), and similarly in a time step only
one blue pebble can be placed on any vertex carrying a red pebble (output
to blue level). This implies that the data between two levels of memory
hierarchy moves one data at a time as opposed to real machines where data
between different levels of memory is moved in a block. The latter being
more restrictive, lower bounds on real machines can be derived with our
assumptions by dividing by the block size.

A pebbling strategy P is the execution of the rules of the pebble game
on the vertices of a computation graph. We assign a step to each placement
of a pebble, ignoring steps on which pebbles are removed. The I/O time of
P on the graph G is the number of input and output (I/O) operations used
by P.

3 An Efficient Algorithm for Pebbling Pr(n)

We now introduce the r-pyramid graph and present efficient algorithms to
pebble it.

3.1 An r-pyramid

A directed graph G = (V,E) is called a layered graph with n levels if V can
be written as a disjoint union of n non-empty sets V1, V2, . . . , Vn such that
∀ e = (u, v) ∈ E,∃ i such that u ∈ Vi and v ∈ Vi+1.

Definition 1. An r-pyramid of height n, Pr(n), is a graph (Vr(n), Er(n))
with the following properties (see Figure 2):

6

Figure 2: r-Pyramid Pr(n) with r = 4 and n = 3

1. Pr(n) = (Vr(n), Er(n)) is a layered graph with height n and n + 1
levels. Here Vr(n) = V1∪V2 . . .∪Vn+1, Vi is the set of vertices on level
i, 1 ≤ i ≤ n+ 1, and Er(n) are the edges.

2. Vi has nr(i) = (r−1)∗(i−1)+1 vertices labeled v(i, 1), . . . , v(i, nr(i)).

3. Vertex v(i, j) has r incoming edges from vertices v(i+1, j), v(i+1, j+
1), . . . , v(i+ 1, j + r − 1).

4. There are no other edges in Pr(n).

With this definition it is easy to see that G
(n)
biop is a 2-pyramid of height

n (or P2(n)) and G
(n)
triop is a 3-pyramid of height n (or P3(n)). Also, note

that an Pr(n) has |Vr(n)| = (n + 1)((r − 1)n + 2)/2 vertices. We note the
nice recursive structure of r-pyramid. For any vertex v in the r-pyramid,
the subgraph rooted at v is a smaller r-pyramid itself.

3.2 Algorithm

To understand the intuition behind the algorithm, consider a 2-pyramid
P2(n). The algorithm starts by pebbling a small pyramid at the bottom as
shown in Figure 3. The pebbling is such that the red pebbles are left on
the right diagonal of the small pyramid. Next we pebble all diagonals to
the right of the small pyramid one after another. The pebbling of a new
diagonal is done using the red pebbles left on the graph will pebbling the

7

m

mnP 1,

m

mnD 2,

n-m

n

Figure 3: Processing of r-pyramid at level k

previous diagonal. To minimize the I/O during this step, we first place a
blue pebble on the top vertex of the earlier processed diagonal and move the
red pebble there to the bottom vertex of the new diagonal being pebbled.
We can now pebble the rest of the vertices of the new diagonal without
requiring any I/O. Blue pebbles are left on the vertices at level n−m.

Let S = (r − 1)m + 1. We give an algorithm that we can pebble an
r-pyramid Pr(n) = (Vr(n), Er(n)) of height n with S red pebbles using no
more than 2|Vr(n)|(r − 1)/(S − 1) I/O operations. Note that if n ≤ m
then Pr(n) can be pebbled without any intermediate I/O. Recall that we
are assuming an unlimited supply of blue pebbles.

Let Dk
i,j denote the “diagonal” shown in Figure 3 consisting of the k

vertices {(i, j), (i + 1, j + r − 1), . . . , (i + (k − 1), j + (k − 1)(r − 1))} that
originate at the vertex (i, j).

The algorithm starts with the pebbling of the r-pyramid, Pm
n−m,1, of

height m rooted at vertex (n−m, 1). This pyramid shares inputs with the
inputs to the full pyramid. The pebbling is done in a such way that it leaves
S red pebbles on S vertices of Pm

n−m,1 one of which is (n−m, 1). The other
vertices carrying pebbles are those in Pm

n−m,1 that are required to compute
Dm

n−m,2. More precisely, this is a collection of (r− 1) vertices at each of the
lower m levels. These vertices are

(n−m+ 1, 2), (n−m+ 1, 3), . . . , (n−m+ 1, (r − 1) + 1)
(n−m+ 2, (r − 1) + 2), (n−m+ 2, (r − 1) + 3), . . . , (n−m+ 2, 2(r − 1) + 1)
...
(n, (m− 1)(r − 1) + 2), (n, (m− 1)(r − 1) + 3), . . . , (n,m(r − 1) + 1)

8

Procedure PebbleSubPyramid given in Algorithm 1 explains how this is
done for S = (r − 1)m+ 1.

Procedure PebbleSubPyramid(n,m, r, S)
if n ≤ m then

Pebble the whole subpyramid using (r − 1) ∗ n+ 1 red pebbles
and exit all loops;

else
t← S;
for i = 1 to t do

Place a red pebble at vertex (n, i);
end
for j = 0 to m− 1 do

t← t− (r − 1);
for k = 1 to t do

Move pebble at (n− j, k) to (n− j − 1, k);
end

end

end

Algorithm 1: An algorithm for pebbling an r-subpyramid of height m
at position (n−m, 1) using S = (r − 1)m+ 1 red pebbles leaving the red
pebbles at the vertices needed for future pebbling.

Next we repeatedly pebble the diagonals Dm
n−m,i starting with i = 2 and

progressing incrementally all the way to Dm
n−m,(n−m−1)(r−1)+1. Observe that

pebbling of Dm
n−m,2 requires the red pebbles on exactly S − 1 vertices from

the pyramid Pm
n−m,1 that was pebbled earlier (using PebbleSubPyramid) and

a red pebble on vertex (n, S+1). We place a blue pebble at (n−m, 1) move
the red pebble at (n−m, 1) left behind by PebbleSubPyramid to (n, S + 1).

It is now easy to verify that all the red pebbles are in exactly the needed
locations to compute Dm

n−m,2. Moreover, we can maintain this property
while pebbling consecutive diagonals. That is, after pebbling Dm

n−m,2 we
leave S red pebbles on the vertices that are required for the processing of the
next diagonal Dm

n−m,3 etc. Observe that in general, processing of diagonal
Dm

n−m,j requires input from vertices on diagonals Dm
n−m,j−1, D

m
n−m,j−2, . . . ,

Dm
n−m,j−r+1. This way we continue processing diagonals until we process

the last diagonal Dn−m,(r−1)(n−m−1)+1.
Also, observe that while processing these diagonals we only need to hold

blue pebbles on vertices at (n − m, 1), (n − m, 2), . . . , (n − m, (r − 1)(n −
m− 1) + 1) for future processing. The basic idea is that with S red pebbles

9

we can pebble all vertices at the lower m levels placing blue pebbles only
on the vertices at level m. We then repeat this process for the r-pyramid
of height n −m. The complete algorithm to process Pr(n) is presented in
Algorithm 2 and illustrated in Figure 3.

Procedure PebblePyramid(n,m, r, S)
PebbleSubPyramid(n,m, r, S) (Exit if n ≤ m) ;
for j = 2 to (r − 1)(n−m− 1) + 1 do

Place a blue pebble on (n−m, j − 1);
Move the red pebble on (n−m, j − 1) to (n, j + S − 1);
for i = 1 to m do

Move the red pebble on (n− i− 1, (j + S − 1− (r − 1)i)) to
(n− i, (j + S − 1− (r − 1)i)) ;

end

end
PebblePyramid(n−m,m, r, S) ;

Algorithm 2: An algorithm to pebble an r-pyramid of height n.

Notice that this pebbling scheme does not “re-pebble” any vertex, that
is, a vertex is never pebbled red using the computation step rule (Section
2.2) more than once. Additionally, it uses a blue pebbled vertex exactly
once for input.

Theorem 1. An r-pyramid of height n can be pebbled using S = (r−1)∗m+1
red pebbles with no more than 2|Vr(n)|(r − 1)/(S − 1) + (r − 1)n+ 1 I/Os.

From the above discussion it is clear that PebblePyramid is an optimal
scheme in terms of computation. It is natural to ask the question if this
is also an I/O optimal scheme. We conjecture that this is indeed the case.
To prove this, we need to establish lower bounds on pebbling schemes for
pebbling an r-pyramid. We do so in the following section.

4 S-Span of r-Pyramid

The S-span is a measure that intuitively represents the maximum amount
of computation that can be done after loading data in a cache at some level
without accessing higher level memories (those further away from the CPU).

Definition 2. The S-span of a DAG G, ρ(S,G), is the maximum number
of new vertices of G that can be pebbled starting with any initial placement
of S red pebbles and using no blue pebbles.

10

Note that S vertices where the pebbles are initially placed are not in-
cluded in the count of new vertices pebbled. The S-span is a measure of
how many vertices can be pebbled without doing any I/O. S pebbles are
placed on the most fortuitous vertices of a graph and the maximum num-
ber of vertices that can be pebbled without doing I/O is the value of the
S-span. Clearly, the measure is most useful for graphs that have a fairly
regular structure. It has provided good lower bounds on communication
traffic for matrix multiplication, the Fast Fourier Transform, the binomial
graph and other graphs. This definition applies even if G is not a connected
graph.

We compute the S-span of an r-pyramid. We start by computing the
S-span of a 2-pyramid and then generalize the idea to r-pyramids. For the
purposes of this paper, one can assume that our r-pyramids are “infinite”
(have height >> S).

4.1 The S-span of a 2-pyramid

The basic intuition is that the S-span is obtained by placing the S pebbles on
contiguous vertices at the same level and then pebbling all possible vertices
from this placement. The number of new vertices pebbled is (S−1)+ . . .+1
or S(S − 1)/2. We provide a proof that this intuition is indeed correct.

Lemma 1. The S-span of a 2-pyramid is at least S(S − 1)/2.

Proof. We can place all S pebbles contiguously on a single level and pebble
S(S − 1)/2 additional vertices by moving the pebbles up by one level from
left to right (discarding the rightmost pebble) and then repeating this at the
next level. Hence the S-span for the 2-pyramid is at least S(S − 1)/2.

We will next establish that for any placement X of S pebbles on the
2-pyramid, no more than a total of S(S + 1)/2 vertices can be pebbled in-
cluding the S vertices on which the pebbles were originally placed. We do so
by first defining a function, pp(X), that upper bounds the maximum number
of vertices that can be possibly pebbled from a placement X of S pebbles
including the S vertices on which the pebbles were initially placed. We then
show that pp(X) ≤ S(S + 1)/2 for any placement X with S pebbles. The
basic idea behind the definition is that if the maximum number of vertices
that can be possibly pebbled at a level i is ki then the maximum number of
new vertices that can be possibly pebbled one level above is at most (ki−1)

11

(except when ki is zero in which case this is zero).

Definition 3. Let X be any placement of S pebbles. Let l denote the lowest
level on which there is at least one pebble in X where the root has level 0.
Let h be the highest such level. Let m = h − l + 1 and let si ≥ 0 denote
the number of pebbles on the ith level starting from level l (i.e. s1 is the
number of pebbles on level l, s2 on level l+ 1 . . . sm on level l+m− 1 = h).
Then, pp(X) =

∑i=m
i=1 maxi + (maxm − 1)(maxm)/2 where maxi is defined

recursively as below:

max1 = s1
maxi = si +maxi−1 − 1 if 1 < i ≤ m and maxi−1 > 0
maxi = si if 1 < i ≤ m and maxi−1 = 0

It is easy to see that pp(X) is an upper bound on the number of vertices
that can hold pebbles initially or be pebbled because

∑i=m−1
i=1 maxi is an

upper bound to the number of such vertices on levels 1 through m− 1 and
(maxm − 1)(maxm)/2 is an upper bound to the number of such vertices on
levels m and above that can be pebbled.

Lemma 2. For any placement X of S pebbles pp(X) ≤ S(S + 1)/2.

Proof. We first consider the case where all the S pebbles are placed on a
single level (say level 1). Then no more than S − 1 vertices can be possibly
pebbled at level 2, consequently, no more than S − 2 vertices at level 3
and in general no more than S − i at level i + 1. It then follows that
pp(X) ≤ S + (S − 1) + . . . 1 = S(S + 1)/2.

If the maximum value of pp(X) is obtained by placing all the pebbles
on one level we have nothing further to prove. Else, let us consider a place-
ment X of pebbles that maximizes pp(X). By our assumption, X places at
least one pebble on two or more levels. Among all placements that maxi-
mize pp(X), let us consider the one that has the minimum number of levels
between the lowest and the highest levels with non-zero pebbles.

As in Definition 3 let m denote the number of levels between the lowest
and highest levels (both included) with non-zero pebbles. Let us label the
levels as 1, 2 . . .m with 1 being the lowest level. Let si denote the number
of pebbles on the ith level in the placement X. Note that, while s1, sm > 0,

12

some of the other sis can be zero and also that
∑

i si = S. Let us now
consider the value pp(X) =

∑i=m
i=1 maxi + (maxm−1)maxm/2. We contend

that by choice of X, none of the maxis is zero and hence for all 1 < i ≤ m
maxi = si +maxi−1− 1. If this is not true then consider the lowest j where
maxj = 0. Then sj = 0 and sj−1 = 1. Consider a new placement X ′ of
S pebbles which is identical to X except that all the pebbles below level
j are moved one level up. Then pp(X ′) = pp(X) but X ′ has fewer levels
contradicting our assumption. We now show that pp(X) ≤ S(S + 1)/2.

Expanding out the definition of maxi we get,
max1 = s1
max2 = s2 + s1 − 1
max3 = s3 + s2 + s1 − 2
...
maxm = sm + s2 + . . .+ s1 − (m− 1) = (S − (m− 1))

Hence,

pp(X) =
i=m∑
i=1

maxi + (maxm − 1)maxm/2

= ms1 + (m− 1)s2 + . . .+ (1)sm

−m(m− 1)/2 + (S −m)(S − (m− 1))/2

= m(
i=m∑
i=1

si)−
i=m∑
i=2

(i− 1)si −m(m− 1)/2

+(S −m)(S − (m− 1))/2

≤ mS −m(m− 1)/2 + (S −m)(S − (m− 1))/2

= mS −m(m− 1)/2 + (S2 − (2m− 1)S +m(m− 1))/2

= S(S + 1)/2

On the third line in the above proof we replaced
∑i=m

i=2 (i − 1)si by 0.
Since the upper and lower bounds on the S-span are the same, this implies
the bound is achieved when all the pebbles are placed on the input. The
following bound on the S-span of a 2-pyramid is obtained by subtracting S
from the upper bound to pp(X) to account for the number of pebbles that
resides on the graph initially.

Theorem 2. The S-span of a 2-pyramid is S(S − 1)/2.

13

4.2 Generalization to r-pyramids

In this section we compute the S-span of an r-pyramid by extending the
ideas in the previous section. The basic intuition once again is that the
S-span is obtained by placing the S pebbles on contiguous vertices at the
same level. We use this intuition to compute a formula for the S-span and
then use the ideas and proof technique from the previous section to prove
that it is indeed the the right formula.

Let S = (r − 1)q + k for q ≥ 0 and 0 ≤ k < r − 1, that is, let
q = bS/(r − 1)c. If S pebbles are placed contiguously on a single level
in an r-pyramid, the number of vertices that can be pebbled, including the
S vertices on which the pebbles are originally placed, is S + (S − (r− 1)) +
(S−2(r−1))+ . . . (S−q(r−1)). This is equal to (q+1)S−(r−1)q(q+1)/2
or 1

2(bS/(r − 1)c + 1)(2S − (r − 1)bS/(r − 1)c. We claim that subtracting
S from this yields the S-span of an r-pyramid. We also observe that this
expression is an upper bound for the total number of vertices that can be
pebbled if all pebbles were placed on a single level, whether they were con-
tiguous or not.

Lemma 3. The S-span of an r-pyramid is at least
1
2(bS/(r − 1)c+ 1)(2S − (r − 1)bS/(r − 1)c)− S.

Proof. Similar to the proof of Lemma 1.

Analogous to the 2-pyramid case we define a function ppr(X) that upper
bounds the number of vertices that can be possibly pebbled for a placement
X, including the S vertices on which the pebbles were initially placed. The
definition uses the basic idea that, in an r-pyramid, if the maximum number
of vertices that can be pebbled at level i is ki then, the maximum number
of new vertices that can be pebbled at level i+ 1 is ki− (r− 1) if ki > r− 1
and zero if ki ≤ r− 1. Using this, and notation borrowed from the previous
section, we define:

maxr1 = s1

maxri = si +maxri−1 − (r − 1) if 1 < i ≤ m andmaxi−1 > (r − 1)

maxri = si if 1 < i ≤ m and maxi−1 ≤ (r − 1)

14

and

ppr(X) =
i=m−1∑
i=1

maxri

+
1

2
(bmaxrm/(r − 1)c+ 1)(2maxrm − (r − 1)bs/(r − 1)c)

It is easy to see that ppr(X) is an upper bound to the number of vertices
that can be pebbled because the summation

∑i=m−1
i=1 maxri upper bounds

the number of such vertices on levels 1 through m − 1 and the expression
1
2(bmaxrm/(r − 1)c + 1)(2maxrm − (r − 1)bS/(r − 1)c) is an upper bound
to the number of such vertices on levels m and above that can be pebbled.

Lemma 4. For any placement X of S pebbles on an r-pyramid,
ppr(X) ≤ 1

2(bS/(r − 1)c+ 1)(2S − (r − 1)bS/(r − 1)c).

Proof. Let S = (r − 1)q + k for 0 ≤ k < r − 1 or q = b(S/(r − 1)c. If
ppr(X) is maximized when all pebbles are placed on a single level, we have
nothing further to prove. Else, consider the placement X that maximizes
ppr(X) and that has the fewest levels m between the highest and lowest
levels with non-zero pebbles. Note that X places non-zero pebbles on at
least two different levels and hence m ≥ 2. Such a placement X, can’t have
a level i where i < m and maxi ≤ (r − 1). If it does, consider the lowest
such level j. Consider the placement X ′ which is identical to X except that
all pebbles at level j or below are shifted right (enough so that moving them
up one level up after the shift won’t have any “pebble collisions”) and then
moved one level up. Such a shift exists as we have an “infinite” r-pyramid.
Then ppr(X

′) ≥ ppr(X) and X ′ has fewer levels between top and bottom
levels with non-zero pebbles.

From this, it follows that for all i, 1 ≤ i ≤ m, maxri = si + maxri−1 −
(r − 1). Then,

maxr1 = s1

maxr2 = s2 + s1 − (r − 1)

maxr3 = s3 + s2 + s1 − 2(r − 1)

...

maxrm = sm + sm−1 + . . . s1 − (m− 1)(r − 1) = S − (m− 1)(r − 1)

15

Recalling that S = (r − 1)q + k, it also follows that

ppr(X) =

i=m∑
i=1

maxri

+(S −m(r − 1)) + (S − (m+ 1)(r − 1)) + . . .+ (S − q(r − 1))

= ms1 + (m− 1)s2 + . . .+ (1)sm − (r − 1)(m− 1)m/2

+(q −m+ 1)S − (r − 1)(q +m)(q −m+ 1)/2

≤ mS − (r − 1)(m− 1)m/2 + (q −m+ 1)S

−(r − 1)(q2 + q −m(m− 1))/2

= (q + 1)S − 1

2
(r − 1)q(q + 1)

=
1

2
(q + 1)(2S − (r − 1)q)

which is the desired result as q = bS/(r − 1)c.

The following bound results by subtracting the S vertices carrying peb-
bles initially from ppr(X).

Theorem 3. The S-span of an r-pyramid is

1
2(bS/(r − 1)c+ 1)(2S − (r − 1)bS/(r − 1)c)− S.

5 Lower Bounds for Pebbling an r-Pyramid

Lower bounds for pebbling an r-pyramid can be obtained by using S-span
arguments [17].

5.1 A lower bound based on the S-span of a graph

The following theorem [16] relates the S-span of the graph to its memory
traffic complexity.

Theorem 4. Let G̃ be a computation structure. Consider a pebbling of the
DAG G̃(t) in a 2-level memory hierarchy game. Let ρ(S, G̃(t)) be the S-span
of G̃(t) and |V ∗t | be the number of vertices in G̃(t) other than the inputs.
Assume that ρ(S, G̃(t))/S is a non-decreasing function of S.

16

Then the memory traffic complexity for G̃, T1(σ̂, G̃), satisfies the follow-
ing lower bound.

T1(σ̂, G̃)(t) ≥ σ0|V ∗t |
ρ(2σ0, G̃(t))

Lemma 5. For a given path π from a leaf vertex x1 to the output vertex
xp+1 in Pr(p) consisting of vertices x1, x2, x3, . . . , xp+1 there is a total of
(r − 1)p distinct paths from leaf vertices to the xi’s for i > 1.

Proof. We use induction on p to prove this result. The lemma holds for the
base case Pr(1). Assume the lemma is true for Pr(p) rooted at xp+1. Then
for a given path π of length p in Pr(p) consisting of vertices x1, x2, . . . , xp+1,
we have (r − 1)p distinct paths from leaf vertices of Pr(p) to xi’s for i > 1.
Observe that the leaf vertices corresponding to these paths along with x1
are the total number of leaf vertices in Pr(p), which is (r − 1)p + 1. We
now consider Pr(p + 1) rooted at xp+2. Pr(p + 1) has (r − 1)(p + 1) + 1
leaf vertices. Observe that Pr(p) is a sub-graph of Pr(p+ 1) rooted at xp+1

and the vertex x1 has r edges coming from the leaf vertices of Pr(p + 1),
see Figure 4. Let one of these leaf vertices in Pr(p+ 1) be x0. Additionally,
for every other leaf vertex of Pr(p), we can identify a distinct leaf vertex
in Pr(p+ 1), which it is connected to, see Figure 4. This demonstrate that
for a path in Pr(p + 1) consisting of vertices x0, x1, x2, . . . , xp+2, there are
a total of (r − 1)(p+ 1) distinct paths from leaf vertices to vertices on this
path. This completes the proof.

Lemma 6. Pr(p) requires a minimum of S = (r− 1)p+ 1 pebbles to place a
pebble on the root vertex. The graph can be pebbled completely with S pebbles
without re-pebbling any vertices.

Proof. The proof uses an argument analogous to the last path argument
used in [3]. We say that a path π from a leaf vertex x1 ∈ Pr(p) to the root
vertex xp+1 is blocked (at some time instance t) if at least one vertex on
the path has a pebble (at time t). Consider the time instance when the root
vertex, xp+1, of Pr(p) was pebbled. At this time instance, all paths from
all the leaf vertices of Pr(p) to xp+1 are blocked. Now let us consider the
first time instance t′ when all paths from all the leaf vertices to xp+1 were
blocked. Then at time instance t′ − 1, there must have been an open path
from one of the bottom level vertices to xp+1. This implies that all vertices
on this path did not have pebbles on them and that at time t′ by placing a
pebble at the leaf vertex all paths were blocked. Observe that when a pebble

17

1nx

1x
2x

r

0x

Figure 4: A r-pyramid with a path π

is placed on the leaf vertex to block π, the graph already had pebbles on
each of the (r− 1)p distinct paths leading to each of the p other vertices on
π (Lemma 5). Thus, when the input to π is pebbled, the graph has at least
(r − 1)p+ 1 pebbles on it.

To show that the graph can be pebbled completely without re-pebbling
any vertices, place all (r−1)p+ 1 pebbles on the inputs. Then one can slide
the leftmost pebble up one level and then proceed to slide (r − 1)(p − 1)
more pebbles up one level to pebble the leaves of the subgraph Pr(p − 1)
with (r − 1)(p − 1) + 1 leaves. The rest follows by induction. Procedure
PebbleSubPyramid provided earlier formally describes this process.

Using Theorems 3 and 4 we have the following result.

Theorem 5. Let σ0 = S. The memory traffic complexity of Pr on a 2-level
memory hierarchy system, T1(σ̂, Pr), satisfies

T1(σ̂, Pr)(n) ≥ Sn((r − 1)(n− 1) + 2)

(b2S/(r − 1)c+ 1)(4S − (r − 1)b2S/(r − 1)c)− 2S
.

5.2 The blue pebble strategy for proving pebbling lower bounds

The above results leave a gap of a factor of 4 between the bounds achieved
by the scheme provided and the lower bounds obtained. We improve this

18

by strengthening the lower bound. To do so, we develop a new technique
for proving lower bounds on I/O in pebbling schemes. We start by making
a simple observation.
Observation: Let P be any I/O optimal scheme for pebbling Pr(n). Sup-
pose P uses f(n) blue pebbles. Then Input(Pr(n))+2f(n) is a lower bound
on the number of I/O for any I/O-optimal scheme for pebbling Pr(n) where
Input(Pr(n)) is the number of input vertices in Vr(n).

This is straightforward because in any I/O optimal pebbling scheme if a
blue pebble is placed on a vertex then later a red pebble must be placed on
this vertex using the rule that a red pebble can be placed on a blue pebble.
If this is not the case, placing the blue pebble is redundant and we have a
better pebbling scheme that simply does not place the blue pebble.

The blue pebble strategy for proving lower bounds in pebbling a graph
G simply establishes a lower bound on the number of blue pebbles placed in
any I/O optimal pebbling scheme. The overall lower bound for G is obtained
through lower bounds for smaller subgraphs (not necessarily disjoint) and
combining these lower bounds.

Theorem 6. Let G = (V,E) be any layered graph. Suppose that we have q
subgraphs H1, H2, . . . Hq of V ∗ = G− In(G) with the following properties:

(i) In any complete pebbling of G, each Hi must have at least b blue pebbled
vertices

(ii) No v ∈ V belongs to more than l different Hi’s.

Then, in any complete pebbling of G at least q ∗ b/l vertices of
⋃

iHi are
pebbled with blue pebbles.

Proof. Let Si denote the set of blue pebbled vertices in the subgraph Hi.
Then the set of blue vertices in

⋃
iHi is S =

⋃
i Si. By assumption ∀ i |Si| ≥

b. Consider the set A = {(v, i) | v ∈ Si, 1 ≤ i ≤ q}. Then |A| ≥ q × b. For
a vertex u denote by Au the subset of A of pairs where the first component
is u, that is, Au = {(u, i)|1 ≤ i ≤ q}. Then if u 6= u′, Au and Au′ are
trivially disjoint. Also, by assumption (ii) for each u, |Au| ≤ l. Noticing
that A =

⋃
u∈S Au, it then follows that |S| ≥ |A|/l = qb/l.

To make use of the blue pebble strategy, one needs to identify an appro-
priate family of sub-graphs and establish a lower bound on number of blue
pebbles on each of these sub-graphs. Naturally, the choice of the subgraphs
can be driven by the ability to establish a lower bound on number of blue
pebbled vertices in these subgraphs.

19

5.3 A lower bound for pebbling Pr(n)

To obtain a lower bound on number of blue pebbles in a complete pebbling
of Pr(n) we first establish the following lemmas:

Lemma 7. Consider any complete pebbling of Pr(n) with S red pebbles and
let Pr(h) be any r-pyramid of height h in Pr(n). Then Pr(h) has at least
(r − 1)h+ 1− S blue pebbled vertices.

Proof. Using the argument of Lemma 6, we have at least (r−1)h+1 pebbles
on the graph Pr(n) when the last path from the leaf vertex of Pr(n) to the
root is blocked. Since there are only S red pebbles in total, it follows that
at least (r − 1)h + 1 − S of the vertices in Pr(h) have blue pebbles at this
time.

We now use the Blue Pebble strategy to establish a lower bound for
pebbling Pr(n) with S red pebbles and unlimited number of blue pebbles.
We choose for our subgraphs Hi, all r-pyramids of height h in Pr(n). There
is one such pyramid with root at each of the vertices at level n − h and
above. Hence there are q = (r− 1)(n−h+ 1)(n−h)/2 + (n−h+ 1) such r-
pyramids. From Lemma 6 it follows that in any complete pebbling of Pr(n),
each such r-pyramid of height h must have at least b = (r − 1)h + 1 − S
blue pebbles. Notice that no vertex in Pr(n) is shared by more than l =
|Hi| = (r − 1)(h+ 1)h/2 + (h+ 1) different subgraphs. It then follows that
the number of vertices that are blue pebbled in complete pebbling of Pr(n)
is at least qb/l = q ∗ [(r − 1)h − (S − 1)]/[(r − 1)(h + 1)h/2 + (h + 1)].
Choosing, (r− 1)h = 2(S − 1), this gives us qb/l = q ∗ (S − 1)/S ∗ (h+ 1) =
q ∗ (S − 1)/[S ∗ (2(S − 1)/(r− 1) + 1)]. This is roughly q(r− 1)/2S which is
roughly |V |(r−1)/2S if n >> S. Hence the total number of I/O operations
is bounded below by roughly |V |(r − 1)/S.

NOTE: The number of I/O operations also needs to be stated below.

Theorem 7. Let h = 2(S − 1)/(r − 1) be an integer and let n > h. Let
q = (r − 1)(n − h + 1)(n − h)/2 + (n − h + 1). Then the number of I/O
operations required to pebble Pr(n) using S red pebbles is at least 2q ∗ (S −
1)/(S(2(S − 1)/(r − 1) + 1)).

6 Remarks and Conclusion

We present an I/O efficient and computation optimal scheme for pebbling
an r-pyramid. We also present a new technique for proving lower bounds in

20

pebbling and used it to prove improved lower bounds on I/O for pebbling
r-pyramids. There is a gap of a factor of (roughly) 2 between the upper
bound and lower bound presented for pebbling the r-pyramids. It will be
nice to close this gap one way or the other. The pebbling scheme presented
here does not use any “re-pebbling”. We conjecture, that this is an I/O
and (obviously simultaneously) computation optimal scheme for Pr(n). For
pebbling schemes that do not use re-pebbling, a better lower bound on the
number of I/O needed to pebble a 2-pyramid of height n has been established
by the authors [13]. However, the technique used there does not immediately
help to improve lower bounds on the number of I/O for pebbling r-pyramids
for r > 2 even when re-pebbling is not allowed. Finally, it is worth noting
that for general layered graphs re-pebbling can reduce the number of I/O.
However, our conjecture also implies that this is not the case for r-pyramids.

References

[1] R. C. Agarwal, F. G. Gustavson, and M. Zubair. Exploiting functional
parallelism of power2 to design high-performance numerical algorithms.
IBM J. Res. Dev., 38(5):563–576, 1994.

[2] E. Anderson, Z. Bai, C. H. Bischof, S. Blackford, J. Demmel, J. J.
Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney,
and D. C. Sorensen. LAPACK Users’ Guide. SIAM, Philadelphia, PA,
USA, 3rd edition, 1999. http://www.netlib.org/lapack/lug/.

[3] S. A. Cook. An observation on storage-time trade off. J. Comp. Systems
Sci, 9:308–316, 1974.

[4] John C. Cox, Stephen A. Ross, and Mark Rubinstein. Option pricing:
A simplified approach. Journal of Financial Economics, 7(3):229–263,
September 1979.

[5] J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling. A set of
Level 3 Basic Linear Algebra Subprograms. ACM Trans. Math. Soft-
ware, 16:1–28, 1990. (Algorithm 679).

[6] Kazushige Goto and Robert A. van de Geijn. Anatomy of high-
performance matrix multiplication. ACM Trans. Math. Softw., 34(3):1–
25, 2008.

[7] Anshul Gupta, Fred G. Gustavson, Mahesh Joshi, and Sivan Toledo.
The design, implementation, and evaluation of a symmetric banded

21

linear solver for distributed-memory parallel computers. ACM Trans.
Math. Softw., 24(1):74–101, 1998.

[8] John L. Hennessy and David A. Patterson. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann, San Francisco, CA, 2007.

[9] J.-W. Hong and H. T. Kung. I/O complexity: The red-blue pebble
game. In Proc. 13th Ann. ACM Symp. on Theory of Computing, pages
326–333, 1981.

[10] Bo K̊agström, Per Ling, and Charles van Loan. Gemm-based level 3
blas: high-performance model implementations and performance eval-
uation benchmark. ACM Trans. Math. Softw., 24(3):268–302, 1998.

[11] V. Kumar, A. Sameh, A. Grama, and G. Karypis. Architecture, al-
gorithms and applications for future generation supercomputers. In
FRONTIERS ’96: Proceedings of the 6th Symposium on the Frontiers
of Massively Parallel Computation, page 346, Washington, DC, USA,
1996. IEEE Computer Society.

[12] Y.K. Kwok. Mathematical Models of Financial Derivatives. Springer-
Verlag, Singapore, 1998.

[13] Desh Ranjan, John Savage, and Mohammad Zubair. Strong i/o lower
bounds for binomial and fft computation graphs, 2010. http://www.

cs.odu.edu/~zubair/papers/ANALCO11-RSZ.pdf.

[14] John E. Savage. Extending the Hong-Kung model to memory hierar-
chies. In Ding-Zhu Du and Ming Li, editors, Computing and Combi-
natorics, pages 270–281. Springer-Verlag, Lecture Notes in Computer
Science, 1995.

[15] John E. Savage. Models of Computation: Exploring the Power of Com-
puting. Addison Wesley, Reading, Massachusetts, 1998.

[16] John E. Savage and Mohammad Zubair. Evaluating multicore al-
gorithms on the unified memory model. Scientific Programming,
17(4):295–308, 2009.

[17] John E. Savage and Mohammad Zubair. Cache-optimal algorithms for
option pricing. ACM Trans. Math. Softw., 37(1):1–30, 2010.

22

