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Abstract

We describe our experience usingPARED, an
object oriented system for the adaptive solution
of PDEs in a distributed computing environment.
PARED handles selective mesh refinement and
coarsening, mesh repartitioning for load balanc-
ing and interprocessor mesh migration.PARED is
an object-oriented system that runs on distributed
memory parallel computers such as the IBM SP
and network of workstations. In this paper, we
report on the use ofPARED to solve two- and
three-dimensional PDEs. We show that our object-
oriented technology provides great flexibility with
a small overhead to support the highly desirable
adaptive features ofPARED.

1. Introduction

Adaptive finite element methods are a collection
of techniques for the numerical solution of PDEs
that are particularly effective on problems with dis-
parate scales or moving physical phenomena [11].
By focusing the available computing resources on
regions of high relative error, the use of adaptive
meshes has the potential of producing large compu-
tational and storage savings but at the price of in-
creasing the sophistication of codes and algorithms.
Adaptive computation requires a tight coupling be-
tween a mesh generator and a solver. In a parallel
environment, the local adaptation of the mesh pro-
duces imbalances in the work assigned to the pro-
cessors. Because of the irregular load requirements
of parallel adaptive computation, a mesh must also

be dynamically repartitioned and migrated between
processors at runtime.

PARED [2] is an integrated system for the paral-
lel adaptive solution of PDEs. It supports the local
refinement and coarsening of unstructured two- and
three-dimensional meshes, and the dynamic repar-
titioning and load balancing of the work. PARED

is an object-oriented system in which all the sup-
port code is written in C++. Our system runs on
distributed memory machines in which processing
nodes communicate using MPI [9]. Our design sup-
ports a dynamically changing environment. Ele-
ments and vertices (and associated equations and
unknowns) migrate between processors to balance
the workload. References to remote elements and
vertices are updated as new elements or vertices are
created, deleted or moved to a new processor. The
complexity of this approach is hidden by the use of
a global object space where remote object commu-
nication is facilitated by the use of proxies. Cached
proxies are also used to reduce latency and commu-
nication overhead.

2. The Adaptive FEM Problem

The finite element method (FEM) divides a given
domain 
 into a set of non-overlapping simple
shapes
i (called elements) such as triangles and
quadrilaterals in 2D and tetrahedrons and hexahe-
drons in 3D. The set of elements and their corre-
sponding vertices form a meshM . To approxi-
mate the solution of a continuous function defined
over
 the FEM solves a system of linear equations
obtained fromM and the corresponding boundary
conditions. The rate of convergence and quality of



the solutions provided by the FEM depends heav-
ily on the number, size and shape of the mesh ele-
ments. For a given shape, the approximation error
increases with element size (h), which is measured
by the length of its longest edge.

The goal of adaptive computation is to optimize
the computational resources used in the simulation
which can be achieved by refining a mesh to in-
crease its resolution on regions of high relative er-
ror in static problems or by refining and coarsening
the mesh to follow physical anomalies in transient
problems [18]. The adaptation of the mesh can be
performed by changing the order of the polynomials
used in the approximation (p-refinement), by mod-
ifying the structure of the mesh (h-refinement), or
a combination of both (hp-refinement). Although it
is possible to replace an old mesh with a new one
containing smaller elements, mosth-refinement al-
gorithms divide each element in a selected set of
elements from the current mesh into two or more
nested subelements.

Error estimates are used to determine regions
where adaptation is necessary. These estimates are
obtained from previously computed solutions of the
system of equations. In a parallel environment mesh
adaptation may produce imbalances in the assigned
to processors. Thus, efficient use of resources may
require that elements and vertices be reassigned to
processors at runtime.

Typical static FEM computations produce a par-
tition of the mesh that minimizes the number of
interprocessor communications while assigning a
similar amount of work toeach partition in a pre-
processing step before starting the simulation. (This
task is related to graph partitioning [5], an NP-
complete problem for which many heuristics have
been developed [17].) A portion of the mesh is then
assigned to each processor. This approach is not
sufficient in a dynamic environment that constantly
modifies the load of each processor.

Any system [8, 16, 19] for the adaptive solu-
tion of PDEs must integrate subsystems for solving
equations, adapting a mesh, finding a good assign-
ment of work to processors, migrating portions of a
mesh according to a new assignment, and handling
interprocessor communication.

3. PARED: an Overview

PARED is a system of the kind described in the
last paragraph. It provides a number of standard it-
erative solvers such as Conjugate Gradient and GM-
RES and preconditioned versions thereof. It also
provides refinement and coarsening of meshes, al-
gorithms for adaptation, graph repartitioning using
standard techniques and our ownParallel Nested
Repartitioning (PNR) [2], and work migration.
PNR is a hierarchical procedure for rebalancing the
work that uses the refinement history to repartition
the mesh. It gives partitions with a quality compa-
rable to those provided by standard methods such as
Recursive Spectral Bisection (RSB) [17] but with a
much lower migration cost.

3.1. Initial Partition of the Mesh

PARED partitions the meshby elements. Every
element is assigned to one processor and mesh ver-
tices are shared if they are adjacent to elements lo-
cated on different processors. By using element par-
titioning, the local element matrices can be com-
puted in processors with no communication.

To start a numerical simulation PARED loads
the initial meshM0 into a distinguished processor
called thecoordinator. The coordinator creates the
dual graphG(V;E) of the mesh, that is, a graph
with one vertexvi 2 V for every element
i 2M0

and an edgeei;j 2 E if two elements
i;
j 2M0

are adjacent. The graphG is assumed to be small
enough to be partitioned using a variety of serial
graph partitioning algorithms onG drawn from the
Chaco library [7] including Multilevel-KL.

After partitioningG, the coordinator distributes
M0 to all the processors to start the simulation. The
coordinator maintains a copy ofG that is used later
to repartition the mesh.

3.2. Mesh Refinement

Based on an adaptation criterion, each proces-
sor adapts the mesh using a localh-refinement al-
gorithm such as Rivara’s longest edge bisection
of (triangular or tetrahedral) unstructured meshes
[13, 14]. This is a recursive procedure that in two



dimensions splitseach triangle
i from a set of tri-
angles selected for refinement by adding an edge
between the midpoint of its longest side and the op-
posite vertex. The refinement propagates to adja-
cent triangles to maintain the conformality of the
mesh. In three dimensions, a tetrahedron is bisected
by inserting a triangle between the midpoint of its
longest edge and the two vertices not included in
that edge.

Starting from the initial meshM0 the refine-
ment procedure creates a sequence of nested meshes
M0;M1; : : :M t where every meshM l; 0 < l � t

is obtained fromM l�1 by refining and coarsening
some of its elements. For every element
i 2 M0

the adaptation algorithm creates a forest of trees�i
of elements rooted at
i. In PARED all the elements
that result from refining
i are assigned to the same
processor as
i. Because an element does not get
destroyed when refined, the mesh is easily coars-
ened by replacing all the children of a refined ele-
ment by their parent.

The refinement of the mesh can require synchro-
nization between neighboring processors to main-
tain the conformality of the mesh across processor
boundaries. PARED incorporates a new parallelh-
refinement algorithm that insures that the mesh is
conformant and generates the same refined meshes
as in the serial algorithm. It also insures that each
mesh element on a processor boundary hasaccess to
neighboring elements on other processors via their
proxies. The details of our parallel refinement algo-
rithm are discussed in [3].

3.3. Load Balancing

After the adaptation phase, PARED determines if
a workload imbalance exists due to increases and
decreases in the number of mesh elements on indi-
vidual processors. If so, it invokes a procedure to
decide how to repartition mesh elements between
processors. In many physical problems in which
the adaptive process is used to adjust the resolu-
tion of the mesh as the simulation evolves, the num-
ber of elements in the refined meshM t is much
larger than the number of elements in the initial
meshM0. Thus, although it is possible to use a
serial graph partitioning algorithm to partition and
distributeM0, it is not always feasible to use the

same serial partitioning algorithm to rebalance the
work of refined meshes.

To produce high quality parallel partitions of
large graphs is very difficult. For example, geomet-
ric graph partitioning methods [10] that use coordi-
nate information are scalable but do not always gen-
erate good partitions. Spectral methods [12] are not
practical for large graphs because they do not pro-
vide good speedups. The Kernighan-Lin heuristic
that is used in multilevel algorithms is P-complete
[15] and does not parallelize.

PARED uses an alternative repartitioning proce-
dure [1] to avoid these problems that operates on
the graphG described above associated with the
initial coarse meshM0. Each vertexvi in G is
assigned a weight equal to the number of unre-
fined elements in its associated tree�i. Each edge
(vi; vj) in G is assigned a weight equal to the num-
ber of edges between unrefined elements in�i and
�j . Dual graph vertex and edge weights represent
computational intensity and communication cost re-
spectively. Each processor sends to the coordinator
the new weights associated withG. The coordina-
tor uses these weights to compute a new partition of
the mesh. BecauseG is assumed to be a relatively
small graph, it is partitioned with a serial algorithm.

Many of the heuristics designed for graph par-
titioning can also be used in graph repartitioning.
Unfortunately, when these heuristics are applied to
slightly different problems they can generate very
different results. For example, standard graph par-
titioning algorithms such as Multilevel-KL or RSB
usually compute a new distribution of the adapted
mesh that is very different from the current one and
require a large movement of elements and vertices
between processors. We have developed new tech-
niques that greatly reduce the cost of migration [4].

Because there are many more ways to partition
the adapted meshM t than to partitionG, a good
partition of G does not necessarily imply a good
partition ofM t. However, our many experiments
comparing partitions ofM t and those obtained by
partitioningG and then projecting these partitions
to M t show that the partitions obtained in the two
cases have similar quality [4].

In PARED G is a dynamic graph that, although
initially created from the meshM0, can also evolve
over time. The local refinement of the mesh can cre-



ate vertices inG that have very high weight relative
to other vertices which might lead to the impossi-
bility of creating balanced partitions. PARED can
detect this condition and allow the graphG to be
expanded by replacing each such vertex by a sub-
graph. These dynamic graphs also allow PARED to
handle problems such as the study of fractures in
materials that require the modification of the struc-
ture of a mesh.

After the coordinator obtains a partition of the
weighted graphG it informs the processors of the
elements that need to move. These elements and
the corresponding vertices are migrated between the
processors. PARED is then ready to resume another
round of equation solving, error estimation, mesh
adaptation, mesh repartitioning, and work migra-
tion.

3.4. Object-Oriented Mesh Representation

PARED uses remote references and smart point-
ers, two ideas commonly found in object oriented
programming, to provide a simple replication mech-
anism that is tightly integrated with our mesh data
structures. In adaptive computation, the structure
of the mesh evolves during the computation as el-
ements and vertices are created, destroyed or as-
signed to different processors. The use of remote
references and smart pointers have greatly simpli-
fied the creation of dynamic meshes.

Because PARED uses element partitioning, prox-
ies for vertices that are common to mesh elements
on different processors are held in each of them.
Proxies of a common vertex refer to each other us-
ing remote references which are functionally simi-
lar to standard C pointers but address objects in dif-
ferent address spaces. When implemented in C++,
a remote reference is just an object that consists of
a processor number and memory address.

A processor can also use a remote reference to
invoke methods on objects located in a remote pro-
cessor. Method invocations and arguments destined
for remote processors are marshaled into a few mes-
sages that contain memory addresses of the remote
objects. In the destination processor(s), each ad-
dress is converted to a pointer to an object of the
corresponding type through which the method is in-
voked. Because the different processors are inher-

ently trusted and MPI guarantees reliable commu-
nication, PARED does not incur the overhead tradi-
tionally associated with distributed object systems.

Smart pointers are used so that proxy objects can
be destroyed when there are no more references to
them. For example, in PARED vertices are associ-
ated with multiple elements. When the reference
count of a vertex proxy reaches zero, the proxy is
no longer attached to any element located in the pro-
cessor and can be destroyed. If a vertex proxy is lo-
cated in an internal boundary between processors,
then some processor might have a remote reference
to it. In that case, before a proxy is destroyed, it in-
forms the copies in other processors to delete their
references to it. This procedure insures that the
shared vertex can then be safely destroyed without
leaving dangerous dangling pointers referring to it
in other processors.

Finally, PARED uses streamed non-blocking
communication to hide the complexity and over-
head of message passing where each object mar-
shals and unmarshals itself onto a stream. The re-
finement and migration algorithm have a commu-
nication pattern that is different from most scien-
tific code such as a parallel matrix-vector product in
which the same set of memory locations are repeat-
edly exchanged between processors. In the refine-
ment and migration algorithms, it is also difficult
for the destination processors to estimate the size
of the receiving buffers and the messages can be-
come very large in the migration algorithm if a lot
of data movement is required. To overcome these
problems, our system uses automatic buffering that
divides very large messages into smaller ones.

4. Results

A good static test for our framework is the two-
dimensional problem defined by Laplace’s equation
�u = 0 in the square
 = (�1; 1)2 with the fol-
lowing Dirichlet boundary condition:

g(x; y) = cos(2�(x � y))
sinh(2�(x + y + 2))

sinh(8�)

The analytical solution to this problem is known
to beu(x; y) = g(x; y) at every point of the do-
main
. This solution is smooth but changes rapidly



Figure 1. Locally adapted two- and three-dimensional meshes have small elements in
the region of high activity.

close to the corner(1; 1). To solve this prob-
lem adaptively we generated an unstructured initial
mesh with 6394 vertices and 12498 triangles of sim-
ilar size. We defined a similar problem in 3D and
generated an unstructured mesh that contains 2013
vertices and 9540 tetrahedrons. Because the analyt-
ical solution of these problems is known, it was pos-
sible to select the elements to refine using theL1
norm between the computed solutionû and the real
solutionu. In this example of a static problem, only
refinement was used. The local refinement of these
meshes creates a large number of small elements in
the high activity corner, as shown in Figure 1.

Figure 2 shows the number of elements and ver-
tices inM t as a function of successive local adap-
tations for the 2D and 3D problems. In each level
the mesh is partitioned and migrated using the al-
gorithm outlined in Section 3.3, after which apply
a Conjugate Gradient solver with a Jacobi precon-
ditioner. Using theL1 norm we select a new set
of elements that we refine by their longest edge, as
explained in Section 3.2. The error criterion was
set so that 17 refinement levels were needed for the
2D case and 18 for the 3D case. Note that the final
meshes contain more than 2 million elements in the
2D case and about 1.7 million elements in the 3D
case.

4.1. Experiments on an IBM SP

We compare the times spent by PARED in each of
its four phases of partition, migration, solution and
refinement on the 2D and 3D versions of Laplace’s
equation described above on an IBM SP parallel
computer containing four to 32 processors and us-
ing MPI. These times for the last 5 adaptation lev-
els are shown in Figures 3 and 4 for the 2D and 3D
problems, respectively.

The 2D and 3D problems have very different rel-
ative costs. The 2D mesh is an example of a prob-
lem that is dominated by its solution time. It re-
quires more than 2,300 CG iterations to reduce the
residual below10�10 on the larger meshes. On the
other hand, the 3D problem requires littlemore than
100 iterations to achieve the same error. However,
while the solution time dominates that for partition-
ing and refinement, it no longer dominates the mi-
gration time. The solution time will dominate the
migration time if either the latter is reduced, a pos-
sibility discussed below, or if more time is spent in
solution, which would be the case if we used non-
linear polynomial basis functions instead of linear
ones.

In these examples most of the refined elements
are located on one or a few processors. Most of
the refinement time is spent refining elements that
are local to a processor; there is very little commu-
nication overhead. Thus, the refinement time does
not necessarily increase with increasing refinement
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Figure 2. Number of elements and vertices for each refinement level.
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Figure 3. Times for the last five refinement phases of the locally adapted two-
dimensional problem on 4, 8, 16, and 32 processors.

levels. Also, the refinement times are comparable in
the 2D and 3D cases for meshes of similar sizes. For
example, to create 576,324 new triangles at level 16
requires 8 sec. on 4 processors and 2.63 sec. on 32
processors. To create 444,150 new tetrahedrons at
level 17 requires 6.4 sec. on 4 processors and 2.24
sec. on 32 processors.

The repartitioning time remains almost constant
in both problems as the number of elements in-
creases because a partition is computed from the
small weighted graphG obtained from the initial
mesh. The partition time slowly increases with the
number of processors and varies between 0.28 sec.
and 1.68 sec.

As explained in Section 3.3 the use of standard
partition algorithms to repartionG generally causes
half of the elements to move to a new processor.
Our new techniques, mentioned above, cause a dra-
matic reduction in migration time.

4.2. Experiments on Sun Workstations

We conducted the same experiments using the
MPICH [6] communications library on a network of
four to 32 Sun Unltra-1 workstations, each having
128MB of memory and connected via a 100Mbps
ethernet network. Although, the network of work-
stations (NOW) is not a controlled environment and
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Figure 4. Times for the last five refinement phases of the locally adapted three-
dimensional problem on 4, 8, 16, and 32 processors.

does not have the benefit of a fast switch, both of
which are characteristic of the SP, the performance
achieved on our test problems is not very differ-
ent from that obtained on the SP. The situation may
change if more processors are used.

The NOW has a higher latency which mainly af-
fects smaller messages, such as the the global sums
for the Conjugate Gradient. For that reason it is
more difficult to obtain speedups in the NOW than
on the SP. Also, on the NOW there is a larger po-
tential for network congestion because all the pro-
cessors communicate through the ethernet.

Figure 5 shows the solution and total times for
the 32-processor Sun NOW when normalized by di-
viding each time by the corresponding times for the
same problems on a IBM SP. These results apply to
the problem described in Section 4. The normalized
times for partition, migration and refinement, which
are not shown, are almost constant and range from
1 to 3. The relative solution time for small prob-
lems on the NOW is much larger than it is for large
problems. This is due to the higher latency of the
NOW.

5 Conclusions

We have described computational experiments
performed with PARED, an integrated object-
oriented system for the adaptive solution of PDEs
using the FEM in a distributed computing environ-

ment. PARED solves a system of equations, adapts
a mesh to regions of high local error, repartitions
the mesh in order to rebalance the workload, and
migrates the mesh elements and vertices needed to
achieve balance. We have examined the time re-
quired for each of these four phases on two repre-
sentative static 2D and 3D problems of large size
and have shown that our algorithmic design results
in times for the computational overhead that are at
worst comparable to the times required to solve the
associated system of equations.

Because of itsdynamic load balancing proper-
ties, PARED is an ideal framework for an envi-
ronment in which the available computational re-
sources change during a simulation.
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