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Abstract PNR is implemented in ARED [4], a system for the

parallel adaptive solution of PDEs described in Section 2.
We present a new parallel repartitioning algorithm for Starting with a coarse initial meshaARED locally adapts
adaptive finite-element meshes that significantly reduces thehe mesh until an error criterion is met. Attached to each
amount of data that needs to move between processors in oreoarse element of the initial mesh is a refinement history
der to rebalance a workload after mesh adaptation (refine- tree whose leaves are the most refined elements into which
ment or coarsening). These results derive their importancethe coarse element has been refined.
from the fact that the time to migrate data can be a large  PARED partitions the mesh by elements. A partition is
fraction of the total time for the parallel adaptive solution obtained by PNR from the weighted dual graphof the
of partial differential equations. coarse mesh. Although has much less information than is
available in the adapted medii, we demonstrate through
experiment and analysis that partitionihf usingG gives
1. Introduction balanced partitions with cut sizes comparable to those pro-
vided by standard patrtitioning algorithms [2, 3]. Unfortu-
nately, as we show, small changeshih can produce very

large storage and computational savings on problems withdifferent partitions ofd and the migration of a large num-
9 9 P 9 P ber of elements using either our initial version of PNR [1]

dissimilar scales by focusing the available computational or standard partitioning algorithms. Thisesh migration

resources on the regions wher.e the sqlutlon changes rapidly, roblemhas also been addressed by others [5, 6, 7]. Biswas
In transient problems, the regions of interest can appear o :

. . o . and Oliker [5] permutes the subsets produced by a standard
vanish, and modify their size, shape or location, as occurs

in the study of turbulence in fluid flows. In some static as algorithm to minimize data movement. We show that this

well as transient problems. efficiency requires adaptation Ofheuristic can still require that half the elements be migrated.
the mesh so tha? regions ,of high );adiq;nts are nF())t under—V\IaISh"’“NEt al [6] and Schloegel, Karypis and Kumar [7]

X fregiol 9ng determine the number of elements that must move between
resolved while maintaining a coarser mesh everywhere else.

The local adaptation of a mesh produces imbalances ipprocessors to rebalance them using a technique of Hu and

the work assigned to processors. Because of the irregu-.Blake [8] and then try to keep the cut size small by migrat-

lar load requirements of parallel adaotive computation. a2 elements on the boundaries between processors. Their

mesh mus?be d namicallp re artitionped and mlig rated l’)e_heuristics require several iterations in which the same re-
y ny rep nd mig lgions of the mesh are repeatedly migrated.

tween processors at runtime. Thus, adaptive finite elemen

. We show the power of PNR through an experiment with
methods provide an excellent context for the study of dy- . ; .
. . - PARED in which we track a disturbance through space over
namic load balancing schemes on distributed-memory par-

time. We show that PNR migrates a very small number of

allel computers. . S i .
In this paper we introducBarallel Nested Repartition- elements while maintaining a partition quality comparable
ing, a new partitioning algorithm sketched in [1], that has to that produced by RSB [2] and multilevel methods [18, 3].

its roots in multilevel partitioning algorithms [2, 3]. Our )

method quickly produces low cost, high quality partitions 2. An Overview of PARED

that minimize the amount of data that needs to be moved to

rebalance a workload while keeping the cut size small. It PARED supports the local adaptation of unstructured
has a very natural parallel implementation that allows us to two- and three-dimensional meshes, and the dynamic repar-
repartition adapted meshes of arbitrary size. titioning and load balancing of the work. Our design sup-

Adaptive computation offers the potential to provide



ports a dynamically changing environment where elements,parallel adaptation algorithm are discussed in [4, 12]. We
vertices, and associated equations and unknowns migratshow that our refinement algorithm propagates refinement
between processors. References to remote elements anacross processor boundaries and generates the same refined
vertices are updated as new elements or vertices are cremeshes as would the purely serial bisection algorithm [12].
ated, deleted or moved to a new processaRED runs on After the adaptation phaseARED determines if a user-
distributed memory computers such as the IBM SP and net-supplied workload imbalance exists due to increases and de-
works of workstations (NOW) in which processing nodes creases in the number of mesh elements on individual pro-
communicate by exchanging messages using MPI [9]. cessors. If so, it invokes the procedure described in Sec-
To support the dynamic adaptation of meshes we de-tion 3 to decide how to repartition mesh elements between
signed a hierarchical data structure of nested meshesprocessors. These elements and the corresponding vertices
We assume that the user supplies an initial coarse mestare migrated between the processors according to the pro-

M°(D°,V°) called the 0-level mesh, whereD® = cedure explained in [1, 13].ARED is then ready to resume

{Q4,...,Q,} is the set of simple shapes efementghat another round of equation solving, error estimation, mesh

approximate a domaif andV°® = {Vi,...,V,,} is the adaptation, mesh repartitioning, and work migration.

set of vertices associated with these elements. This mesh

is loaded into a distinguished processor calleddberdi- 3. Partitioning Finite Element Meshes

nator Pc. This processor computes an initial partition of

the mesh using the algorithms explained in SectiorPs. In PARED each element is assigned to a unique processor

then distributes the mesh between the processors where thg,§ mesh vertices are shared if they are adjacent to elements

numerical simulation starts in parallel. assigned to different processors. This results in the partition
The adaptation procedure constructs a family of nested|| = {r,,..., r,} of the mestby elementswherer; is the

meshesM®, M',..., M". Let M*(D*, V") be the mesh  set of elements assigned to procesgorCommunication is

at time stept where D* = {Q,...,9Q,} is a set of ele-  then performed across the edges (in two-dimensional prob-

ments that approximate the domérof interest and/* = lems) or faces (in three-dimensional problems) that separate

{WV1,...,Vin} is the set of vertices in the mesh. Every ele- two elements of the mesh.

ment inD* at time steg is an unrefined element. A partition IT of a meshM (D, V) by elements is ob-

In PARED, when an element is refined, it does not get tained from the dual grap& of the mesh. On a mesh par-
destroyed. Instead, the refined element inserts itself into atitioned by elements, the communication cost is a function
tree. The refined mesh forms a forest of refinement trees,of the cut size C(II(G)) and, on machines with a high

one per initial mesh element. Thus, for every elenféntn latency network, on the number of adjacenbdomains.
the initial mesh RRED maintains a refinement history tree Because there is a one-to-one relation between titipar
T, Where every element exceptleaf element is thepar- TI(M) of the elements of a mesi and a partition of the

ent of two or more elements. The leaf elements of these verticesII(G) of its dual graph’s, we do not make a dis-

trees form the most refined mesfi* on which the numer-  tinction betweerdI(M) andIl(().

ical simulation is based at time These trees are used in

many of our algorithms. For example, imiRED a mesh  3.1. Review of Graph Partitioning Methods

is coarsened in ARED by replacing all the children of a

refined element by their parent. Thu,® is the coarsest The problem of partitioning a graph infosubgraphs of

mesh that our system can manipulate. Our repartitioningapproximately equal size while minimizing the number of

algorithm also takes advantage of these trees; when an eledges joining vertices in different subgraphs is known as

ement is migrated to another processor all its descendantshep-way graph partitioning probleniThis problem is NP-

are migrated as well. hard even in the simple case of bisecting a graph between
PARED uses a parallel and locatrefinement algorithm  two processors [14]. As a result, many heuristics have been

based on Rivara’s longest edge bisection of triangular [10] proposed for it.

and tetrahedral [11] unstructured meshes to adapt a mesh. One of the most successful heuristics for partitioning

This is a recursive procedure that in two dimensions splits unstructured FEM meshes is Recursive Spectral Bisection

each trianglé€2, from a selected set of trianglésby adding (RSB) [15]. Local heuristics, such as the Kernighan-Lin al-

an edge between the midpoint of its longest side and the op-gorithm (KL) [16], complement spectral methods by further

posite vertex [10]. The refinement propagates to adjacentimproving the quality of a partition.

triangles to maintain the conformality of the mesh. Inthree RSB produces high quality partitions bugdause of its

dimensions, a tetrahedron is bisected by inserting a trian-high cost, it is usually restricted to relatively small graphs.

gle between the midpoint of its longest edge and the two For large graphs, multilevel methods such as Multilevel-KL

vertices not included in that edge [11]. The details of our [17] provide a better tradeoff between partition quality and



speed. Multilevel methods consist of three phaggaph size and the number of elements migrated small. The latter
contraction coarse graph partitioningandprojection and problem is formulated as minimizinGreparitior IT, IT, &) =
improvement In the contraction phase a series of graphs Ccut(ﬁ) + aCmigrate(H,ﬁ) wherell is the current unbal-

of decreasing size(zo, Gy, ..., Gy, is constructed, typ-  anced partitioni] is the desired balanced partition, and pa-
ically by contracting edges between disjoint vertices. AS rameter is used to penalize partitions that would only pro-
each new graph(s; 1, is constructed from its predeces- yjge a marginal improvement ifioy(I1) but require signif-

sor i, its edges and vertices inherit the weights of edges jcant movement of data between processors.

and vertices ofy;. In the second phasé, is partitioned

amongp processors. In the third phase fpr= _k Fo 2, the graph repartitioning problem in whielh = 0, graph
Gt |s.expand'ed _KGJ and a local search heur|§t|c, such repartitioning is also NP-hard and heuristics are needed
as Kernighan-Lin, is used to improve the allocation of ver- for it. A natural one to use is the Kernighan-Lin algo-

tices to processors. rithm with a gain function that reflects changes in the cost

_ Unfortunately, many of the best serial graph partition- .. 7i 11 «) defined above. This idea is the basis for
ing heuristics do not easily accommodate parallel imple- the heuristic introduced in Section 9.

mentation. While Barnard and Simon [18] present a par-
allel implementation of their spectral algorithm, this ap-
proach shows poor scalability. The Kernighan-Lin heuristic 5. Parallel Nested Repartitioning (PNR)
used in the projection phase of many multilevel schemes
is P-complete [19] and does not parallelize well. Some
approaches [19, 20] overcome this problem by moving or
swapping clusters of vertices rather than individual vertices.
Nevertheless, this parallel process is communication inten-
sive, it is difficult to obtain good performance and it is not
efficient on relatively small graphs.

Geometric graph partitioning methods [21] rely on co-
ordinate information, which in the case of finite element
meshes, it is usually readily available. Geometric heuris-
tics are scalable but it is shown in [22] that they produce
worse partitions than spectral methods.

Since the graph partitioning problem is a special case of

PARED uses a procedure for repartitioning adapted
meshes that was originally outlined in [1, 13]. An initial
coarse mest (D, V) is refined where needed to obtain a
refined mesh/* at time¢. As M® is constructed, BRED
builds a refinement history treg for each coarse element
Q. in M° whose leaves are corresponds to elemenfd f
PARED constructs a dual graghi of A that has one vertex
w, for each elemenf), in M° and an edge between two
vertices if the corresponding elements have a common edge
in 2D or a common face in 3D. The weight of a vertex
in GG is the number of leaves in,. The weight of an edge
(wq,ws) in G is the number of leaves of, andr, that are
4. The Repartitioning Problem adjacent. Rather than computing directly atjpiam of M,

PARED invokes PNR that first computes a partitiond

Traditional parallel FEM systems partition the mesh in UsingG.

a preprocessing step. The mesh is then mapped to proces- After the current mest/* is refined to producas‘++,

sors and the simulation starts. This static approach to mesreach processor notifies the coordinating processoof the
partitioning is not sufficient for methods that dynamically changes in vertex and edge weightgifwhich is then par-
modify the mesh as is the case in adaptive schemes. titioned. RRED then moves elements il ‘! to poten-

The mesh repartitioning problem [5, 6, 7, 23, 24] is not tially new processors by moving refinement history trees.
as widely studied as the standard graph partitioning prob-This algorithm is sketched in Figure 2. It has an initial
lem. In addition to the traditional goals of balanced parti- phase, PO, and three active phases, P1, P2, and P3. In PO
tions and minimum edge cut, the repartitioning of a graph a mesh is refined; in P1 processors compute new edge and
must satisfy a new set of requirements that arise from itsvertex weights forv; in P2 these weights are transmitted
dynamic nature, namely, it must frequently rebalance theto the coordinating processdfc; in P3G is repartitioned
load between processors. Therefore, the graph repartitionand processors are notified of the new assignments of re-
ing must have a low cost relative to the solution time and it finement history trees.
must be performed in parallel; it is inefficient to move the Many of the heuristics designed for graph partitioning
complete mesh to one processor to repartition it. Finally, can also be used to repartition the updated graphun-
the algorithm should consider the current assignment of thefortunately, when these heuristics are applied to slightly
mesh so it does not result in unnecessary migration of datadifferent problems they can generate very different results.
between processors. For example, standard graph partitioning algorithms such as

The standard graph partitioning problem minimizes the Multilevel-KL or RSB usually compute a new distribution
cut size while maintaining balance whereas the repartition- of the adapted mesh that is very different from the current
ing problem maintains balance while keeping both the cut one and require a large movement of elements and vertices



between processors. In Section 7 we discuss the sensitivity
of heuristics to the repartition @f. J

6. Quality of the Partitions Obtained from
PNR

Because there are many more ways totipan the

adapted mesh/* than to partitionM®, a good partition Figure 1. Irregular two- and three-dimensional

of & does not necessarily imply a good partitionidf. In regular meshes adaptively refined to solve
this section to test the effectiveness of PNR we compare the | gplace’s equation of a problem that exhibits
partitions provided by PNR with those produced by Chaco’s  high physical activity in one of its corners.
Multilevel-KL [17] on adaptively refined two- and three- di-
mensional meshes and show that the resulting partitions are
of similar quality.

Our test problem involved computing a solution to is possible to produce frofi* a partitionTI® of M*(D, V')
Laplace’s equatiosu = 0 defined inQ? = (-1, 1)? with with cut size at modiC' that respects the boundaries of el-

the Dirichlet boundary conditions ements inM°(D, V) and for which each processor has at
most(|G|/p) (1 + €) + (p — 1)d* mesh elements.

g(z,y) = cog2n(z — y)) sinh(2r(x +y +2)) This result is established by exhibiting an algorithm that
sinh(8r) moves the boundaries of a partitionf so that it respects
the boundaries a#/°. When a boundary between two pro-
cessors passes through a coarse mesh elemeht’ pfve
move it to the shorter periphery of the element (this causes
a fixed expansion in the cut size) unless this will cause this
The initial two- and three-dimensional meshes for this NUmber of elements to exceed?, the number of elements

problems had 12,498 triangles and 9,540 tetrahedra, eacli© @ coarse element is refined byi-devel refinement. In

of about the same size @ach case. The mesh was adapted this case, the longer periphery is taken. We bound the num-
using theL., norm creating a large number of elements ber of elements that are displaced from one processor to an-
in the region of rapid change in the solution, as shown in other before the number exceezif® and use this to bound

Figure 1. Eight levels of refinement were needed in the 2D the expansion in the size of the cut when the longer periph-
case and five in the 3D case to reduce the erroftd. The €Y IS taken.

number of elements increased from 12,498 to 135,371 in

the 2D case and from 9,540 to 70,185 in the 3D case. After7. The High Migration Cost of Standard
each refinement, a new piaailon of the adapted.mesh was Heuristics

computed using both Multilevel-KL and PNR with= 0.1.
Shown in Figure 3 are the results of these comparisons for
some of the levels of refinements. Clearly, PNR provides
very high quality partitions.

The analytical solution of this problem is known to be
u(z,y) = g¢(x,y). This solution is smooth but changes
rapidly close to the corner (1,1). A similar problem has
been defined in three dimensions.

RSB and Multilevel-KL are very effective methods for
partitioning unstructured meshes. Nevertheless, when ap-
plied to the repartitioning of adapted meshes, the resulting
partitions require a large movement of data between proces-

sors, an amount that is usually proportional to the size of the

mesh, as determined through experiments. Figure 4 shows

the results of repartitioning a series of 2D meshes using the
RSB algorithm. (Similar results are obtained for 3D meshes

alre V\./t':]hm a:tehmall constan; factor I(I)f ghdet'besthparntlo_m?r? and Multilevel-KL.) The meshes are those generated by the
algoritm at the expense of a smafl additive change 1n eLaplace problem described in Section 6.

balance of mesh elements between processors. The 3D case .
P After a new meshM*! was generated from a previous

's unresolved. The resultis stated below. mesh meshi/‘~1, it was partitioned between 4 to 64 pro-
Theorem 6.1 Let the partitionII! of the refined mesh Cessors using RSB. The cut size before and after the par-
Mt(D, V) have cut siz& and assign at mogtG|/p) (1+  tition, denoted e, (II"~*) and Cey(I1'), are shown in Ta-

¢) elements to any processor. Under the assumption thatble 4. Also shown i€ migratdIT', 1), the amount of work
each coarse mesh element is refined uniformly to dépth ~ that needs to be migrated, afi@igrate(I1*, IT*), wherelI’ is

6.1. Competitive Analysis of PNR

We have shown analytically that PNR can provide 2D
mesh partitions that are competitive, that is, whose cut size



PO. M°(D°, V?)is the initial mesh and/* (D, V) is the mesh after adaptations.
R cD andC C D are the regions refined and coarsened at time L
P1. In parallel, computElemWeight2,) andEdgeWeight2,, %) for @, € RU C andQ, € D.
P2. Each processor sends its new weight84o R
P3. Pc updates the grapfi and computes a partitidi® = {7}, ...,7,}.
for each processaf; do
for each vertexv, € 7;~" andw, € 7} buti # j do
P directsF; to move elemenfl, and its refinement tree, to P;.
P; executes the move.
end for
end for

Figure 2. Outline of the Parallel Nested Repartitioning Algorithm.

the partition obtained from RSB antf is a permutationof ~ For example, if processors in the graph form a two-

IT* that minimizes the movement of elements [5]. As can be dimensional /p x ,/p mesh andP, is located in one of its
seen, in the best case, almost half the elements in the refinedorners, the total migration cost required to rebalance the
mesh need to be migrated. mesh after creating: new elements i®; is

8. Bounding the Migration Cost Comgrard 11, T1%) < 2( /5 — 1)(p — 1)% <oypm.
In the previous section we have shown that standard
graph partitioning algorithms, when applied to the reparti-
tioning problem, often require significant movement of data
between processors which creates serious contention for a
interprocessor network. In this section we derive a lower
estimate on the migration cost under certain reasonable as-
sumptions. In the next section we present a new repartition-9. Minimizing the Migration Cost
ing heuristic. The migration cost for this heuristic is close

to the lower bound derived in this section. In this section we introduce a new heuristic that we have
Assume thall’~! is a balanced distribution of a mesh  yeyeloped to repartition the weighted gra@tocated in the
betweery processors and thai new elements are created oo rdinator. It greatly reduces the number of mesh elements
in the refinement phase in only one processor, Bayre-  that need to move in order to repartition a good unbalanced
sulting in an unbalanced partitidid‘. Also assume that partition.
balance can be obtained py restricting the migration of el-  Tne critical step in PNR is the selection of the graph
ements to be between adjacent processors.Hebe the 4 itioning algorithm to partition and repartition the dual
processor connectivity graph at timesing the current dis-  yeighted graplt: in the coordinator. RRED can use a va-
tributionTI*. H* has one vertex for every processor and an yjety of algorithms to partition?, including Chaco’s imple-
undirected edge between two processors that haeeef  mentation of RSB and Multilevel-KL. Although traditional

elements. To obtain a balanced distributiéhprocessor a0 partitioners generate partitions with small cuts, they
P, must sendn/p elements to every other processey, do not consider migration cost.

buF only along the'edges d1'. This procedure effectively . In PNR we use a standard multilevel algorithm for the
shifts the boundaries of the mesh and reduces the prObab'lTnitiaI partition of (. On subsequent repartitions we use a

ity of creating disconnected subsets in each processor. v jtilevel-KL heuristic of the type described in Section 3.1

Under these assumptions, the total migration cost
Chigratel IT°, IT*) only depends on the number of processors
R and the number of new elementsand is independent of
the mesh size.

, Lett the minimum distance between processorand p; that is modified in two ways: a) we do not partition the
in H' bed, ;. The movement ofn/p elements from?, t? coarsest grapli, that results from the graph contraction
P; has a migration cost af,,; (m/p) if only edges oftf phase, and b) we use a form of KL that is designed to mini-

are used, giving the following total migration cost: mize the migration while keeping the cut small and the pro-

cessors balanced.
N m The KL heuristic is based on a gain function that is as-
CrmigrateTT*, 1) = Z do,j <—> . sociated with vertices af. The typical multiprocessor ver-
j#o P sion of the KL heuristic, which is designed to minimize the



2D Mesh
Multilevel-KL PNR

Level 4 8 16 32 64 | 128 4 8 16 32 64 128

O 179 | 333 | 525 | 792 | 1141 | 1614 || 157 | 297 | 465 | 739 | 1043 | 1523

1] 202 | 335| 534 | 801 | 1167 | 1702 | 197 | 343 | 521 | 773 | 1164 | 1633

2| 263 | 445 | 674 | 1023 | 1500 | 2118| 245 | 437 | 675| 996 | 1458 | 2076

3| 270 | 473 | 775| 1194 | 1748 | 2456 | 305 | 471 | 745 | 1120 | 1609 | 2316

4 || 350 | 571 | 895 | 1400 | 2080 | 2906 || 363 | 571 | 932 | 1352 | 1995 | 2809

51| 388 | 642 | 1061 | 1595 | 2324 | 3341 | 350 | 624 | 980 | 1495 | 2179 | 3134

6 || 448 | 749 | 1202 | 1829 | 2706 | 3945 | 444 | 733 | 1175 | 1775 | 2620 | 3699

7 || 493 | 830 | 1357 | 2111 | 3112 | 4503 || 563 | 808 | 1351 | 2048 | 2971 | 4315

8 || 554 | 950 | 1547 | 2337 | 3544 | 5151 || 539 | 994 | 1557 | 2360 | 3595 | 5152

3D Mesh
Multilevel-KL PNR

Level 4 8 16 32 64 | 128 4 8 16 32 64 128
0 334 | 489 | 674 | 935 | 1174 | 1437 372 | 536| 737 | 931 | 1193 | 1458
1 321 | 478 | 729 | 975 | 1230 | 1495 382 | 517 | 682| 979 | 1226 | 1483
2 366 | 559 | 785| 1046 | 1350 | 1667 364 | 572 | 819 | 1088 | 1406 | 1695
3 398 | 681 | 979 | 1349 1717 | 2120 406 | 698 | 975 1302 | 1716 | 2038
4 631 | 1020 | 1453 | 1893 | 2441 | 3024 618 | 999 | 1481 | 1935| 2410 | 2761
51 1243 | 1742 | 2561 | 3380 | 4374 | 5446 || 1377 | 1895 | 2551 | 3374 | 4306 | 5225

Figure 3. Comparison of the quality of the partitions produced by Multilevel-KL and PNR. The tables
show the number of shared vertices obtained by partitioning a sequence of locally adapted meshes
with Multilevel-KL and PNR into 4 to 128 subsets.

cut size while balancing processors, uses a gain functionupdate the entries in the table corresponding taeetjt ver-

that measures the change in the cut size and moves verticetices. The moved vertex is marked so itis not inserted in the

from sets that have too many of them to sets that have tootable again. This process iterates through the heads of the

few. The latter insures that balance is maintained. P? priority queues. The removing of the maximum gain
Our variant of the KL heuristic addresses all three mea- from a priority queue and neighbor update time is bounded

sures, balance, cut size, and migration cost by attaching @y O(log(n)), wheren is the number of boundary elements

gain function to vertices that reflects changes in the mea-in a subdomairr;. A vertex move between; andx; mod-

sureCrepariion(I*, 11, v, 3) defined below where, 3 > 0 ifies the differenceveigh{r;) — weigh{r;). Rebuilding
are constants that reflect the cost of migration and balancethese priority queues requiré¥(n) steps. Fortunately;,
relative to the cost of cut size. the number of vertices i, is small.

We performed the tests described in Section 7 using our
Loy ~ . new PNR algorithm to partition and repartition the coarse
Crepartition(II", II", @, 3) = Cout(I1") + aChigrard I1°, I1°) mesh. These results are shown in Figure 5 for the same two-

+ ﬁCba|ance(ﬁt)- (1) and three-dimensional mesh In these tests we used).1
andjs = 0.8, obtaining balanced partitions with< 0.01.
Here The quality of the partitions measured by the number of
~ P wei h(ﬁt) 9 shf';\red ver.tic.es generated by PNR and RSB (shown in Table
Chatancd 1) = 3 <Weigh(%§) _ 97> 4)is very similar. On the other hand, the total migration cost
p Chigrate(I1%, IT') is much smaller than those measured pre-
viously and does not significantly increase with mesh size.

7

where7;' is theith subset in the partitioﬁt.

As in Multilevel-KL, we maintain a square table with an .
entry for each pair of subsets consisting of priority queues 10. A Transient Problem
based on gains. That is, the possible movements between a
pair of subsets is sorted by potential gain. To implementthe In the previous section we have shown that on locally
local heuristic, we select the vertex movement with largest adapted meshes PNR produces partitions with a cut size
gain from this table, move the vertex between subsets andsimilar to the ones produces by standard graph partitioning



M (before ref) MY (after ref)

Proc || Elem | Con(II*™") || Elem | Ceu(Il) || Chigrate(TI", II*) | Chnigrae(I1*, 1Y)
4 5094 99 5269 95 2627 2627
8 168 159 3341 831
16 273 274 4458 1551

32 421 421 5046 2270
64 615 629 5129 2354
4 11110 137 11411 152 9192 2010
8 249 250 9696 3383
16 405 410 10444 4747
32 633 647 11061 5684
64 926 960 11230 5284
4 23749 311 23902 291 16477 14519
8 488 480 19182 13117
16 700 670 22620 11104
32 1000 980 23441 11374
64 1463 1425 23530 11711
4 49915 331 50072 410 35601 23152
8 569 680 49190 18507
16 920 977 49264 22147
32 1408 1431 49776 21972
64 2067 2159 50050 23639
4 || 103585 788 || 103786 863 38433 38433
8 1121 1193 77099 43272
16 1690 1728 93892 51125
32 2380 2403 99397 50264
64 3297 3310 102277 50278

Figure 4. Migration cost resulting from repartitioning a series of two-dimensional unstructured
meshes of increasing size using the RSB algorithm. M*~!is the mesh before refinement and dis-
tributed according a balanced partition II'~! obtained from RSB. M" is the refined mesh. II' is a
new balanced partition of ¢ also produced by the RSB algorithm and 11 is a permutation of II¢ that
minimizes data movement.

methods but requires a much smaller data movement. Inthis
section we use our method to follow a disturbance across
a domain. We show that the repeated use of our heuris-
tic maintains the quality of the partitions while retaining its
small migration cost.

To study these issues we solve Poisson’s equation-

/ over the domain??* = (—1,1)? where the solution
u(z, y, t) is the known function (a) (b)
(s y,t) = 1 Figure 6. (a) and (b) show the adapted mesh
Y 14 100(x + ¢)2 + 100(y + ¢)? att=—-0.5and ¢t = 0.5.

and compare the partitions produced by RSB and PNR. We
solved this problem for 100 time steps in whitlvaries R
from —0.5 to 0.5. This function is smooth with a peak of 1  partitionII’ using RSB and PNR.

at the coordinates = y = —¢ and zero almost everywhere Figure 7 shows the number of shared vertices of each
else. Thus, as varies from—0.5 to 0.5, the peak moves partition of II* obtained by RSB and PNR for 4, 8, 16 and
along a diagonal from0.5, 0.5) to (—0.5, —0.5). 32 processors. In PNR we used the parametets0.1 and

The initial and final adapted meshes are shown in Fig- 3 = 0.8 in Equation 1. The resulting partitions have less
ure Ga) and(b). In each of the 100 time steps, after the than 0.01 imbalance between subsets. Even though PNR
solution and adaptation of the mesh, we also compute a newis a local heuristic, in these examples the cut size of the



M (before ref) MY (after ref)

Proc Elem Ocut(Ht_l) Elem Ocut(Ht) Omigrate(Ht7 ﬁt) Omigrate(Ht7 ﬁt)
4 5094 89 5269 91 132 132
8 154 162 280 280
16 261 290 430 430

32 394 442 483 483
64 591 642 681 681
4 11110 151 11411 151 226 226
8 260 262 489 489
16 400 415 773 773
32 601 659 967 967
64 866 935 1146 1146
4 23749 197 23902 199 115 115
8 347 352 245 245
16 564 578 332 332
32 883 932 415 415
64 1302 1351 512 512
4 49915 291 50072 289 156 156
8 547 549 251 251
16 885 899 373 373
32 1346 1368 531 531
64 1995 2038 581 581
4 || 103585 426 || 103786 429 151 151
8 802 789 321 321
16 1314 1319 469 469
32 1970 1971 623 623
64 2982 3042 731 731

Figure 5. Migration cost resulting from repartitioning a series of two-dimensional unstructured
meshes of increasing size using the PNR algorithm. M*~!is the mesh before refinement and dis-
tributed according a balanced partition II'~! obtained from PNR. M" is the refined mesh. II' is a
new balanced partition of ¢ also produced by the PNR algorithm and 11 is a permutation of II¢ that
minimizes data movement.

partitions that it produces does not deteriorate over time andpeaks with more tham0% data movement between itera-
is similar to the ones produced by a very successful graphtions. The total data movement produced by PNR over all
partitioning method, RSB. iterations was betweer2% and27% of the total number of

Figure 8 shows the number of elements migrated by the €/éments moved by the permuted RSB heuristic.
three methods, a) RSB, b) RSB after computing a permuta-
tion IT* of IT* that reduces migration, as explained in Sec- 11. Conclusion
tion 7, and c) PNR. RSB usually migrates betwed
and100% of the total number of elements between reparti- | this paper we introduce PNR, a new graph partitioning
tions. Although not reported here, the results for Multilevel- algorithm that provides balanced multi-processor partitions
KL are similar. The total movement significantly decreases \yith small cut size of two- and three-dimensional meshes.
with the permutatiofiI’ of the subsets to processors but we \yie show that PNR moves very small numbers of mesh el-
still observe peaks of more tha6% of the total elements  gments when used to repartition meshes even when only a
and an average moyementib]f% for 32 processors. This  few elements have been refined or coarsened. This feature
method is characterized by sharp peaks, where some repafs jmportant when meshes are frequently adapted to follow
titions resulted in small migrations while others require a gjsturbances in the solution of computational science prob-
significant movement of data. lems using the FEM.

The total migration cost resulting from PNR is small We have shown that PNR provides balanced partitions
compared with the other methods (on the average it is be-with small cut size through experiments in which the parti-
tween1.2% of the elements for 4 processors a@nd% for tions it produces are compared with those produced by some
32 processors) and is smooth. PNR resulted in only two of the best partitioning algorithms. For the 2D problem we
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Figure 7. Quality of the partitions measured by the number of shared vertices produced by RSB and

PNR for 4, 8, 16 and 32 processors for each of the 100 time steps between

t=—-0.5tot=0.5.

have also shown through competitive analysis that partitions [3] B. Hendrickson and R. Leland. A multilevel algorithm for

produced by PNR can have a cut size that is at worst a small
multiple of that produced by the best partitioning algorithms

on the finest FEM graph.

We have studied the amount of data that is moved by
PNR and shown through experiment that itis comparable to
the amount predicted by analysis. We have also conducted

an experiment using PNR in the systemrRD to track a

disturbance that moves in space over a time. We show that
the number of mesh elements that are moved by PNR during

[4]

[5]

this computation is very small yet we obtain cut sizes com- [6]

parable to those produced by Recursive Spectral Bisection

and Multilevel-KL, two standards for graph partitioning.
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