
Repartitioning Unstructured Adaptive Meshes

José G. Casta˜nos
Department of Computer Science

Brown University
jgc@cs.brown.edu

John E. Savage
Department of Computer Science

Brown University
jes@cs.brown.edu

Abstract

We present a new parallel repartitioning algorithm for
adaptive finite-element meshes that significantly reduces the
amount of data that needs to move between processors in or-
der to rebalance a workload after mesh adaptation (refine-
ment or coarsening). These results derive their importance
from the fact that the time to migrate data can be a large
fraction of the total time for the parallel adaptive solution
of partial differential equations.

1. Introduction

Adaptive computation offers the potential to provide
large storage and computational savings on problems with
dissimilar scales by focusing the available computational
resources on the regions where the solution changes rapidly.
In transient problems, the regions of interest can appear or
vanish, and modify their size, shape or location, as occurs
in the study of turbulence in fluid flows. In some static as
well as transient problems, efficiency requires adaptation of
the mesh so that regions of high gradients are not under-
resolved while maintaining a coarser mesh everywhere else.

The local adaptation of a mesh produces imbalances in
the work assigned to processors. Because of the irregu-
lar load requirements of parallel adaptive computation, a
mesh must be dynamically repartitioned and migrated be-
tween processors at runtime. Thus, adaptive finite element
methods provide an excellent context for the study of dy-
namic load balancing schemes on distributed-memory par-
allel computers.

In this paper we introduceParallel Nested Repartition-
ing, a new partitioning algorithm sketched in [1], that has
its roots in multilevel partitioning algorithms [2, 3]. Our
method quickly produces low cost, high quality partitions
that minimize the amount of data that needs to be moved to
rebalance a workload while keeping the cut size small. It
has a very natural parallel implementation that allows us to
repartition adapted meshes of arbitrary size.

PNR is implemented in PARED [4], a system for the
parallel adaptive solution of PDEs described in Section 2.
Starting with a coarse initial mesh, PARED locally adapts
the mesh until an error criterion is met. Attached to each
coarse element of the initial mesh is a refinement history
tree whose leaves are the most refined elements into which
the coarse element has been refined.

PARED partitions the mesh by elements. A partition is
obtained by PNR from the weighted dual graphG of the
coarse mesh. AlthoughG has much less information than is
available in the adapted meshM , we demonstrate through
experiment and analysis that partitioningM usingG gives
balanced partitions with cut sizes comparable to those pro-
vided by standard partitioning algorithms [2, 3]. Unfortu-
nately, as we show, small changes inM can produce very
different partitions ofM and the migration of a large num-
ber of elements using either our initial version of PNR [1]
or standard partitioning algorithms. Thismesh migration
problemhas also been addressed by others [5, 6, 7]. Biswas
and Oliker [5] permutes the subsets produced by a standard
algorithm to minimize data movement. We show that this
heuristic can still require that half the elements be migrated.
Walshawet al [6] and Schloegel, Karypis and Kumar [7]
determine the number of elements that must move between
processors to rebalance them using a technique of Hu and
Blake [8] and then try to keep the cut size small by migrat-
ing elements on the boundaries between processors. Their
heuristics require several iterations in which the same re-
gions of the mesh are repeatedly migrated.

We show the power of PNR through an experiment with
PARED in which we track a disturbance through space over
time. We show that PNR migrates a very small number of
elements while maintaining a partition quality comparable
to that produced by RSB [2] and multilevel methods [18, 3].

2. An Overview of PARED

PARED supports the local adaptation of unstructured
two- and three-dimensional meshes, and the dynamic repar-
titioning and load balancing of the work. Our design sup-

ports a dynamically changing environment where elements,
vertices, and associated equations and unknowns migrate
between processors. References to remote elements and
vertices are updated as new elements or vertices are cre-
ated, deleted or moved to a new processor. PARED runs on
distributed memory computers such as the IBM SP and net-
works of workstations (NOW) in which processing nodes
communicate by exchanging messages using MPI [9].

To support the dynamic adaptation of meshes we de-
signed a hierarchical data structure of nested meshes.
We assume that the user supplies an initial coarse mesh
M0(D0; V 0) called the 0-level mesh, whereD0 =
f
1; : : : ;
ng is the set of simple shapes orelementsthat
approximate a domain
 andV 0 = fV1; : : : ; Vmg is the
set of vertices associated with these elements. This mesh
is loaded into a distinguished processor called thecoordi-
nator PC . This processor computes an initial partition of
the mesh using the algorithms explained in Section 5.PC
then distributes the mesh between the processors where the
numerical simulation starts in parallel.

The adaptation procedure constructs a family of nested
meshesM0;M1; : : : ;M t. Let M t(Dt; V t) be the mesh
at time stept whereDt = f
1; : : : ;
ng is a set of ele-
ments that approximate the domain
 of interest andV t =
fV1; : : : ; Vmg is the set of vertices in the mesh. Every ele-
ment inDt at time stept is an unrefined element.

In PARED, when an element is refined, it does not get
destroyed. Instead, the refined element inserts itself into a
tree. The refined mesh forms a forest of refinement trees,
one per initial mesh element. Thus, for every element
a in
the initial mesh PARED maintains a refinement history tree
�a where every element except aleaf element is thepar-
ent of two or more elements. The leaf elements of these
trees form the most refined meshM t on which the numer-
ical simulation is based at timet. These trees are used in
many of our algorithms. For example, in PARED a mesh
is coarsened in PARED by replacing all the children of a
refined element by their parent. Thus,M0 is the coarsest
mesh that our system can manipulate. Our repartitioning
algorithm also takes advantage of these trees; when an el-
ement is migrated to another processor all its descendants
are migrated as well.

PARED uses a parallel and localh-refinement algorithm
based on Rivara’s longest edge bisection of triangular [10]
and tetrahedral [11] unstructured meshes to adapt a mesh.
This is a recursive procedure that in two dimensions splits
each triangle
a from a selected set of trianglesR by adding
an edge between the midpoint of its longest side and the op-
posite vertex [10]. The refinement propagates to adjacent
triangles to maintain the conformality of the mesh. In three
dimensions, a tetrahedron is bisected by inserting a trian-
gle between the midpoint of its longest edge and the two
vertices not included in that edge [11]. The details of our

parallel adaptation algorithm are discussed in [4, 12]. We
show that our refinement algorithm propagates refinement
across processor boundaries and generates the same refined
meshes as would the purely serial bisection algorithm [12].

After the adaptation phase, PARED determines if a user-
supplied workload imbalance exists due to increases and de-
creases in the number of mesh elements on individual pro-
cessors. If so, it invokes the procedure described in Sec-
tion 3 to decide how to repartition mesh elements between
processors. These elements and the corresponding vertices
are migrated between the processors according to the pro-
cedure explained in [1, 13]. PARED is then ready to resume
another round of equation solving, error estimation, mesh
adaptation, mesh repartitioning, and work migration.

3. Partitioning Finite Element Meshes

In PARED each element is assigned to a unique processor
and mesh vertices are shared if they are adjacent to elements
assigned to different processors. This results in the partition
� = f�1; : : : ; �pg of the meshby elements, where�i is the
set of elements assigned to processorPi. Communication is
then performed across the edges (in two-dimensional prob-
lems) or faces (in three-dimensional problems) that separate
two elements of the mesh.

A partition� of a meshM (D;V) by elements is ob-
tained from the dual graphG of the mesh. On a mesh par-
titioned by elements, the communication cost is a function
of the cut size,Ccut(�(G)) and, on machines with a high
latency network, on the number of adjacent subdomains.
Because there is a one-to-one relation between a partition
�(M) of the elements of a meshM and a partition of the
vertices�(G) of its dual graphG, we do not make a dis-
tinction between�(M) and�(G).

3.1. Review of Graph Partitioning Methods

The problem of partitioning a graph intop subgraphs of
approximately equal size while minimizing the number of
edges joining vertices in different subgraphs is known as
thep-way graph partitioning problem. This problem is NP-
hard even in the simple case of bisecting a graph between
two processors [14]. As a result, many heuristics have been
proposed for it.

One of the most successful heuristics for partitioning
unstructured FEM meshes is Recursive Spectral Bisection
(RSB) [15]. Local heuristics, such as the Kernighan-Lin al-
gorithm (KL) [16], complement spectral methods by further
improving the quality of a partition.

RSB produces high quality partitions but, because of its
high cost, it is usually restricted to relatively small graphs.
For large graphs, multilevel methods such as Multilevel-KL
[17] provide a better tradeoff between partition quality and

speed. Multilevel methods consist of three phases:graph
contraction, coarse graph partitioning, andprojection and
improvement. In the contraction phase a series of graphs
of decreasing size,G0, G1, : : : , Gk, is constructed, typ-
ically by contracting edges between disjoint vertices. As
each new graph,Gj+1, is constructed from its predeces-
sorGj, its edges and vertices inherit the weights of edges
and vertices ofGj. In the second phase,Gk is partitioned
amongp processors. In the third phase forj = k to 2,
Gj+1 is expanded toGj and a local search heuristic, such
as Kernighan-Lin, is used to improve the allocation of ver-
tices to processors.

Unfortunately, many of the best serial graph partition-
ing heuristics do not easily accommodate parallel imple-
mentation. While Barnard and Simon [18] present a par-
allel implementation of their spectral algorithm, this ap-
proach shows poor scalability. The Kernighan-Lin heuristic
used in the projection phase of many multilevel schemes
is P-complete [19] and does not parallelize well. Some
approaches [19, 20] overcome this problem by moving or
swapping clusters of vertices rather than individual vertices.
Nevertheless, this parallel process is communication inten-
sive, it is difficult to obtain good performance and it is not
efficient on relatively small graphs.

Geometric graph partitioning methods [21] rely on co-
ordinate information, which in the case of finite element
meshes, it is usually readily available. Geometric heuris-
tics are scalable but it is shown in [22] that they produce
worse partitions than spectral methods.

4. The Repartitioning Problem

Traditional parallel FEM systems partition the mesh in
a preprocessing step. The mesh is then mapped to proces-
sors and the simulation starts. This static approach to mesh
partitioning is not sufficient for methods that dynamically
modify the mesh as is the case in adaptive schemes.

The mesh repartitioning problem [5, 6, 7, 23, 24] is not
as widely studied as the standard graph partitioning prob-
lem. In addition to the traditional goals of balanced parti-
tions and minimum edge cut, the repartitioning of a graph
must satisfy a new set of requirements that arise from its
dynamic nature, namely, it must frequently rebalance the
load between processors. Therefore, the graph repartition-
ing must have a low cost relative to the solution time and it
must be performed in parallel; it is inefficient to move the
complete mesh to one processor to repartition it. Finally,
the algorithm should consider the current assignment of the
mesh so it does not result in unnecessary migration of data
between processors.

The standard graph partitioning problem minimizes the
cut size while maintaining balance whereas the repartition-
ing problem maintains balance while keeping both the cut

size and the number of elements migrated small. The latter
problem is formulated as minimizingCrepartition(b�;�; �) =
Ccut(b�) + �Cmigrate(�; b�) where� is the current unbal-

anced partition,b� is the desired balanced partition, and pa-
rameter� is used to penalize partitions that would only pro-
vide a marginal improvement inCcut(b�) but require signif-
icant movement of data between processors.

Since the graph partitioning problem is a special case of
the graph repartitioning problem in which� = 0, graph
repartitioning is also NP-hard and heuristics are needed
for it. A natural one to use is the Kernighan-Lin algo-
rithm with a gain function that reflects changes in the cost
Crepartition(b�;�; �) defined above. This idea is the basis for
the heuristic introduced in Section 9.

5. Parallel Nested Repartitioning (PNR)

PARED uses a procedure for repartitioning adapted
meshes that was originally outlined in [1, 13]. An initial
coarse meshM0(D;V) is refined where needed to obtain a
refined meshM t at timet. As M t is constructed, PARED

builds a refinement history tree�a for each coarse element

a in M0 whose leaves are corresponds to elements ofM t.
PARED constructs a dual graphG ofM0 that has one vertex
wa for each element
a in M0 and an edge between two
vertices if the corresponding elements have a common edge
in 2D or a common face in 3D. The weight of a vertexwa

in G is the number of leaves in�a. The weight of an edge
(wa; wb) in G is the number of leaves of�a and�b that are
adjacent. Rather than computing directly a partition of M t,
PARED invokes PNR that first computes a partition ofM0

usingG.
After the current meshM t is refined to produceM t+1,

each processor notifies the coordinating processorPC of the
changes in vertex and edge weights ofG, which is then par-
titioned. PARED then moves elements inM t+1 to poten-
tially new processors by moving refinement history trees.
This algorithm is sketched in Figure 2. It has an initial
phase, P0, and three active phases, P1, P2, and P3. In P0
a mesh is refined; in P1 processors compute new edge and
vertex weights forG; in P2 these weights are transmitted
to the coordinating processor,PC; in P3G is repartitioned
and processors are notified of the new assignments of re-
finement history trees.

Many of the heuristics designed for graph partitioning
can also be used to repartition the updated graphG. Un-
fortunately, when these heuristics are applied to slightly
different problems they can generate very different results.
For example, standard graph partitioningalgorithms such as
Multilevel-KL or RSB usually compute a new distribution
of the adapted mesh that is very different from the current
one and require a large movement of elements and vertices

between processors. In Section 7 we discuss the sensitivity
of heuristics to the repartition ofG.

6. Quality of the Partitions Obtained from
PNR

Because there are many more ways to partition the
adapted meshM t than to partitionM0, a good partition
of G does not necessarily imply a good partition ofM t. In
this section to test the effectiveness of PNR we compare the
partitions provided by PNR with those produced by Chaco’s
Multilevel-KL [17] on adaptively refined two- and three- di-
mensional meshes and show that the resulting partitions are
of similar quality.

Our test problem involved computing a solution to
Laplace’s equation�u = 0 defined in
2 = (�1; 1)2 with
the Dirichlet boundary conditions

g(x; y) = cos(2�(x� y))
sinh(2�(x+ y + 2))

sinh(8�)
:

The analytical solution of this problem is known to be
u(x; y) = g(x; y). This solution is smooth but changes
rapidly close to the corner (1,1). A similar problem has
been defined in three dimensions.

The initial two- and three-dimensional meshes for this
problems had 12,498 triangles and 9,540 tetrahedra, each
of about the same size ineach case. The mesh was adapted
using theL1 norm creating a large number of elements
in the region of rapid change in the solution, as shown in
Figure 1. Eight levels of refinement were needed in the 2D
case and five in the 3D case to reduce the error to10�3. The
number of elements increased from 12,498 to 135,371 in
the 2D case and from 9,540 to 70,185 in the 3D case. After
each refinement, a new partition of the adapted mesh was
computed using both Multilevel-KL and PNR with� = 0:1.
Shown in Figure 3 are the results of these comparisons for
some of the levels of refinements. Clearly, PNR provides
very high quality partitions.

6.1. Competitive Analysis of PNR

We have shown analytically that PNR can provide 2D
mesh partitions that are competitive, that is, whose cut sizes
are within a small constant factor of the best partitioning
algorithm at the expense of a small additive change in the
balance of mesh elements between processors. The 3D case
is unresolved. The result is stated below.

Theorem 6.1 Let the partition�t of the refined mesh
M t(D;V) have cut sizeC and assign at most(jGj=p) (1+
�) elements to any processor. Under the assumption that
each coarse mesh element is refined uniformly to depthd, it

Figure 1. Irregular two- and three-dimensional
regular meshes adaptively refined to solve
Laplace’s equation of a problem that exhibits
high physical activity in one of its corners.

is possible to produce from�t a partition�0 ofM t(D;V)
with cut size at most9C that respects the boundaries of el-
ements inM0(D;V) and for which each processor has at
most(jGj=p) (1 + �) + (p� 1)d2 mesh elements.

This result is established by exhibiting an algorithm that
moves the boundaries of a partition ofM t so that it respects
the boundaries ofM0. When a boundary between two pro-
cessors passes through a coarse mesh element ofM0, we
move it to the shorter periphery of the element (this causes
a fixed expansion in the cut size) unless this will cause this
number of elements to exceed2d2, the number of elements
into a coarse element is refined by ad-level refinement. In
this case, the longer periphery is taken. We bound the num-
ber of elements that are displaced from one processor to an-
other before the number exceeds2d2 and use this to bound
the expansion in the size of the cut when the longer periph-
ery is taken.

7. The High Migration Cost of Standard
Heuristics

RSB and Multilevel-KL are very effective methods for
partitioning unstructured meshes. Nevertheless, when ap-
plied to the repartitioning of adapted meshes, the resulting
partitions require a large movement of data between proces-
sors, an amount that is usually proportional to the size of the
mesh, as determined through experiments. Figure 4 shows
the results of repartitioning a series of 2D meshes using the
RSB algorithm. (Similar results are obtained for 3D meshes
and Multilevel-KL.) The meshes are those generated by the
Laplace problem described in Section 6.

After a new meshM t was generated from a previous
mesh meshM t�1, it was partitioned between 4 to 64 pro-
cessors using RSB. The cut size before and after the par-
tition, denotedCcut(�t�1) andCcut(b�t), are shown in Ta-
ble 4. Also shown isCmigrate(�t; b�t), the amount of work
that needs to be migrated, andCmigrate(�t; e�t), whereb�t is

P0.M0(D0; V 0) is the initial mesh andM t(D;V) is the mesh aftert adaptations.eR � D and eC � D are the regions refined and coarsened at timet.
P1. In parallel, computeElemWeight(
a) andEdgeWeight(
a;
b) for
a 2 eR [eC and
b 2 D.
P2. Each processor sends its new weights toPC .
P3.PC updates the graphG and computes a partitionb�t = fb�t1; : : : ; b�tpg.
for each processorPi do

for each vertexwa 2 �t�1i andwa 2 b�tj but i 6= j do
PC directsPi to move element
a and its refinement tree�a toPj.
Pi executes the move.

end for
end for

Figure 2. Outline of the Parallel Nested Repartitioning Algorithm.

the partition obtained from RSB ande�t is a permutation ofb�t that minimizes the movement of elements [5]. As can be
seen, in the best case, almost half the elements in the refined
mesh need to be migrated.

8. Bounding the Migration Cost

In the previous section we have shown that standard
graph partitioning algorithms, when applied to the reparti-
tioning problem, often require significant movement of data
between processors which creates serious contention for an
interprocessor network. In this section we derive a lower
estimate on the migration cost under certain reasonable as-
sumptions. In the next section we present a new repartition-
ing heuristic. The migration cost for this heuristic is close
to the lower bound derived in this section.

Assume that�t�1 is a balanced distribution of a mesh
betweenp processors and thatm new elements are created
in the refinement phase in only one processor, sayPo, re-
sulting in an unbalanced partition�t. Also assume that
balance can be obtained by restricting the migration of el-
ements to be between adjacent processors. LetHt be the
processor connectivity graph at timet using the current dis-
tribution�t. Ht has one vertex for every processor and an
undirected edge between two processors that have adjacent
elements. To obtain a balanced distributionb�t processor
Po must sendm=p elements to every other processorPj,
but only along the edges ofHt. This procedure effectively
shifts the boundaries of the mesh and reduces the probabil-
ity of creating disconnected subsets in each processor.

Let the minimum distance between processorsPi andPj
in Ht bedi;j. The movement ofm=p elements fromPo to
Pj has a migration cost ofdo;j(m=p) if only edges ofHt

are used, giving the following total migration cost:

Cmigrate(�
t; b�t) =

X
j 6=o

do;j

�
m

p

�
:

For example, if processors in the graphHt form a two-
dimensional

p
p� p

p mesh andPo is located in one of its
corners, the total migration cost required to rebalance the
mesh after creatingm new elements inPi is

Cmigrate(�
t; b�t) � 2(

p
p � 1)(p� 1)

m

p
� 2

p
pm:

Under these assumptions, the total migration cost
Cmigrate(�t; b�t) only depends on the number of processors
p and the number of new elementsm and is independent of
the mesh size.

9. Minimizing the Migration Cost

In this section we introduce a new heuristic that we have
developed to repartition the weighted graphG located in the
coordinator. It greatly reduces the number of mesh elements
that need to move in order to repartition a good unbalanced
partition.

The critical step in PNR is the selection of the graph
partitioning algorithm to partition and repartition the dual
weighted graphG in the coordinator. PARED can use a va-
riety of algorithms to partitionG, including Chaco’s imple-
mentation of RSB and Multilevel-KL. Although traditional
graph partitioners generate partitions with small cuts, they
do not consider migration cost.

In PNR we use a standard multilevel algorithm for the
initial partition ofG. On subsequent repartitions we use a
Multilevel-KL heuristic of the type described in Section 3.1
that is modified in two ways: a) we do not partition the
coarsest graphGk that results from the graph contraction
phase, and b) we use a form of KL that is designed to mini-
mize the migration while keeping the cut small and the pro-
cessors balanced.

The KL heuristic is based on a gain function that is as-
sociated with vertices ofG. The typical multiprocessor ver-
sion of the KL heuristic, which is designed to minimize the

2D Mesh
Multilevel-KL PNR

Level 4 8 16 32 64 128 4 8 16 32 64 128
0 179 333 525 792 1141 1614 157 297 465 739 1043 1523
1 202 335 534 801 1167 1702 197 343 521 773 1164 1633
2 263 445 674 1023 1500 2118 245 437 675 996 1458 2076
3 270 473 775 1194 1748 2456 305 471 745 1120 1609 2316
4 350 571 895 1400 2080 2906 363 571 932 1352 1995 2809
5 388 642 1061 1595 2324 3341 350 624 980 1495 2179 3134
6 448 749 1202 1829 2706 3945 444 733 1175 1775 2620 3699
7 493 830 1357 2111 3112 4503 563 808 1351 2048 2971 4315
8 554 950 1547 2337 3544 5151 539 994 1557 2360 3595 5152

3D Mesh
Multilevel-KL PNR

Level 4 8 16 32 64 128 4 8 16 32 64 128
0 334 489 674 935 1174 1437 372 536 737 931 1193 1458
1 321 478 729 975 1230 1495 382 517 682 979 1226 1483
2 366 559 785 1046 1350 1667 364 572 819 1088 1406 1695
3 398 681 979 1349 1717 2120 406 698 975 1302 1716 2038
4 631 1020 1453 1893 2441 3024 618 999 1481 1935 2410 2761
5 1243 1742 2561 3380 4374 5446 1377 1895 2551 3374 4306 5225

Figure 3. Comparison of the quality of the partitions produced by Multilevel-KL and PNR. The tables
show the number of shared vertices obtained by partitioning a sequence of locally adapted meshes
with Multilevel-KL and PNR into 4 to 128 subsets.

cut size while balancing processors, uses a gain function
that measures the change in the cut size and moves vertices
from sets that have too many of them to sets that have too
few. The latter insures that balance is maintained.

Our variant of the KL heuristic addresses all three mea-
sures, balance, cut size, and migration cost by attaching a
gain function to vertices that reflects changes in the mea-
sureCrepartition(�t; b�t; �; �) defined below where�; � > 0
are constants that reflect the cost of migration and balance
relative to the cost of cut size.

Crepartition(�
t; b�t; �; �) = Ccut(b�t) + �Cmigrate(�

t; b�t)

+ �Cbalance(b�t): (1)

Here

Cbalance(b�t) =

pX
i

�
weight(b�ti) � weight(b�t)

p

�2

whereb�it is theith subset in the partitionb�t.
As in Multilevel-KL, we maintain a square table with an

entry for each pair of subsets consisting of priority queues
based on gains. That is, the possible movements between a
pair of subsets is sorted by potential gain. To implement the
local heuristic, we select the vertex movement with largest
gain from this table, move the vertex between subsets and

update the entries in the table corresponding to adjacent ver-
tices. The moved vertex is marked so it is not inserted in the
table again. This process iterates through the heads of the
P 2 priority queues. The removing of the maximum gain
from a priority queue and neighbor update time is bounded
byO(log(n)), wheren is the number of boundary elements
in a subdomain�i. A vertex move between�i and�j mod-
ifies the differenceweight(�i) � weight(�j). Rebuilding
these priority queues requiresO(n) steps. Fortunately,n,
the number of vertices inG, is small.

We performed the tests described in Section 7 using our
new PNR algorithm to partition and repartition the coarse
mesh. These results are shown in Figure 5 for the same two-
and three-dimensional mesh In these tests we used� = 0:1
and� = 0:8, obtaining balanced partitions with� < 0:01.
The quality of the partitions measured by the number of
shared vertices generated by PNR and RSB (shown in Table
4) is very similar. On the other hand, the total migration cost
Cmigrate(�

t; b�t) is much smaller than those measured pre-
viously and does not significantly increase with mesh size.

10. A Transient Problem

In the previous section we have shown that on locally
adapted meshes PNR produces partitions with a cut size
similar to the ones produces by standard graph partitioning

M t�1 (before ref) M t (after ref)
Proc Elem Ccut(�

t�1) Elem Ccut(b�
t) Cmigrate(�

t; b�t) Cmigrate(�
t; e�t)

4 5094 99 5269 95 2627 2627
8 168 159 3341 831

16 273 274 4458 1551
32 421 421 5046 2270
64 615 629 5129 2354
4 11110 137 11411 152 9192 2010
8 249 250 9696 3383

16 405 410 10444 4747
32 633 647 11061 5684
64 926 960 11230 5284
4 23749 311 23902 291 16477 14519
8 488 480 19182 13117

16 700 670 22620 11104
32 1000 980 23441 11374
64 1463 1425 23530 11711
4 49915 331 50072 410 35601 23152
8 569 680 49190 18507

16 920 977 49264 22147
32 1408 1431 49776 21972
64 2067 2159 50050 23639
4 103585 788 103786 863 38433 38433
8 1121 1193 77099 43272

16 1690 1728 93892 51125
32 2380 2403 99397 50264
64 3297 3310 102277 50278

Figure 4. Migration cost resulting from repartitioning a series of two-dimensional unstructured
meshes of increasing size using the RSB algorithm. M t�1 is the mesh before refinement and dis-
tributed according a balanced partition �t�1 obtained from RSB. M t is the refined mesh. b�t is a
new balanced partition of M t also produced by the RSB algorithm and e�t is a permutation of b�t that
minimizes data movement.

methods but requires a much smaller data movement. In this
section we use our method to follow a disturbance across
a domain. We show that the repeated use of our heuris-
tic maintains the quality of the partitions while retaining its
small migration cost.

To study these issues we solve Poisson’s equation�u =
f over the domain
2 = (�1; 1)2 where the solution
u(x; y; t) is the known function

u(x; y; t) =
1

1 + 100(x+ t)2 + 100(y + t)2

and compare the partitions produced by RSB and PNR. We
solved this problem for 100 time steps in whicht varies
from�0:5 to 0:5. This function is smooth with a peak of 1
at the coordinatesx = y = �t and zero almost everywhere
else. Thus, ast varies from�0:5 to 0:5, the peak moves
along a diagonal from(0:5; 0:5) to (�0:5;�0:5).

The initial and final adapted meshes are shown in Fig-
ure 6(a) and (b). In each of the 100 time steps, after the
solution and adaptation of the mesh, we also compute a new

(a) (b)

Figure 6. (a) and (b) show the adapted mesh
at t = �0:5 and t = 0:5.

partitionb�t using RSB and PNR.
Figure 7 shows the number of shared vertices of each

partition of b�t obtained by RSB and PNR for 4, 8, 16 and
32 processors. In PNR we used the parameters� = 0:1 and
� = 0:8 in Equation 1. The resulting partitions have less
than 0.01 imbalance between subsets. Even though PNR
is a local heuristic, in these examples the cut size of the

M t�1 (before ref) M t (after ref)
Proc Elem Ccut(�

t�1) Elem Ccut(b�
t) Cmigrate(�

t; b�t) Cmigrate(�
t; e�t)

4 5094 89 5269 91 132 132
8 154 162 280 280

16 261 290 430 430
32 394 442 483 483
64 591 642 681 681
4 11110 151 11411 151 226 226
8 260 262 489 489

16 400 415 773 773
32 601 659 967 967
64 866 935 1146 1146
4 23749 197 23902 199 115 115
8 347 352 245 245

16 564 578 332 332
32 883 932 415 415
64 1302 1351 512 512
4 49915 291 50072 289 156 156
8 547 549 251 251

16 885 899 373 373
32 1346 1368 531 531
64 1995 2038 581 581
4 103585 426 103786 429 151 151
8 802 789 321 321

16 1314 1319 469 469
32 1970 1971 623 623
64 2982 3042 731 731

Figure 5. Migration cost resulting from repartitioning a series of two-dimensional unstructured
meshes of increasing size using the PNR algorithm. M t�1 is the mesh before refinement and dis-
tributed according a balanced partition �t�1 obtained from PNR. M t is the refined mesh. b�t is a
new balanced partition of M t also produced by the PNR algorithm and e�t is a permutation of b�t that
minimizes data movement.

partitions that it produces does not deteriorate over time and
is similar to the ones produced by a very successful graph
partitioning method, RSB.

Figure 8 shows the number of elements migrated by the
three methods, a) RSB, b) RSB after computing a permuta-
tion e�t of b�t that reduces migration, as explained in Sec-
tion 7, and c) PNR. RSB usually migrates between50%
and100% of the total number of elements between reparti-
tions. Although not reported here, the results for Multilevel-
KL are similar. The total movement significantly decreases
with the permutatione�t of the subsets to processors but we
still observe peaks of more than46% of the total elements
and an average movement of21% for 32 processors. This
method is characterized by sharp peaks, where some repar-
titions resulted in small migrations while others require a
significant movement of data.

The total migration cost resulting from PNR is small
compared with the other methods (on the average it is be-
tween1:2% of the elements for 4 processors and5:5% for
32 processors) and is smooth. PNR resulted in only two

peaks with more than10% data movement between itera-
tions. The total data movement produced by PNR over all
iterations was between12% and27% of the total number of
elements moved by the permuted RSB heuristic.

11. Conclusion

In this paper we introduce PNR, a new graph partitioning
algorithm that provides balanced multi-processor partitions
with small cut size of two- and three-dimensional meshes.
We show that PNR moves very small numbers of mesh el-
ements when used to repartition meshes even when only a
few elements have been refined or coarsened. This feature
is important when meshes are frequently adapted to follow
disturbances in the solution of computational science prob-
lems using the FEM.

We have shown that PNR provides balanced partitions
with small cut size through experiments in which the parti-
tions it produces are compared with those produced by some
of the best partitioning algorithms. For the 2D problem we

0 9

1
7

2
6

3
4

4
3

5
1

6
0

6
9

7
7

8
6

9
4

0

100

200

300

400

500

600

Partition Quality (4 Proc.)

RSB PNR

Iteration step

N
u

m
b

e
r

o
f s

h
a

re
d

 v
e

rt
ic

e
s

0 9

1
7

2
6

3
4

4
3

5
1

6
0

6
9

7
7

8
6

9
4

0

250

500

750

1000

Partition Quality (8 Proc.)

RSB PNR

Iteration step

N
u

m
b

e
r

o
f s

h
a

re
d

 v
e

rt
ic

e
s

0 9

1
7

2
6

3
4

4
3

5
1

6
0

6
9

7
7

8
6

9
4

0

250

500

750

1000

1250

Partition Quality (16 Proc.)

RSB PNR

Iteration step

N
u

m
b

e
r

o
f s

h
a

re
d

 v
e

rt
ic

e
s

0 9

1
7

2
6

3
4

4
3

5
1

6
0

6
9

7
7

8
6

9
4

0

500

1000

1500

2000

Partition Quality (32 Proc.)

RSB PNR

Iteration step

N
u

m
b

e
r

o
f s

h
a

re
d

 v
e

rt
ic

e
s

Figure 7. Quality of the partitions measured by the number of shared vertices produced by RSB and
PNR for 4, 8, 16 and 32 processors for each of the 100 time steps between t = �0:5 to t = 0:5.

have also shown through competitive analysis that partitions
produced by PNR can have a cut size that is at worst a small
multipleof that produced by the best partitioningalgorithms
on the finest FEM graph.

We have studied the amount of data that is moved by
PNR and shown through experiment that it is comparable to
the amount predicted by analysis. We have also conducted
an experiment using PNR in the system PARED to track a
disturbance that moves in space over a time. We show that
the number of mesh elements that are moved by PNR during
this computation is very small yet we obtain cut sizes com-
parable to those produced by Recursive Spectral Bisection
and Multilevel-KL, two standards for graph partitioning.

References

[1] José G. Casta˜nos and John E. Savage. The dynamic adapta-
tion of parallel mesh-based computation. InSIAM 7th Sym-
posium on Parallel and Scientific Computation, 1997.

[2] S. T. Barnard and H. D. Simon. A fast multilevel implemen-
tation of recursive spectral bisection for partitioning unstruc-
tured problems. InProceedings of the 6th SIAM conference
on Parallel Processing for Scientific Computing, pages 711–
718, 1993.

[3] B. Hendrickson and R. Leland. A multilevel algorithm for
partitioning graphs. Technical Report SAND93-1301, San-
dia National Laboratories, 1993.

[4] José G. Casta˜nos and John E. Savage. PARED: a framework
for the adaptive solution of PDEs. InProceedings of the
Eighth IEEE International Symposium on High Performance
Distributed Computing, 1999.

[5] Rupak Biswas and Leonid Oliker. Load balancing unstruc-
tured adaptive grids for CFD. InSIAM 7th Symposium on
Parallel and Scientific Computation, 1997.

[6] C. Walshaw, M. Cross, and M. G. Everett. Parallel dynamic
graph partitioning for adaptive unstructured meshes.Journal
of Parallel Processing and Distributed Computing, 47:102–
108, 1997.

[7] Kirk Schloegel, George Karypis, and Vipin Kumar. Mul-
tilevel diffusing schemes for repartitioning of adaptive
meshes. Journal of Parallel Processing and Distributed
Computing, 47:109–124, 1997.

[8] Y.F. Hu and R.J. Blake. An optimal dynamic load balancing
algorithm. Technical Report Preprint DL-P-95-011, Dares-
bury Laboratory, Warrington, WA4 4AD, UK, 1995.

[9] Message Passing Interface Forum:. MPI: A message passing
interface standard, 1994.

[10] Maria Cecilia Rivara. Selective refinement/derefinement
algorithms for sequences of nested triangulations.Inter-

0 9

1
7

2
6

3
4

4
3

5
1

6
0

6
9

7
7

8
6

9
4

0%

25%

50%

75%

100%

Data Movement (4 Proc.)

RSB RSB (perm) PNR

Iteration step

T
o

ta
l m

e
sh

0 9

1
7

2
6

3
4

4
3

5
1

6
0

6
9

7
7

8
6

9
4

0%

25%

50%

75%

100%

Data Movement (8 Proc.)

RSB RSB (perm) PNR

Iteration step

T
o

ta
l m

e
sh

0 9

1
7

2
6

3
4

4
3

5
1

6
0

6
9

7
7

8
6

9
4

0%

25%

50%

75%

100%

Data Movement (16 Proc.)

RSB RSB (perm) PNR

Iteration step

T
o

ta
l m

e
sh

0 9

1
7

2
6

3
4

4
3

5
1

6
0

6
9

7
7

8
6

9
4

0%

25%

50%

75%

100%

Data Movement (32 Proc.)

RSB RSB (perm) PNR

Iteration step

T
o

ta
l m

e
sh

Figure 8. Elements moved between time steps of partitions produced by RSB, permuted RSB and
PNR for 4, 8, 16 and 32 processors.

national Journal for Numerical Methods in Engineering,
28:2889–2906, 1989.

[11] Maria Cecilia Rivara. A 3-D refinement algorithm suitable
for adaptive and multi-grid techniques.Communications in
Applied Numerical Methods, 8:281–290, 1992.

[12] José G. Casta˜nos and John E. Savage. Parallel refinement of
unstructured meshes. InIASTED International Conference
on Parallel and Distributed Computing and Systems, 1999.

[13] José G. Casta˜nos and John E. Savage. The dynamic adapta-
tion of parallel mesh-based computation. Technical Report
CS-96-31, Department of Computer Science, Brown Univer-
sity, October 1996.

[14] M. Garey, D. Johnson, and L. Stockmeyer. Some simpli-
fied NP-complete graph problems.Theoretical Computer
Science, 1:237–267, 1976.

[15] Alex Pothen, Horst D. Simon, and Kang-Pu Liou. Partition-
ing sparse matrices with eigenvectors of graphs.SIAM Jour-
nal of Matrix Analysis, 11(3):430–452, 1990.

[16] B. Kernighan and S. Lin. An efficient heuristic procedure for
partitioning graphs.Bell System Technical Journal, 29:291–
307, 1970.

[17] B. Hendrickson and R. Leland. The Chaco user’s guide, ver-
sion 2.0. Technical Report SAND94-2692, Sandia National
Laboratories, 1995.

[18] S. T. Barnard and H. Simon. A parallel implementation
of multilevel recursive spectral bisection for application to
adaptive unstructured meshes. InProceedings of the seventh
SIAM conference on Parallel Processing for Scientific Com-
puting, 1995.

[19] J. E. Savage and M. Wloka. Parallelism in graph partitioning.
Journal of Parallel and Distributed Computing, 13:257–272,
1991.

[20] G. Karypis and V. Kumar. Parallel multilevel graph parti-
tioning. Technical Report CORR 95-036, University of Min-
nesota, Dept. of Computer Science, 1995.

[21] G. L. Miller, S.H. Teng, W. Thurston, and S. A. Vavasis.
Automatic mesh partitioning. In A. George, J. Gilbert, and
J. Liu, editors,Sparse Matrix Computations:Graph Theory
Issues and Algorithms, pages 57–84. New York, 1993.

[22] H. D. Simon. Partitioning of unstructured meshes for parallel
processing.Computing Systems Eng., 1991.

[23] R. D. Williams. DIME: Distributed irregular mesh envi-
ronment. Technical Report C3P 861, California Institute of
Technology, 1990.

[24] P. Diniz, S. Plimpton, B. Hendrickson, and R. Leland. Par-
allel algorithms for dynamically partitioning unstructured
grids. In D. Bailey et al., editor,Parallel Processing for Sci-
entific Computing, pages 615–620. SIAM, 1995.

