
Upper and Lower I/O bounds for pebbling
r-pyramids

Desh Ranjan1, John Savage2, and Mohammad Zubair3

1 Old Dominion University, Norfolk, Virginia 23529
2 Brown University, Providence, Rhode Island 02912
3 Old Dominion University, Norfolk, Virginia 23529

Abstract. Modern computers have several levels of memory hierarchy.
To obtain good performance on these processors it is necessary to design
algorithms that minimize I/O traffic to slower memories in the hierarchy.
In this paper, we present I/O efficient algorithms to pebble r-pyramids
and derive lower bounds on the number of I/O steps to do so. The r-
pyramid graph models financial applications which are of practical inter-
est and where minimizing memory traffic can have a significant impact
on cost saving.

Key words: Memory hierarchy, I/O, Lower bounds

1 Introduction

Modern computers have several levels of memory hierarchy. To obtain good per-
formance on these computers it is necessary to design algorithms that minimize
I/O traffic to slower memories in the hierarchy [1, 2]. The cache blocking tech-
nique is used to reduce memory traffic to slower memories in the hierarchy [1].
Cache blocking partitions a given computation such that the data required for a
partition fits in a processor cache. For computations, where data is reused many
times, this technique reduces memory traffic to slower memories in the hierarchy
[1]. The memory traffic reduction that can be obtained using this technique de-
pends on the application, memory hierarchy architecture, and the effectiveness
of the blocking algorithm.

In this paper, we present I/O efficient algorithms to compute the values at
vertices (“pebble” the vertices) of a computation graph that is an r-pyramid
and derive lower bounds on its memory traffic complexity. A formal definition of
memory traffic complexity is given later in the paper. For simplicity, in this paper
we will only consider two levels of memory hierarchy. The results for two-levels
can be extended to multiple-levels of memory hierarchy using the multiple-level
memory hierarchy model outlined in [3]. (See also [4, Chapter 11].) This model is
an extension of the red-blue model introduced by [5], a game played on directed
acyclic graphs with red and blue pebbles.

The paper is motivated by a very practical financial application - that of
computing option prices. An option contract is a financial instrument that gives



2 Ranjan, Savage, and Zubair

the right to its holder to buy or sell a financial asset at a specified price referred to
as strike price, on or before the expiration date. The current asset price, volatility
of the asset, strike price, expiration time, and prevailing risk-free interest rate
determine the value of an option. Binomial and trinomial option valuation are
two popular approaches that value an option using a discrete time model [6,
7]. The binomial option pricing computation is modelled by the directed acyclic

pyramid graph G
(n)
biop with height n and n+ 1 leaves shown in Figure 1. Here the

expiration time is divided into n intervals (defined by n+ 1 endpoints), the root

is at the present time, and the leaves are at expiration times. We use G
(n)
biop to

determine the price of an option at the root vertex iteratively, starting from the
leaf vertices.

Fig. 1. A 2-pyramid representing binomial computation, and a 3-pyramid representing
trinomial computation.

The trinomial model improves over the binomial model in terms of accuracy
and reliability [6]. The trinomial option pricing computation is represented using

the directed acyclic graph with in-degree 3 denoted G
(n)
triop of height n on 2n+ 1

leaves shown in Figure 1. As in the binomial model, we divide the time to
expiration into n intervals and let the root be at the present time and the leaves

be at expiration times. As in the binomial model, we use G
(n)
triop to determine the

price of an option at the root vertex iteratively, starting from the leaf vertices.
The trinomial model assumes that the price of an asset can go three ways: up,
down, and remain unchanged. This is in contrast to the binomial model where
the price can only go two ways: up and down.

In [8] the authors derived lower bounds for memory traffic at different levels of

memory hierarchy for G
(n)
biop and G

(n)
triop. The technique used in the paper is based

on the concept of a S-span of the DAG [3]. The S-span intuitively represents
the maximum amount of computation that can be done after loading data in a
cache at some level without accessing higher levels (those further away from the
CPU) memories.

In this paper we first define a general family of graphs called r-pyramids.

G
(n)
biop and G

(n)
triop are sub families of this family. We then provide an algorithm to

pebble r− pyramids using S pebbles that requires roughly half the I/O needed
by previously described algorithms [8]. We also provide a lower bound that is



Upper and Lower I/O bounds for pebbling r-pyramids 3

twice the previous best known lower bound for the same problem [8]. With these
improvements, one can prove that the pebbling scheme presented here does no
more than twice the I/O required by an optimal pebbling scheme.

Strengthening the lower bound by a constant factor, besides being of theo-
retical interest, is important for practical reasons. Deriving these strong bounds
gives insight into deriving better algorithms, which are a factor of four to eight
times better than the existing algorithms. These factors may look small but are
significant in terms of cost saving for applications with real time constraints,
such as financial application.

The rest of the paper is organized as follows. The required definitions and
the memory hierarchy model that helps in developing memory complexity is
discussed in Section 2. In Section 3 we present an efficient algorithm, in terms
of memory I/O, for pebbling r-pyramid. Section 4 gives improved lower bounds
for the r-pyramid graph. Finally, in Section 5 we present some open problems.

2 Background

2.1 Computation Graphs, Structures and Memory Traffic
Complexity

We define here formally what we mean by a computation graph, a computation
structure and memory traffic complexity of a computation structure. A com-
putation graph is a directed acyclic graph G = (V,E). The vertices of G with
in-degree zero are called the input vertices and the vertices with out-degree zero
are called the output vertices. The idea here is that we wish to compute the
values at the output vertices given the values at the input vertices. The value at
a vertex can be computed if and only if the value at all its predecessor vertices
have been computed and are available. We say that the computation on G is
complete if the values at all its output vertices have been computed. A compu-
tation structure is a parametric description of computation graphs. Formally, a
computation structure is a function G̃ : Nk → {G ∣G is a computation graph}.

Given a computation graph G, the computation on G can be carried out in
many different ways. A computation scheme for a computation structure G̃ is an
algorithm that completely specifies how to carry out the computation for each
G̃(t) where t ∈ Nk. An input in a 2-level memory hierarchy refers to a read from
secondary memory, and an output refers to a write to the secondary memory. We
now define the memory traffic complexity for a single processor with 2-levels of
memory hierarchy with �̂ = ⟨�0, �1⟩ where �0 is the primary memory size, and �1
is the secondary memory size. Let G̃ : Nk → {G ∣G is a computation graph} be
a computation structure. Let T1(�̂, G̃)(t) be the minimum I/O required by any
computation scheme for G̃ on input G̃(t) where t ∈ Nk. The function T1(�̂, G̃) :
Nk → N as defined above is called the memory traffic complexity of G̃. A
computation scheme that matches the memory traffic complexity for G̃ is called
a memory traffic optimal scheme for G̃.



4 Ranjan, Savage, and Zubair

2.2 The Reb-Blue Pebble Game

The red-blue pebble game models data movement between adjacent levels of a
two-level memory hierarchy. In the red-blue game, red pebbles identify values
held in a fast primary memory whereas blue pebbles identify values held in a
secondary memory. Recall, that an input refers to a read from the secondary
memory, and an output refers to a write to a secondary memory. Since the red-
blue pebble game is used to study the number of I/O operations necessary for
a problem, the number of red pebbles is assumed limited and the number of
blue pebbles is assumed unlimited. Before the game starts, blue pebbles reside
on all input vertices. The goal is to place a blue pebble on each output vertex,
that is, to compute the values associated with these vertices and place them in
long-term storage. These assumptions capture the idea that data resides initially
in the most remote memory unit and the results must be deposited there.

Red-Blue Pebble Game Rules

– (Initialization) A blue pebble can be placed on an input vertex at any time.
– (Computation Step) A red pebble can be placed on (or moved to) a vertex

if all its immediate predecessors carry red pebbles.
– (Pebble Deletion) A pebble can be deleted from any vertex at any time.
– (Goal) A blue pebble must reside on each output vertex at the end of the

game.
– (Input from Blue Level) A red pebble can be placed on any vertex carrying

a blue pebble.
– (Output to Blue Level) A blue pebble can be placed on any vertex carrying

a red pebble.

A pebbling strategy P is the execution of the rules of the pebble game on the
vertices of a computation graph. We assign a step to each placement of a pebble,
ignoring steps on which pebbles are removed. The I/O time of P on the graph
G is the number of input and output (I/O) steps used by P.

3 An Efficient Algorithm for Pebbling Pr(n)

3.1 An r-pyramid

A directed graph G = (V,E) is called a layered graph with n levels if V can be
written as a disjoint union of n non-empty sets V1, V2, . . . , Vn such that ∀ e =
(u, v) ∈ E,∃ i such that u ∈ Vi and v ∈ Vi+1.

Definition 1. An r-pyramid of height n, Pr(n), is a graph (Vr(n), Er(n)) with
the following properties (see Figure 2):

1. Pr(n) = (Vr(n), Er(n)) is a layered graph with height n. Here Vr(n) = V1 ∪
V2 . . . ∪ Vn+1, Vi is the set of vertices on level i, and Er(n) are the edges.

2. Vi has nr(i) = (r−1)∗(i−1)+1 vertices labeled v(i, 1), v(i, 2), . . . , v(i, nr(i))



Upper and Lower I/O bounds for pebbling r-pyramids 5

3. Vertex v(i, j) has r incoming edges from vertices v(i + 1, j), v(i + 1, j +
1), . . . , v(i+ 1, j + r − 1).

4. There are no other edges in Pr(n).

With this definition it is easy to see that G
(n)
biop is a 2-pyramid of height n

(or P2(n)) and G
(n)
triop is a 3-pyramid of height n (or P3(n)). Also, note that an

Pr(n) has ∣Vr(n)∣ = (n+ 1)((r − 1)n+ 2)/2 vertices. We note the nice recursive
structure of r-pyramid. For any vertex v in the r-pyramid, the subgraph rooted
at v is a smaller r-pyramid itself.

Fig. 2. r-pyramid Pr(n) with r = 4 and n = 3

3.2 Algorithm

Let, S = (r − 1)m+ 1. We give an algorithm that we can pebble an r-pyramid
Pr(n) = (Vr(n), Er(n)) of height n with S red pebbles using no more than
2∣Vr(n)∣(r − 1)/(S − 1) I/O operations. Note that if n ≤ m then Pr(n) can be
pebbled without any intermediate I/O. Recall that we are assuming an unlimited
supply of blue pebbles.

Let Dk
i,j denote the “diagonal” shown in Figure 3 consisting of the k vertices

{(i, j), (i+ 1, j+ r− 1), . . . , (i+ (k− 1), j+ (k− 1)(r− 1))} that originate at the
vertex (i, j).

The algorithm starts with the pebbling of the r-pyramid, Pm
n−m,1, of height

m rooted at vertex (n −m, 1). This pyramid shares inputs with the inputs to
the full pyramid. This is done in a such way that it leaves S red pebbles on S
vertices of Pm

n−m,1 one of which is (n − m, 1). The other vertices are those in
Pm
n−m,1 that are required to compute Dm

n−m,2. More precisely, this is a collection



6 Ranjan, Savage, and Zubair

m

mnP 1,

m

mnD 2,

n-m

n

Fig. 3. Processing of r-pyramid at level k

of (r − 1) vertices at each of the lower m− 1 levels. These vertices are

(n−m+ 1, 2), (n−m+ 1, 3), . . . , (n−m+ 1, (r − 1)) + 1)

(n−m+ 2, r), (n−m+ 2, 2), . . . , (n−m+ 2, 2(r − 1) + 1)

...

(n, (m− 1)(r − 1)), (n, (m− 1)(r − 1) + 1), . . . , (n,m(r − 1))

Procedure PebbleSubPyramid given in Algorithm 1 explains how this is done.

Procedure PebbleSubPyramid(n)
if n ≤ m then

Pebble the whole subpyramid using (r − 1) ∗ n+ 1 red pebbles ;
else

t← S;
for i = 1 to t do

Place a red pebble at vetex (n, i);
end
for j = 0 to m− 1 do

t← t− (r − 1);
for k = 1 to t do

move pebble at (n− j, k) to (n− j − 1, k);
end

end

end
Algorithm 1: An algorithm for pebbling an r-subpyramid of height m at
position (n−m, 1) using S = (r− 1)m+ 1 red pebbles leaving the red pebbles
at the vertices needed for future pebbling.



Upper and Lower I/O bounds for pebbling r-pyramids 7

Next we repeatedly pebble the diagonals Dm
n−m,i starting with i = 2 and

progressing incrementally all the way to Dm
n−m,(n−m−1)(r−1)+1. Observe that

pebbling of Dm
n−m,2 requires the red pebbles on exactly S − 1 vertices from the

pyramid Pm
n−m,1 that was pebbled earlier (using PebbleSubpyramid) and a red

pebble on vertex (n, s + 1). We place a blue pebble at (n −m, 1) move the red
pebble at (n−m, 1) left by PebbleSubpyramid to (n, s+ 1).

It is now easy to verify that all the red pebbles are in exactly the needed
locations to compute Dm

n−m,2. Moreover, we can maintain this property while
pebbling consecutive diagonals. That is, after pebbling Dm

n−m,2 we leave S red
pebbles on the vertices that are required for the processing of the next diag-
onal Dm

n−m,3 etc. Observe that in general, processing of diagonal Dm
n−m,j re-

quires input from vertices on diagonals Dm
n−m,j−1, D

m
n−m,j−2, . . . , D

m
n−m,j−r+1.

This way we continue processing diagonals until we process the last diagonal
Dn−m,(r−1)(n−m−1)+1.

Also, observe that while processing these diagonals we only need to preserve
vertices at (n−m, 1), (n−m, 2), . . . , (n−m, (r − 1)(n−m− 1) + 1) for future
processing. The basic idea is that with S pebbles we can pebble all vertices at
the lower m levels blue pebbling only the vertices at level m. We then repeat this
process for the r-pyramid of height n −m. The complete algorithm to process
Pr(n) is presented in Algorithm 2 and illustrated in Figure 3.

Procedure PebblePyramid(n)
PebbleSubPyramid(n);
for j = 2 to (r − 1)(n−m− 1) + 1 do

place a blue pebble on (n−m, j − 1);
move the red pebble on (n−m, j − 1) to (n, j + s− 1);
for i = 0 to m− 1 do

move the red pebble on (n− i− 1, (j + s− 1− (r − 1)i) to
(n− i, (j + s− 1− (r − 1)i) ;

end

end
PebblePyramid(n−m) ;

Algorithm 2: An algorithm to pebble an r-pyramid of height n.

Notice that this pebbling scheme does not “re-pebble” any vertex, that is, a
vertex is never pebbled red using the computation step rule (Section 2.2) more
than once. Additionally, it uses a blue pebbled vertex exactly once for input. It
is obviously an optimal scheme in terms of computation. It is natural to ask the
question if this is also an I/O optimal scheme. We conjecture that this is indeed
the case. To prove this, we need to establish lower bounds on pebbling schemes
for pebbling an r-pyramid. We do so in the following section.



8 Ranjan, Savage, and Zubair

4 Lower Bounds for Pebbling an r-Pyramid

Lower bounds for pebbling an r-pyramid can be obtained by using S-span argu-
ments [8].

4.1 A Lower Bound Based on the S-Span of a Graph

In this approach, to derive lower bounds for a given DAG, we first compute its
S-span. This is a measure that intuitively represents the maximum amount of
computation that can be done after loading data in a cache at some level without
accessing higher level memories (those further away from the CPU).

Definition 2. The S-span of a DAG G, �(S,G), is the maximum number of
vertices of G that can be pebbled starting with any initial placement of S red
pebbles and using no blue pebbles.

The S-span is a measure of how many vertices can be pebbled without doing
any I/O. S pebbles are placed on the most fortuitous vertices of a graph and
the maximum number of vertices that can be pebbled without doing I/O is the
value of the S-span. Clearly, the measure is most useful for graphs that have a
fairly regular structure. It has provided good lower bounds on communication
traffic for matrix multiplication, the Fast Fourier Transform, the binomial graph
and other graphs. This definition applies even if G is not a connected graph.

The following theorem [9] relates the S-span of the graph to its memory
traffic complexity.

Theorem 1. Let G̃ be a computation structure. Consider a pebbling of the DAG
G̃(t) in an 2-level memory hierarchy game. Let �(S, G̃(t)) be the S-span of G̃(t)
and ∣V ∗t ∣ be the number of vertices in G̃(t) other than the inputs. Assume that
�(S, G̃(t))/S is a non-decreasing function of S.

Then the memory traffic complexity for G̃, T1(�̂, G̃), satisfies the following
lower bound.

T1(�̂, G̃)(t) ≥ �0∣V ∗t ∣
�(2�0, G̃(t))

Lemma 1. For a given path � from a leaf vertex x1 to the output vertex xp+1 in
Pr(p) consisting of vertices x1, x2, x3, . . . , xp+1 there is a total of (r−1)p distinct
paths from leaf vertices to the xi’s for i > 1.

Proof. We use induction on p to prove this result. The lemma holds for the
base case Pr(1). Assume the lemma is true for Pr(p) rooted at xp+1. Then for
a given path � of length p in Pr(p) consisting of vertices x1, x2, . . . , xp+1, we
have (r− 1)p distinct paths from leaf vertices of Pr(p) to xi’s for i > 1. Observe
that the leaf vertices corresponding to these paths along with x1 are the total
number of leaf vertices in Pr(p), which is (r−1)p+1. We now consider Pr(p+1)
rooted at xp+2. Pr(p+ 1) has (r− 1)(p+ 1) + 1 leaf vertices. Observe that Pr(p)



Upper and Lower I/O bounds for pebbling r-pyramids 9

is a sub-graph of Pr(p + 1) and the vertex x1 has r edges coming from the leaf
vertices of Pr(p+ 1), see Figure 4. Let one of these leaf vertices in Pr(p+ 1) be
x0. Additionally, for every other leaf vertex of Pr(p), we can identify a distinct
leaf vertex in Pr(p+ 1), which it is connected to, see Figure 4. This demonstrate
that for a path in Pr(p+ 1) consisting of vertices x0, x1, x2, . . . , xp+2, there are
a total of (r− 1)(p+ 1) distinct paths from leaf vertices to vertices on this path.
This completes the proof.

1nx

1x
2x

r

0x

Fig. 4. A r-pyramid with a path �

Lemma 2. Pr(p) requires a minimum of S = (r − 1)p + 1 pebbles to place a
pebble on the root vertex. The graph can be pebbled completely with S pebbles
without repebbling any vertices.

Proof. The proof uses an argument analogous to the last path argument used
in [10]. We say that a path � from a leaf vertex x1 ∈ Pr(p) to the root vertex
xp+1 is blocked (at some time instance t) if at least one vertex on the path has
a pebble (at time t). Consider the time instance when the root vertex, xp+1, of
Pr(p) was pebbled. At this time instance, all paths from all the leaf vertices of
Pr(p) to xp+1 are blocked. Now let us consider the first time instance t′ when
all paths from all the leaf vertices to xp+1 were blocked. Then at time instance
t′ − 1, there must have been an open path from one of the bottom level vertices
to xp+1. This implies that all vertices on this path did not have pebbles on them
and that at time t′ by placing a pebble at the leaf vertex all paths were blocked.
Observe that when a pebble is placed on the leaf vertex to block �, the graph
already had pebbles on each of the (r − 1)p distinct paths leading to each of



10 Ranjan, Savage, and Zubair

the p other vertices on � (Lemma 1). Thus, when the input to � is pebbled, the
graph has at least (r − 1)p+ 1 pebbles on it.

To show that the graph can be pebbled completely without re-pebbling any
vertices, place all (r − 1)p + 1 pebbles on the inputs. Then one can slide the
leftmost pebble up one level and then proceed to slide (r-1)(p-1) more pebbles
up one level to pebble the leaves of the subgraph Pr(p−1) with (r−1)(p−1)+1
leaves. The rest follows by induction. Procedure PebbleSubpyramid provided
earlier formally describes this process.

Theorem 2. The S-span of an r-pyramid is

1
2 (⌊S/(r − 1)⌋+ 1)(2S − (r − 1)⌊S/(r − 1)⌋).

We present a complete proof for r = 2 in Appendix A. The proof for general r
is analogous and is omitted because of space limitations.
Applying Theorem 1 we have the following result.

Theorem 3. Let �0 = S. The memory traffic complexity of Pr on a 2-level
memory hierarchy system, T1(�̂, Pr), satisfies

T1(�̂, Pr)(n) ≥ Sn((r − 1)(n− 1) + 2)

(⌊2S/(r − 1)⌋+ 1)(4S − (r − 1)⌊2S/(r − 1)⌋)
.

4.2 The Blue Pebble Strategy for Proving Pebbling Lower Bounds

The above results leave a gap of a factor of 4 between the bounds achieved by the
scheme provided and the lower bounds obtained. We improve this by strength-
ening the lower bound. To do so, we develop a new technique for proving lower
bounds on I/O in pebbling schemes. We start by making a simple observation.
Observation: Let P be any I/O optimal scheme for pebbling Pr(n). Suppose P
uses f(n) blue pebbles. Then In(Pr(n))+2f(n) is a lower bound on the number
of I/Os for any I/O-optimal scheme for pebbling Pr(n) where In(Pr(n)) is the
number of input vertices in Vr(n).

This is straightforward because in any I/O optimal pebbling scheme if a blue
pebble is placed on a vertex then later a red pebble must be placed on this vertex
using the rule that a red pebble can be placed on a blue pebble. If this is not
the case, placing the blue pebble is redundant and we have a better pebbling
scheme that simply does not place the blue pebble.

The Blue Pebble strategy for proving lower bounds in pebbling a graph G
simply establishes a lower bound on the number of blue pebbles placed in any
I/O optimal pebbling scheme. The overall lower bound for G is obtained through
lower bounds for smaller subgraphs (not necessarily disjoint) and combining
these lower bounds.

Theorem 4. Let G = (V,E) be any layered graph. Suppose that we have q
subgraphs H1, H2, . . . Hq of V ∗ = G− In(G) with the following properties:



Upper and Lower I/O bounds for pebbling r-pyramids 11

(i) In any complete pebbling of G, each Hi must have at least b blue pebbled
vertices

(ii) No v ∈ V belongs to more than l different Hi’s.

Then, in any complete pebbling of G at least q ∗ b/l vertices of
∪

iHi are
pebbled with blue pebbles.

Proof. Let Si denote the set of blue pebbled vertices in the subgraph Hi. Then
the set of blue vertices in

∪
iHi is S =

∪
i Si. By assumption ∀ i ∣Si∣ ≥ b. Consider

the set A = {(v, i) ∣ v ∈ Si, 1 ≤ i ≤ q}. Then ∣A∣ ≥ q × b. For a vertex u
denote by Au the subset of A of pairs where the first component is u, that is,
Au = {(u, i)∣1 ≤ i ≤ q}. Then if u ∕= u′, Au and Au′ are trivially disjoint. Also,
by assumption (ii) for each u, ∣Au∣ ≤ l. Noticing that A =

∪
u∈S Au, it then

follows that ∣S∣ ≥ ∣A∣/l = qb/l.

To make use of the Blue Pebble strategy, one needs to identify an appropriate
family of sub-graphs and establish a lower bound on number of blue pebbles on
each of these sub-graphs. Naturally, the choice of the subgraphs can be driven
by the ability to establish a lower bound on number of blue pebbled vertices in
these subgraphs.

4.3 A lower bound for pebbling Pr(n)

To obtain a lower bound on number of blue pebbles in a complete pebbling of
Pr(n) we first establish the following lemmas:

Lemma 3. Consider any complete pebbling of Pr(n) with S red pebbles and let
Pr(ℎ) be any r-pyramid of height ℎ in Pr(n). Then Pr(ℎ) has at least (r− 1)ℎ+
1− S blue pebbled vertices.

Proof. Using the argument of Lemma 2, we have at least (r − 1)ℎ + 1 pebbles
on the graph Pr(n) when the last path from the leaf vertex of Pr(n) to the root
is blocked. Since there are only S red pebbles in total, it follows that at least
(r − 1)ℎ+ 1− S of the vertices in Pr(ℎ) have blue pebbles at this time.

We now use the Blue Pebble strategy to establish a lower bound for pebbling
Pr(n) with S red pebbles and unlimited number of blue pebbles. We choose
for our subgraphs Hi, all r-pyramids of height ℎ in Pr(n). There is one such
pyramid with root at each of the vertices at level n− ℎ and above. Hence there
are q = (r−1)(n−ℎ+1)(n−ℎ)/2+(n−ℎ+1) such r-pyramids. From Lemma 1
it follows that in any complete pebbling of Pr(n), each such r-pyramid of height
ℎ must have at least b = (r − 1)ℎ + 1 − S blue pebbles. Notice that no vertex
in Pr(n) is shared by more than l = ∣Hi∣ = (r− 1)(ℎ+ 1)ℎ/2 + (ℎ+ 1) different
subgraphs. It then follows that the number of blue pebbles in complete pebbling
of Pr(n) is at least qb/l = q ∗ [(r − 1)ℎ− (S − 1)]/[(r − 1)(ℎ+ 1)ℎ/2 + (ℎ+ 1)].
Choosing, (r − 1)ℎ = 2(S − 1), this gives us qb/l = q ∗ (S − 1)/S ∗ (ℎ + 1) =
q ∗ (S − 1)/[S ∗ (2(S − 1)/(r − 1) + 1)]. This is roughly q(r − 1)/2S which is
roughly ∣V ∣(r − 1)/2S if n >> S. Hence the total number of I/O operations is
bounded below by roughly ∣V ∣(r − 1)/S.



12 Ranjan, Savage, and Zubair

5 Remarks and Conclusion

We presented an I/O efficient and computation optimal scheme for pebbling
an r-pyramid. We also presented a new technique for proving lower bounds
in pebbling and used it to prove improved lower bounds on I/O for pebbling r-
pyramids. There is a gap of a factor of (roughly) 2 between the upper bound and
lower bound presented for pebbling the r-pyramids. It will be nice to close this
gap one way or the other. The pebbling scheme presented here does not use any
“re-pebbling”. We conjecture, that this is an I/O and (obviously simultaneously)
computation optimal scheme for Pr(n). For pebbling schemes that do not use
re-pebbling, a better lower bound on the number of I/Os needed to pebble a
2-pyramid of height n has been established by the authors (manuscript available
upon request). However, the technique used there does not immediately help
to improve lower bounds on the number of I/Os for pebbling r-pyramids for
r > 2 even when re-pebbling is not allowed. Finally, it is worth noting that for
general layered graphs re-pebbling can reduce the number of I/Os. However, our
conjecture also implies that this is not the case for r-pyramids.

References

1. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufmann, San Francisco, CA (2007)

2. Kumar, V., Sameh, A., Grama, A., Karypis, G.: Architecture, algorithms and
applications for future generation supercomputers. In: FRONTIERS ’96: Proceed-
ings of the 6th Symposium on the Frontiers of Massively Parallel Computation,
Washington, DC, USA, IEEE Computer Society (1996) 346

3. Savage, J.E.: Extending the Hong-Kung model to memory hierarchies. In Du,
D.Z., Li, M., eds.: Computing and Combinatorics, Springer-Verlag, Lecture Notes
in Computer Science (1995) 270–281

4. Savage, J.E.: Models of Computation: Exploring the Power of Computing. Addison
Wesley, Reading, Massachusetts (1998)

5. Hong, J.W., Kung, H.T.: I/O complexity: The red-blue pebble game. In: Proc.
13th Ann. ACM Symp. on Theory of Computing. (1981) 326–333

6. Kwok, Y.: Mathematical Models of Financial Derivatives. Springer-Verlag, Singa-
pore (1998)

7. Cox, J.C., Ross, S.A., Rubinstein, M.: Option pricing: A simplified approach.
Journal of Financial Economics 7(3) (September 1979) 229–263

8. Savage, J.E., Zubair, M.: Cache-optimal algorithms for option pricing. ACM Trans.
Math. Softw. 37(1) (2010) 1–30

9. Savage, J.E., Zubair, M.: Evaluating multicore algorithms on the unified memory
model. Scientific Programming 17(4) (2009) 295–308

10. Cook, S.A.: An observation on storage-time trade off. J. Comp. Systems Sci 9
(1974) 308–316



Upper and Lower I/O bounds for pebbling r-pyramids 13

Appendix - The S-span of a 2-pyramid

The basic intuition is that the S-span is obtained by placing the S pebbles on
contiguous nodes at the same level and then pebbling all possible nodes from
this placement. The number of such nodes is S + (S − 1) + . . . 1 or S(S + 1)/2
(this includes S nodes where the pebbles were originally placed). We provide a
proof that this intuition is indeed correct.

Lemma 4. The S-span of a 2-pyramid is at least S(S + 1)/2.

Proof. We can place all S pebbles contiguously on a single level and pebble
S(S + 1)/2 nodes by moving the pebbles up by one level from left to right
(discarding the rightmost pebble) and then repeating this at the next level. This
scheme pebbles S(S+1)/2 nodes. Hence the S-span for the 2-pyramid is at least
S(S + 1)/2.

We will next establish that for any placement X of S pebbles on the 2-
pyramid, no more than a total of S(S + 1)/2 nodes can be pebbled. We do so
by first defining a function, pp(X), that upper bounds the maximum number of
nodes that can be possibly pebbled from a placement X of S pebbles. We then
show that pp(X) ≤ S(S + 1)/2 for any placement X with S pebbles. The basic
idea behind the definition is that if the maximum number of nodes that can be
possibly pebbled at a level i is ki then the maximum number of new nodes that
can be possibly pebbled level i+ 1 is at most (ki − 1) (except when ki is zero in
which case this is zero).

Definition 3. Let X be any placement of S pebbles. Let l denote the lowest level
on which there is at least one pebble in X. Let ℎ be the highest such level. Let
m = ℎ− l+1 and let si ≥ 0 denote the number of pebbles on the itℎ level starting
from level l (i.e. s1 is the number of pebbles on level l, s2 on level l+ 1 . . . sm on
level l+m− 1 = ℎ). Then, pp(X) = �i=m

i=1 maxi + (maxm − 1)(maxm)/2 where
maxi is defined recursively as below:

max1 = s1
maxi = si +maxi−1 − 1 if 1 < i ≤ m and maxi−1 > 0
maxi = si if 1 < i ≤ m and maxi−1 = 0

It is easy to observe that pp(X) is an upper bound on the number of nodes that
can be possibly pebbled by any pebbling scheme starting with placement X.

Lemma 5. For any placement X of S pebbles pp(X) ≤ S(S + 1)/2.



14 Ranjan, Savage, and Zubair

Proof. We first consider the case where all the S pebbles are placed on a single
level (say level 1). Then no more than S−1 nodes can be possibly pebbled at level
2, consequently, no more than S−2 nodes at level 3 and in general no more than
S− i at level i+1. It then follows that pp(X) ≤ S+(S−1)+ . . . 1 = S(S+1)/2.

If the maximum value of pp(X) is obtained by placing all the pebbles on one
level we have nothing further to prove. Else, let us consider a placement X of
pebbles that maximizes pp(X). By our assumption, X places at least one pebble
on more than one levels. Among all placements that maximize pp(X), let us
consider the one that has the minimum number of levels between the lowest and
the highest levels with non-zero pebbles.

As in Definition 3 let m denote the number of levels between the lowest and
highest levels (both included) with non-zero pebbles. Let us label the levels as
1, 2 . . .m with 1 being the lowest level. Let si denote the number of pebbles
on the itℎ level in the placement S. Note that, while s1, sm > 0, some of the
other sis can be zero and also that �isi = s. Let us now consider the value
pp(X) = �i=m

i=1 maxi + (maxm − 1)maxm/2. We contend that by choice of X,
none of the maxis is zero and hence for all 1 < i ≤ m maxi = si +maxi−1 − 1.
If this is not true then consider the lowest j where maxj = 0. Then sj = 0
and sj−1 = 1. Consider a new placement X ′ of S pebbles which is identical
to X except that all the pebbles below level j are moved one level up. Then
pp(X ′) = pp(X) but X ′ has fewer levels contradicting our assumption. We now
show that pp(X) ≤ S(S + 1)/2.

Expanding out the definition of maxi we get,
max1 = s1
max2 = s2 + s1 − 1
max3 = s3 + s2 + s1 − 2
...
maxm = sm + s2 + . . . s1 − (m− 1) = (s− (m− 1))

Hence

pp(X) = �i=m
i=1 maxi + (maxm − 1)maxm/2

= ms1 + (m− 1)s2 + . . . 1.sm −m(m− 1)/2 + (S −m)(S − (m− 1))/2
= m(�i=m

i=1 si)−�i=m
i=2 (i− 1)si −m(m− 1)/2 + (S −m)(S − (m− 1))/2

≤ mS −m(m− 1)/2 + (S −m)(S − (m− 1))/2
= ms−m(m− 1)/2 + (S2 − (2m− 1)S +m(m− 1))/2 = S(S + 1)/2.

Theorem 5. The S-span of a 2-pyramid is S(S + 1)/2.


