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Abstract

We have extended the Mob heuristic for graph partitioning [21] to grid and hypercube em-
bedding and have e�ciently implemented our new heuristic on the CM-2 Connection Machine.
We have conducted an extensive series of experiments to show that it exploits parallelism, is
fast, and gives very low embedding costs. For example, on the 32K-processor CM-2 it runs in
less than 30 minutes on random graphs of 1 million edges and shows impressive reductions in
edge costs. Due to excessive run times, other heuristics reported in the literature can construct
equally-good graph embeddings only for graphs that are 100 to 1000 times smaller than those
used in our experiments.
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1 Introduction

In this paper we report on an extensive study of a graph embedding heuristic based on our parallel
\Mob heuristic" for graph partitioning [21]. Our graph embedding heuristic exploits parallelism
yet provides embeddings of small-degree random and geometric graphs into grids and hypercubes
that are comparable to or superior in quality to those provided by the best serial heuristics for
these problems. In addition, due in part to the larger amounts of primary memory available on
parallel machines, our heuristic is able to handle problems hundreds to thousands of times larger
than those handled by the serial heuristics.

Graph embedding (GE) and graph partitioning (GP) are NP-complete problems. Heuristics for
GE map vertices of a graph onto the vertices of a grid and hypercube so as to minimize the sum
of the lengths of the embedded edges. Heuristics for GP separate vertices in a graph into two sets
such that the number of edges connecting the two sets is small.

Graph embedding �nds application in VLSI placement and the minimization of data movement
in parallel computers. The VLSI-placement problem is to minimize the area of a chip occupied
by wires and cells; it can be modeled by embedding a graph in a grid. The task assignment
problem is to assign tasks to parallel processors connected by a network so as to minimize the
cost of communication; communication between tasks is represented by weighted edges in a graph.
When the communication networks are hypercubes and grids, the task assignment problem can be
modeled by grid and hypercube embeddings.

The Mob heuristic for graph partitioning [19,21] is the basis for the heuristics reported in this
paper. It identi�es and swaps equal-sized collections (\mobs") of \promising" vertices between the
two sets of a partition. The heuristic begins with a large mob size of about 10% of the vertices, and
decreases the mob size every time a swap causes the number of edges joining the two sets to increase.
The mob size is decreased monotonically to 1 and then recycles, perhaps increasing the number
of steps on each cycle. We have generalized this technique to grid and hypercube embedding by
de�ning a large number of partitions, selecting between them at random, and running a variant
of the graph-partitioning Mob heuristic on them. We implemented this algorithm on the CM-2
Connection Machine. It gives very good partitions of large graphs in very little time.

Because graph partitioning is an important NP -complete problem [11], much e�ort has been
devoted to developing good heuristics for it. (See for example, the paper by Johnson et al [13].)
The Mob heuristic is as e�ective for graph partitioning as simulated annealing (SA) [15] and the
Kernighan-Lin (KL) heuristic [14], the best serial heuristics for GP, but exhibits a high degree of
parallelism and gives bisection widths that are at least as good as these heuristics [19,21]. As we
show in this paper, the new Mob heuristics are as e�ective for hypercube and grid embedding as
the most e�ective serial heuristics for these problems.

Below we de�ne the graph embedding problems and give an overview of related work in which
simulated annealing plays an important role. In Section 2 we de�ne the Mob heuristic and give
an intuitive explanation of its operation. In Sections 3 and 4 we present our experimental results
for the embedding of random graphs and random geometric graphs into the grid and hypercube,
respectively. Finally, in Section 5 we draw conclusions and discuss future research.
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Figure 1: 16-to-1 grid embedding of a random graph with jV1j = 1000, d = 5, and jV2j = 64: (a) A
randomly generated solution. (b) A solution generated by the Mob heuristic.

1.1 The Graph Embedding Problem

De�nition 1 Given two graphs G1 = (V1; E1) and G2 = (V2; E2), an embedding of G1 into G2 is a
pair of mappings S = �; � where � : V1 7! V2 maps vertices of V1 to those in V2 and � maps edges in
G1 to paths in G2. The number of source vertices mapping to each target vertex is constrained to be
the same.2 Let S be the set of all graph embeddings S of the source graph G1 into the target graph
G2. The cost function f : S 7! R assigns a cost to each embedding in S. The graph-embedding
problem is to �nd a graph embedding S with small cost f(S).

Graph partitioning is a special case of graph embedding in which the target graph, G2, consists
of just two nodes and half the source nodes are mapped to each of them. The goal of the graph-
partitioning problem is to embed an undirected graph G1 so that the number of edges between the
target nodes (the bisection width) is minimized.

Grid embedding is graph embedding into grids, regular two-dimensional arrays of elements with
edges between adjacent vertices. Figure 1 shows a 1000-node random graph of average degree d = 5
embedded into a 8� 8 grid before and after application of our new Mob heuristics. In this �gure
sixteen vertices of the source graph are embedded into each grid vertex.

Hypercube embedding is graph embedding into hypercubes. The vertices of a hypercube can be
represented by binary n-tuples, one tuple per vertex, and vertices whose binary tuples di�er in one
component are adjacent.

The goal of grid and hypercube embedding is to minimize the sum of the lengths of edges in
the target graph. This is captured by the PERIMETER and HCUBE cost functions de�ned

2If necessary, the number of source vertices jV j is increased by adding unconnected vertices to V to insure this
condition is satis�ed.
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below. While these measures do not capture the congestion in embeddings, namely, the number of
wires or messages passing through one edge in the target graph, they do provide good heuristics
for initial assignment of tasks to processors and components to sites.

De�nition 2 Let S : V 7! f0::k � 1g � f0::l � 1g be an embedding of G into a k � l-vertex
grid. The cost of the embedded edges under the PERIMETER cost function is de�ned asP

(v;w)2E PERIMETER(S(v); S(w)), where PERIMETER(a; b) := jax � bxj + jay � byj is the
half-perimeter of a box enclosing two grid nodes a and b with x and y coordinates ax, ay and bx,
by, respectively.

De�nition 3 Let S : V 7! f0::2k� 1g be an embedding of G into a 2k-vertex hypercube. The cost
of the embedded edges under the HCUBE cost function is

P
(v;w)2EHCUBE(S(v); S(w)), where

HCUBE(a; b) is the Hamming distance between a and b, i.e. the number of bit positions in which
the vertices a and b di�er when represented as binary k-tuples.

1.2 Previous Experimental Work

There is a paucity of serious studies of parallel graph embedding heuristics on large graphs and large
parallel machines. While all of the references cited below are related philosophically to our study,
only that of Bokhari [4] actually deals with graph embedding. The rest deal with the embedding of
standard cells represented by nets (multiple vertices are connected by edges). The authors of these
studies dealt with graphs or nets that are orders of magnitude smaller than the graphs considered
here and with parallel machines that have many times fewer processors.

In an early paper, Bokhari [4] gives a heuristic to embed communication graphs into an n � n

2-D grid with connections between horizontal, vertical, and diagonal neighbors. His cost function is
the number of adjacent source vertices mapped to adjacent target vertices. The goal is to maximize
this cost function. Given an initial embedding, the heuristic swaps each vertex with another vertex
that produces the largest change in cost. The cost of the new embedding is computed, and if it
increases, it is accepted. If not, n random pairs of vertices are swapped and the process repeated.
Experiments were conducted with thirteen graphs of up to 80 edges embedded into square grids of
up to seven vertices on a side. Respectable increases in the value of the cost function were obtained.

Kravitz and Rutenbar [16] give a parallel version of SA for VLSI placement. Because non-
interacting moves are considered for acceptance, the number of possible parallel moves tends to
be small. Also, the strategy of only accepting certain moves introduces artifacts which degrade
convergence behavior.

Parallel SA heuristics for VLSI circuit placement have been studied by Casotto and Sangiovanni-
Vincentelli [5] for the CM-1, Wong and Fiebrich [22] for the CM-2 Connection Machine, and by
Darema et al [9] for grid-based multiprocessors. Casotto et al used a 16-K processor CM-1 on a
circuit with 800 cells and 843 nets (hypergraph edges) and 2935 pins. One iteration of their SA
algorithm took 2 seconds. Wong and Fiebrich used several circuits with between 800 and 1,200
cells and others with 6,500 cells, and on a 32K CM-2 achieved a factor 200 speedup over a VAX
11/780. Darema et al demonstrated a speedup of 14 in their parallel SA heuristic to embed a 9� 9
grid onto itself when simulating up to 32 virtual processors.
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Chen, Stallmann, and Gehringer [6] examine the running time and performance of twelve
hypercube-embedding algorithms. They compare these by embedding random graphs, geomet-
rical random graphs, trees, hypercubes and hypercubes with randomly selected missing edges into
a 128-node hypercube. The algorithms considered include SA [9], SA restricted to moves across hy-
perplanes (SAC) [6], Kernighan-Lin applied to all partitions of the cube along hyperplanes (RMB)
[10], greedy heuristics such as steepest descent, and local search heuristics using as neighborhoods
all possible pairs of vertices (LS) and pairs of vertices adjacent across a hyperplane (LSC). They
conclude that SA \performs better as the communication (source) graph becomes more random,
and greedy heuristics perform better as the communication graph approaches a hypercube." SA
is also found to be the most 
exible, giving the best embeddings on random, random geometric
graphs and trees at running times that are about 2, 7 and 40 times that of the next best heuristic
for the three problems, respectively.

Roussel-Ragout and Dreyfus [18] propose a parallel implementation of SA on a MIMD multi-
processor. Every processor evaluates one move and at most one of the accepted moves is chosen
at random by a master processor. All processors then update their data structures to incorporate
the executed move. They show equivalence with serial SA but the degree of parallelism is very
small and their technique has a serial bottleneck at high temperatures. Banerjee et al [2] have
implemented SA for an Intel Hypercube and their version is also consistent with serial SA. As a
consequence, no large bene�ts in solution quality are obtained and the time they spend to maintain
serial consistency is very great.

Parallel simulated annealing has been applied by Dahl [8] to reduce communication costs (mea-
sured in the HCUBE metric) on the CM-2 Connection Machine hypercube network. Multiple source
vertices are mapped to a target hypercube vertex and assigned a hypercube dimension. A dimen-
sion is chosen at random. SA is applied independently to each edge along this dimension which
have source vertices assigned to them and it determines whether pairs of sources vertices swap or
not. The energy function is computed ignoring the possibility that other vertices may swap. This
approach works well for mappings of G1 = (V1; E1) into G2 = (V2; E2), where jV2j � jV1j= log jV1j
but it serializes for 1-to-1 mappings (jV1j = jV2j), and for many-to-1 mappings where jV1j � jV2j,
such as graph partitioning (jV2j = 2).

2 The Mob Heuristic for Graph Partitioning

TheMob heuristic for graph partitioning described in [19,21] is the basis for our two new Mob-based
heuristics for grid and hypercube embedding. We begin by describing it in detail.

TheMob heuristic is given an initial partitionK = (A;B) of the vertices V of a graphG = (V;E)
into two equal-sized sets A and B. It identi�es two equal-sized subsets of A and B of \promising"
vertices (\mobs") and swaps them. These promising vertices have high \gain," that is, they are
amongst those that might cause the largest reduction in bisection width when swapped. After
mobs are swapped, Mob computes the bisection width of the new partition. If the bisection width
decreases, two new mobs of the same size are formed and swapped. If it increases, the mob size
is reduced according to a predetermined \schedule" and two mobs of the new size are formed and
swapped. After mobs are swapped, the bisection width is again computed, appropriate action
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Let K = (A,B) be a partition of V in G = (V; E);
Let Ra[1..q(n)], Rb[1..q(n)] be random variables over (0,1);

Let MS[1..q(n)] an integer-valued mob schedule;

Mob(K)

t = 1; s = 1;

while( t � q(n) )

f
L = MOB-NR(K, MS[s], Ra[t], Rb[t]);

D = bw(L) - bw(K);

if( D > 0 )

s = s + 1;

K = L;

t = t + 1;

g
return K ;

Figure 2: The generic Mob heuristic

taken, and the process repeated until the mob size reaches a minimum value of 1. This cycle may
be repeated several times.

A mob is chosen from each of the sets A and B of a partition K by computing for each vertex
v in each set a gain(v), the decrease in the bisection width caused by moving v to the other side
of the partition. An array MS called the mob schedule is given in advance; the sth mob size is
MS[s]. The initial mob size, MS[1], is about 10% of jV j. A mob of set A of size MS[s] is formed
from a premob PMa, the set of vertices in A of gain of at least g where g is the largest gain such
that PMa has at least MS[s] vertices. A premob PMb of the set B is formed in the same way.

Premobs can be formed quickly on parallel machines by broadcasting a gain threshold gs to all
processors holding a vertex and its gain, and counting the number of vertices with gain gs or larger,
and then using bisection until the correct gain value has been found. Binary search on the value
of gs is used until a value is assigned to gs that selects a smallest premob of size at least MS[s].

The tth mob of A (B) of size MS[s] is formed from PMa (PMb) by choosing MS[s] vertices
at random using a uniform random variable Ra[t] (Rb[t]) over the interval (0; 1). The vertices in a
premob are ordered and counted. The number pma (pmb) of vertices is multiplied by Ra[t] (Rb[t]),
rounded down, and added modulo MS[s] to the index of each vertex. Those with index in the
set (0::MS[s]� 1) are made members of a mob. These steps can be implemented e�ciently on a
parallel machine.

The mob selection algorithm is implemented by the procedure MOB-NR(K, MS[s], Ra[t], Rb[t])
shown in Figure 2 as part of the complete algorithm for the generic Mob heuristic. This procedure

8



returns a new partition L in the neighborhood of the starting partition K. A time limit q(n)
is placed on the procedure, where q() is a polynomial in the size n = jV j of the problem. If the
bisection width bw(L) of L is less than that ofK, the mob size M [s] remains unchanged. Otherwise
the next mob size is selected.

TheMob heuristic has elements in common with simulated annealing (SA) [15] and the Kernighan-
Lin Heuristic (KL) [14]. SA explores neighborhoods by picking a pair of vertices of highest gain in
each half of a partition and computing the e�ect on the bisection width if they are swapped. If the
bisection width would decrease, the swap is made. If not, the swap is made with a probability that
decreases exponentially in D=Temp[t], where D is the change in the bisection width and Temp[t]
is a temperature parameter that is a non-increasing function of the time t. KL starts from a given
partition and examines all partitions obtained by swapping and freezing pairs of vertices in order
of decreasing gain until all vertices have been swapped. It moves from the given partition to the
partition in this sequence which has the smallest bisection width. This process is repeated until no
improvement is possible. The Mob heuristic has a randomizing element, as does SA, and explores
a large neighborhood, as does KL.

2.1 Intuitive Explanation

The Mob heuristic is e�ective because in initial random partitions there are typically many vertices
which, when swapped, cause a large reduction in the bisection width. This is especially true when
the graphs in question have low degree because few candidates for a swap have edges in common,
and swapping them in a group has about the same e�ect on the bisection width as swapping them
individually. As the bisection width of the graph decreases, there are fewer vertices that can cause
a large reduction in the bisection width, and swapping a large collection would cause the bisection
width to increase rather than decrease. For this reason the mob size is adaptively decreased.

2.2 The Mob Heuristic for Graph Embedding

When vertices in source graphs G are embedded into 2-D grid and hypercube target graphs H ,
there exist many ways to choose vertex sets for swapping. If we don't restrict the types of swap,
the computation time for one iteration of our embedding heuristics could be very large. On the
other hand, if our swapping regime does not permit enough movement (or mixing) of embedded
vertices, it may be di�cult to �nd good embeddings. Thus, our embedding heuristics need to
balance the cost of one iteration with the number of iterations. The heuristics also need to insure
good mixing so that over time it is possible for most pairs of vertices to be swapped. This argues
for a probabilistic embedding heuristic.

The Mob heuristic for graph partitioning has a randomizing element. Vertices in a mob are
chosen by selecting randomly among vertices in a premob. For graphs embedded in the grid and
hypercube, more mixing than this is needed. Since the Mob heuristic for graph embedding is
a proven parallel heuristic, our goal was to combine it with an appropriate partition selection
mechanism to provide good mixing, yet have the heuristic run e�ciently on parallel machines.

Shown in Figure 3 is pseudo-code for the Mob heuristic for grid and hypercube embedding. The
heuristic Mob(E; p) is given an initial embedding E of the source graph G into the target graph
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E is an embedding of the source graph G into the target graph H;

I is an initial embedding;

p is a partition of the vertices of E;

P(G) is a set of partitions of the target graph H;

Mob(E,p) is the Mob heuristic on partition p in P(G) of embedding E;

T[n] is a polynomial in n, the number of vertices in G;

E = I;

for ( 1 � t � T[n])

f
Choose p randomly from P(G);

E= Mob(E,p);

g

Figure 3: The Mob heuristic for grid and hypercube embedding

H and a partition p of the vertices chosen at random from a set of partitions. It produces a new
embedding and loops for a polynomial number of steps. Mob(E; p) is almost identical to Mob for
graph partitioning except that vertices are paired for swapping, as described below.

2.3 Partition Selection for Graph Embedding

Whereas in the Mob heuristic we computed gains for individual vertices in each of two sets of a
partition, selected MS[s] high-gain vertices from each set, and then swapped them, in the graph-
embedding version we pair up target vertices in the two sets, compute the gains resulting from
swapping pairs of source vertices mapped to pairs of target vertices, and select and swap MS[s]
high-gain source pairs. We swap source pairs to insure that we maintain the balance condition,
namely, that the same number of source vertices is embedded in each target vertex.

We pair vertices according to the \natural" partitions of grid and hypercube vertices described
below. These partitions are chosen to insure good mixing of vertices when we randomly choose
partitions.

De�nition 4 Vertices of the 2k-vertex hypercube are indexed by binary k-tuples. The ith partition
Pi, 0 � i � k� 1, of the 2k-vertex hypercube consists of two sets fSi;0; Si;1g where Si;r is the set of
vertices whose binary k-tuple has value r for its ith component, r = 0; 1. Candidates for swapping
under partition Pi are those source vertices mapped to target vertices whose k-tuples di�er in the
ith component.

Vertices of the k�k grid are indexed by pairs f(u; v) j 0 � u; v � k� 1g. Partitions of the k�k

grid, k = 2l, are de�ned for the �rst and second components of these pairs and for a parameter d,
d = 2m, 0 � m � l � 1. The partitions P a

1;d and P b
1;d are de�ned on the sets fS1;0;d; S1;1;dg where
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Figure 4: Pairings of target vertices in the �rst and fourth columns of an 8 x 8 grid under the
partitions (a) P a

1;2 and (b) P a
1;4.

S1;r;d = f(u; v) j bu=dc(mod 2) = rg for r = 0,1. Let 0 � j � d� 1 and 0 � i � (2l=2d)� 1 and let
all index arithmetic be modulo 2l. Then in P a

1;d target vertices (u1; v) 2 S1;0;d and (u2; v) 2 S1;1;d

are paired up if u1 = (2i)d+ j and u2 = (2i+ 1)d+ j. In P b
1;d target vertices (u1; v) and (u2; v) are

paired up if u1 = (2i+ 1)d+ j, and u2 = (2i+ 2)d+ j. P a
2;d and P b

2;d are de�ned similarly on the
second components of grid pairs. Candidates for swapping under partition P c

s;d, s = 1,2, d = 2m,
0 � m � l� 1, and c = a,b, are source vertices mapped to paired target vertices.

The pairings of target vertices in the �rst and fourth columns under the partitions P a
1;2 and P

a
1;4

for the 8� 8 grid graph are shown in Figures 4 (a) and (b), respectively. (Note that P a
1;4 = P b

1;4.)
Swap gains are de�ned as the sum of the gains of vertex pairs that are candidates for swapping.

Vertex gains are computed using the PERIMETER and HCUBE cost functions for grids and
hypercubes, respectively.

When more than one source vertex is mapped to a target vertex, there is more than one way
to select source vertex pairs for swapping. We have found that it is e�ective to match up source
vertices that have the largest gain and to match the remaining vertices arbitrarily. This procedure
saves time and provides good convergence behavior.

In the next section we discuss some of the practical details associated with the implementation
of these algorithms on the Connection Machine.

2.4 Implementation of Mob on the Connection Machine

We now describe the key aspects of our implementation of the Mob-based heuristics on the CM-2.
The CM-2 Connection Machine is a massively parallel computer consisting of up to 64K moderately
slow one-bit processors [1,12] organized as a 12-dimensional hypercube with sixteen nodes at each
corner of the hypercube.
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We use edge and vertex data structures to support the exchange of vertices and the computation
of gains and costs with minimal communication overhead. Our edge data structure is based on
that described by Blelloch [3] and implemented for the graph partitioning Mob heuristic [21].

The Connection Machine supports the concept of virtual processor. Our implementation assigns
one virtual processor per record in each vertex and edge data structure.

Edge Data Structure The edge data structure is constructed of records representing edges of
an undirected source graph G. Each edge (a; b) appears twice, as the pairs (a; b) and (b; a). The
records are sorted and pointers introduced between the two instances of an edge. The set of pairs
with a given �rst component, say, a, constitute the edges adjacent to vertex a. The �rst pair in such
a sublist does double duty; it represents the �rst edge as well as the vertex a. Fields are introduced
in each record so that the leading record in a sublist can record data about source vertices.

Vertex Data Structure Our grid and hypercube heuristics map the same number of source
vertices to each target vertex. Unfortunately, the edge data structure does not lend itself to the
rapid identi�cation of those vertices mapped to a given target vertex nor to the rapid pairing and
swapping of vertices. By experimentation we have found that a most e�ective way to handle these
issues is to add a vertex data structure, a linear array of records, one per source vertex. Each record
contains a pointer to the edge record in the edge data structure representing the source vertex. In
the vertex data structure source vertices mapped to the same target node are adjacent and they
are laid out in memory so that it is easy to determine the location of the target vertices to which
they map and to swap them. The swapping of records is e�cient; the vertex data structure allows
e�ciently supported communication patterns on the CM-2 to be used.

The vertex data structure is not needed in the Mob heuristic for graph partitioning because the
set into which a vertex falls can be identi�ed with a single bit and source records themselves need
not move.

Cost and Gain Computations The cost of each embedded edge is computed using the pointers
between edges in the edge data structure. \Scan" operations3 on this data structure sum the edge
costs; they are divided by two to determine the cost of an embedding for a given partition since
every edge has a twin.

Given a partition, the gain of each vertex is computed by summing the contributions of each
edge incident on that vertex using a segmented additive scan in reverse order on the edge data
structure, summing edge gains into a vertex gain. Segments are de�ned by the edges incident on a
given vertex.

Selecting and Exchanging Mobs The procedure for selecting premobs and mobs is described
above. The vertex data structure is used to identify vertices in each half of a partition. This

3A scan operation on a vector x = (x1; x2; : : : ; xp) returns a vector y = (y1; y2; : : : ; yp) such that y1 = x1 and
yi = yi�1 � xi where � is an associative operation. Segmented scan operations are scan operations performed over
contiguous segments of the full vector. If a segment begins at the ith position, yi = xi; otherwise, yi = yi�1 � xi.
Scans and segmented scans can be implemented e�ciently on most parallel machines [3].
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information is transmitted to the edge data structure which is then used to rank the vertices in
each half of a partition. This information is used to select a mob from a premob.

After every vertex has been told whether or not it will move, all edge records associated with
vertices become active and communicate their new positions to all adjacent edges by a segmented
Copy-Scan. Edges then notify their twin edges of their new positions using Send operations and
records in the vertex data structure move to their new positions.

3 Experimental Results for Random Graphs

The performance of the Mob hypercube and grid-embedding algorithms were evaluated by conduct-
ing experiments on the CM-2. 1-to-1 and 16-to-1 mappings of source to target graphs were studied.
The random source graphs used in these experiments are more than 1000 times larger than those
previously studied in the literature. Serial algorithms such as SA and KL have prohibitive running
times for such large graphs. We measured the solution quality, convergence as a function of time,
and running times with di�erent numbers of processors, and compared Mob to other algorithms.
The Mob-based embedding heuristics on source graphs G = (V;E) produce excellent solutions,
converge quickly, run in time empirically found to be O(log jEj) with 2jEj processors, and are well
matched to the CM-2 hardware.

We conducted experiments on randomly generated graphs with up to 512K vertices and 1M
edges. Our random graphs were generated by selecting pairs of vertices at random, connecting them
with an edge, and removing multiple edges and self-loops. The probability of selecting a vertex was
chosen to provide graphs with integral average degree d. We did not use the standard approach
of generating edges by 
ipping a coin with the appropriate probability for all potential edges in a
graph because the number of trials would have been far too large. The degrees considered range
from 3 to 16, degrees typical in VLSI and processor mapping problems.

The number of edges, vertices and average degree of the random graphs used in our experiments
are given in Table 1. We used six graphs of average degree 4 and six graphs of average degree 8
to study the e�ect of increasing graph size on solution quality and running time. We performed
experiments on nine graphs with 16K vertices and average degrees ranging from 3 to 16 to examine
the e�ect of graph degree on the behavior of the Mob algorithms. The data shown in the tables
was averaged over at least �ve runs.

3.1 Mob Schedule for Graph Embedding

The mob schedule speci�es how many element pairs can swap in one iteration. It also determines
the rate of convergence of the heuristics and the quality of the results. Let jEj be the number
of edges in a graph. Through experimentation the following characteristics of mob schedules were
found to be e�ective for our random source graphs and embeddings into both grids and hypercubes:

� A maximum mob size of about jEj=8.
� Decrementing the mob size in 16 uniform steps in the �rst cycle.

13



� Doubling the number of steps on each subsequent cycle.

� Terminating the computation after 8000 steps.

The above maximum mob size corresponds to two vertex pairs per hypercube node in the 16-
to-1 mappings and thus shows a preference for the specially selected vertices of maximum gain at
each hypercube node but also moves other vertices. We have found that this schedule combines
initial rapid convergence and very good results at the later stages of the algorithm when the possible
improvements get smaller. We found that this schedule works well with 16-to-1 and 1-to-1 mappings
and both grid and hypercube embeddings.

3.2 Solution Quality of Mob

The quality of the solutions produced by Mob is shown in Tables 2 and 3 for 1-to-1 and 16-to-
1 embeddings into hypercubes and grids. The columns labeled Dim give the dimension of the
hypercube into which the graph is embedded. For the grid embeddings, Dim is the dimension of
the hypercube containing a 2bDim=2c� 2dDim=2e grid. The columns labeled R give the average edge
length produced by a random embedding, and those labeled Mob give the average edge length in
a best-ever embedding produced by Mob, each divided by the number of edges jEj = nd=2 in
a graph, where d is the average degree of a graph. The columns labeled Mob=R give the ratio
of improvement produced by Mob over a random solution. The Mob heuristic o�ers impressive
reductions in embedding costs. Our experiments show:

� For �xed degree d, Mob=R is largely independent of graph size.

� 16-to-1 mappings give slightly better Mob=R ratios than 1-to-1 mappings.

� The grid-embedding Mob heuristic achieves lower Mob=R ratios than the hypercube Mob
heuristic.

� The ratio Mob=R rises with increasing average graph degree, as shown in Figure 5 (a). The
di�erences between grid and hypercube embeddings and between 1-to-1 and 16-to-1 embed-
dings become smaller with increasing degree.

3.3 Rates of Convergence of Mob

Tables 2 and 3 also report the convergence of Mob for an increasing number of iterations. The
columns labeled Iterations shows the average embedding cost as percentages above the best-ever
embedding cost, produced after 100, 1000 and 4000 iterations of Mob, respectively. The number of
iterations needed to reach a �xed percentage above the best-ever embedding cost is approximately
independent of graph size for graphs of �xed average degree. This important observation holds for
hypercube and grid embeddings and for 1-to-1 and 16-to-1 mappings. The fact that Mob's rate of
convergence on random graphs is independent of graph size was also observed for graph partitioning
(see [19,21]).
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Figure 5: Performance of Mob on 16K-graphs embedded in hypercubes and grids. (a) Ratios of
best-ever Mob embedding cost to random embedding cost for random graphs plotted as a function
of graph degree. (b) Mob convergence behavior after a number of iterations expressed as Mob's
bisection width as a percentage over the best-ever embedding cost for the 4.16K and 8.16K random
graphs.

The ratio of the best-ever embedding cost to the random embedding cost grows with the degree
of the graph, as see in Tables 2 and 3 and shown in Figure 5 (a) for the 16K-vertex graphs.

The Iterations columns in Tables 2 and 3 show that the reductions in embedding costs decrease
rapidly as the total number of iterations increases. The rate of convergence is shown in Figure 5 (b)
for the 4.16K and 8.16K graphs for 16-to-1 mappings of the Mob grid and hypercube-embedding
algorithms. Thus, a good solution is produced rapidly; further improvements can be obtained if
enough computation time is available. Also, the number of iterations to achieve a given percentage
decreases as the degree d increases. Thus, fewer iterations are needed on high-degree graphs.

3.4 Computation Time

The edge data structure, which is larger than the vertex data structure, requires 2jEj virtual
processors. The scan operations are the most complex operations in an iteration of Mob. Thus,
one iteration of Mob is estimated to run in time O(log jEj). This was tested by experiments on the
CM-2 with graphs of di�erent sizes in which the number of real processors varied between 8K and
32K and the number of virtual (simulated) processors ranged between 16K and 2M.
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The results of these experiments are reported in Table 4 for hypercube embeddings and in
Table 5 for grid embeddings. We give evidence that the time per iteration normalized by the
number of virtual processors grows logarithmically on the CM-2. Since the graph size that can
be handled on the CM-2 is bounded by the memory required for each virtual processor, as more
real processors and memory are added, execution times should keep decreasing and embeddings of
increasingly larger graphs should be computable.

As observed above, the total number of iterations required by Mob to reach a �xed percentage
above the best-ever embedding cost appears to be approximately constant. It follows that the
empirical parallel running time of the Mob heuristic on sparse random graphs is O(log jEj) with
2jEj processors.

Tables 4 and 5 also indicate that one iteration of the Mob grid-embedding heuristic took ap-
proximately 40-50% more time than the corresponding iteration of the Mob hypercube-embedding
heuristic. This is explained by the fact that the PERIMETER cost and gain functions require more
arithmetic operations than their HCUBE equivalents. The 16-to-1 embeddings execute slightly
slower than the 1-to-1 mappings, since Mob must select a vertex with maximum gain for every
target vertex and move it to the head of this vertex list, as described in Section 2.4.

The absolute speed at which an embedding is produced by Mob is remarkable and shows that
Mob can be implemented very e�ciently on a SIMD-style machine. On a 32K CM-2 it takes
approximately 1720 seconds (� 29 minutes) to �nd an embedding of a 500K-vertex, 1M-edge graph
into a 15-dimensional hypercube, and approximately 1264 seconds (� 21 minutes) to embed that
graph into a 19-dimensional hypercube. It takes approximately 2370 seconds (� 40 minutes) to
�nd an embedding of a 500K-vertex, 1M-edge graph into a 256� 64 grid, and approximately 2157
seconds (� 36 minutes) to embed that graph into a 1024 � 512 grid. All these embeddings are
within 5 percent of best-ever.

3.5 Comparison to Graph-partitioning Algorithms

Since our graph embedding heuristic produces partitions of the vertices of the source graph, we can
use the bisection widths of these partitions as a way to indirectly calibrate the quality of the graph
embedding results. If a partition produced by our graph embedding heuristic for the test graphs is
poor, this would cast doubt on the quality of the graph embedding results. However, if the quality
of the partitions produced by this heuristic are comparable to the best partitions produced, then
we have more con�dence in the graph embedding results. This is important because at the time of
writing we not know of studies of highly parallel graph embedding heuristics for very large graphs.

We calibrate our results against those obtained for graph partitioning by computing the bisection
width of the graphs embedded into grids and hypercubes. We �nd that the bisection widths for
hypercube embeddings are about the same for all hyperplanes whereas for grid embeddings, the
two partitions dividing the grid in half vertically and horizontally give the best partitions.

Table 6 shows how the Mob hypercube and grid embedding algorithms perform as graph-
partitioning algorithms. The data for random graphs on the performance of the Mob graph-
partitioning algorithm and the KL graph-partitioning algorithm is taken from our study of local
search graph-partitioning heuristics in [19,21]. The cost of the graph embeddings P = (A;B) is
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given in Table 6 by the percentage of all edges that cross the cut between A and B. We found that
16-to-1 grid and hypercube embeddings with our Mob-based heuristics produced bisection widths
comparable to those for the Mob heuristic for graph-partitioning. The KL graph-partitioning algo-
rithm, which we ran on graphs with only 32K (or fewer) vertices due to running time considerations,
was signi�cantly outperformed by both 16-to-1 Mob embedding algorithms. KL gave slightly worse
embeddings than the 1-to-1 Mob grid-embedding algorithm and slightly better embeddings than
the 1-to-1 Mob hypercube-embedding algorithm.

The performance of theMob embedding algorithms interpreted as graph-partitioning algorithms
is remarkable, considering that Mob is optimizing the \wrong" cost function. While the data in
Table 6 cannot show conclusively how good the Mob embedding algorithms are, the existence of
a better graph-embedding algorithm would also imply the existence of a better graph-partitioning
algorithm.

3.6 Comparison to Simulated Annealing

Chen et al [6,7] evaluated the performance of 1-to-1 hypercube-embedding heuristics. The graphs
examined were random graphs, random geometric graphs, random trees, hypercubes, and hyper-
cubes with randomly added and deleted edges. All graphs had 128 vertices and were embedded
in a 7-dimensional hypercube. Among the algorithms tested, simulated annealing with a move set
limited to swapping vertex pairs along hypercube edges produced the best solutions.

We obtained the ten random graphs used by Chen et al and generated ten random graphs
ourselves. For each graph �ve runs were performed, and results were averaged over these runs.
Each run of Mob was limited to 8000 iterations, and the schedule described above was used. Chen
et al report that on ten random graphs of average degree 7, a reduction of 58.1% over the cost of a
random embedding was achieved. We found that the average solution produced by Mob is 58.28%
for Chen et al 's graphs and 58.17% for our own graphs. Thus Mob's performance was about equal
to the performance of a tuned version of SA.

4 Experimental Results for Geometric Graphs

We performed experiments on random geometric graphs, which have more structure than random
graphs. The cost ratio of minimum embedding to random embedding tends to be much smaller
than for random graphs. This makes it more desirable to �nd a good embedding, but also suggests
that a good embedding is harder to �nd. A random geometric graph Gn;d with n vertices and
average degree d is generated by randomly selecting n points in the unit square [0; 1)� [0; 1). The
geometric graph Gn;d contains an edge if its endpoints are a distance r or less apart, as measured
by a distance metric. To obtain graphs of degree d, the distance parameter r is set to the value
rd. Figure 6(a) shows a random geometric graph, and Figure 6(b) shows a grid embedding of this
graph computed by placing each vertex on a neighboring grid point. The following three metrics
have been used in the literature:

� Manhattan metric r = jx1 � x2j+ jy1 � y2j
rd =

p
d=2n
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Figure 6: (a) A random geometric graph with jV1j = 1024, d = 8 on the unit plane. (b) Grid em-
bedding of the geometric graph with jV2j = 1024, obtained by placing each vertex on a neighboring
grid node.

� Euclidean metric r =
pjx1 � x2j2 + jy1 � y2j2

rd =
p
d=�n

� In�nity metric r = max(jx1 � x2j; jy1� y2j)
rd =

p
d=4n

For our experiments we used the Manhattan metric, since it matches the cost function used for
grid embeddings. Graph-partitioning experiments by Johnson et al [13] were performed on random
geometric graphs generated with the Euclidean metric. Chen et al [6,7] used random geometric
graphs generated with the in�nity metric to test hypercube-embedding algorithms.

4.1 E�cient Construction of Random Geometric Graphs

We now address the problem of e�ciently generating geometric graphs. The naive method of
computing the distance of every vertex pair on the unit square leads to an O(n2) time algorithm.
This approach is perfectly adequate for small graphs. However, a more sophisticated method is
required for graphs with 1; 000; 000 vertices or more.

Our approach is to divide the unit square into 1=rd � 1=rd cells. It follows that all vertices a
distance rd or less apart must be located in the same cell or in one of the eight neighboring cells.
(This holds for any of the above metrics.) Every vertex computes the cell it belongs to, and the
vertices are sorted by their cell value into a linear vertex array. Vertices in the same cell are now
adjacent in the vertex array. An indirection table is constructed that contains for every cell i the
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address in the vertex array of the �rst vertex in cell i, or a value of �1 if cell i is empty; this
facilitates �nding the contents of the eight neighboring cells.

Since n vertices were distributed randomly over the unit square, the number of cells on the
unit square is 1=rd � 1=rd = 2n=d for the Manhattan metric. Thus cells contain an average of d=2
vertices. An average total of 9nd=2 distance computations is done to generate nd=2 edges, and
the total computational work is O(n logn + nd). Under the realistic assumption that sorting n
vertices by their cell value takes time O(log2n) with O(n) processors, the above algorithm is easily
parallelized to run in time O(log2 n+d) with O(n) parallel processors. Our experiments show that
the constants are very small.

Note that the above search structure works only for points that are distributed randomly in
the plane. More sophisticated algorithms, such as quad-trees, Voronoi diagrams, and trapezoidal
decompositions, have been developed in the �eld of computational geometry to deal with nearest-
neighbor problems. The considerable implementation complexity and (usually) O(n logn) storage-
space requirements make these algorithms inappropriate for the special case of generating geometric
graphs, since the much simpler algorithm described above exists.

4.2 Analysis of the Cost of Embedding Geometric Graphs

We assume that our graphs will be embedded into the bpnc � dpne grid. We estimate gmin, the
minimum cost grid embedding, by assuming that the vertices of Gn;d in the unit square are grid
vertices, computing the sum of the Manhattan lengths of its edges, and multiplying the sum byp
n. The average distance between two adjacent vertices in the unit square is easily shown to be

rd=
p
2, giving the following estimated total edge cost:4

gmin � nd

2

rd
p
np
2

=
np
2

�
d

2

�3=2

(1)

On the other hand the average cost of a random embedding of Gn;d into the bpnc � dpne grid
embedded into the unit square, gr, can be estimated by

gr =
nd(bpnc+ dpne)

6
(2)

since the average length of an edge whose endpoints are randomly chosen from the bpnc � dpne
grid is (bpnc+ dpne)=3� 1=3bpnc � 1=3dpne. The column labeled R in Table 9 is the computed
average total length of a random embedding normalized by the number of edges; the match is
almost perfect.

Because we can fold an bpnc�dpne grid into a hypercube of dimension logn, the same estimate
as given above for gmin holds for hmin, the minimum cost hypercube embedding, namely,

hmin � nd

2

rd
p
np
2

=
np
2

�
d

2

�3=2

(3)

4An exact analysis of the total cost edge averaged over the ensemble of all geometric graphs on n vertices of
average degree d shows it to be (2=3)n(d=2)3=2 when d� n.
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As seen in Section 4.5, the �t of this cost estimate with experimental data is quite good. The
average cost of a random hypercube embedding of Gn;d namely, hr, can be estimated by

hr =
nd

4
logn (4)

since the average length of an edge with arbitrary endpoints is (logn)=2. As seen in Table 8, there
is an exact match with this estimate and values in the column labeled R.

The above estimates indicate that, for geometric graphs with increasing size, the ratio of
minimum-cost embeddings to random embeddings decreases asymptotically to 0.

The bisection width b of a random geometric graph Gn;d of degree d can be estimated by
considering the average number of edges which cross a vertical line l cutting the grid into two
approximately equal sections. With the Manhattan metric the points adjacent to a given point ai
fall into a diamond-shaped region Drd(ai) of side

p
2rd. The edge between two points ai and aj

cuts the line l if it intersects Drd(ai). It follows from a straightforward analysis that on average
the probability that a pair of vertices are adjacent and their incident edge crosses the line is 2r3d=3.
Since there are n(n � 1)=2 such pairs, it follows that bmin, the average number of edges crossing
the vertical line, satis�es

bmin � (n� 1)d

2

p
d=2

3
p
n

(5)

In a random embedding of a random graph Gn;d half the edges cross the cut, so the average bisection
width br of a random graph is

br =
nd

2
(6)

These estimates, normalized by the number of edges, are used below to evaluate the quality of the
experimental data.

The columns labeled Slice in Tables 8 and 9 show results for the Slice heuristic, introduced
below, that are close to the above estimates. (The results presented in the tables are expressed as
average edge lengths, and must be multiplied by the number of edges nd=2 to give total embedding
costs.)

4.3 The Slice Heuristic

Intuitively, if every randomly generated vertex of Gn;d on the unit square were shifted by a small
distance so that the point occupied a unique grid location, the resulting grid embedding should be
quite good, and certainly better than a randomly generated mapping of vertices to the grid. Such
a heuristic can serve both as a starting solution for the Mob heuristic and as a reference point to
observe Mob's convergence from a random solution.

The Slice heuristic presented here is a divide-and-conquer algorithm to �nd unique vertex to
grid mappings by slightly displacing the vertices on the unit square. The Slice heuristic is closely
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related to the slicing structure tree introduced by Otten [17] for VLSI 
oorplan design. The vertices
are sorted along the x- or the y-dimension. The sorted vertices are divided into two sets, which
are mapped to di�erent halves of the grid. Each set is now sorted along the other dimension. The
procedure of sorting along alternating dimensions and halving the sets is repeated until the sets
are of size one. At this point every vertex has a unique grid node assigned to it.

Johnson et al [13] used a similar approach in designing their LINE heuristic for partitioning
geometric graphs: the unit square is cut into half to obtain a graph partition. They report that
local search algorithms do not converge quickly on geometric graphs, local search algorithms need
considerable running time to equal the performance of LINE, and LINE followed by local search
produced the best results.

Since x; y-coordinates are usually not part of the input to a graph-embedding problem, Slice
is de�nitely not a practical graph-embedding heuristic. We present its results here since we be-
lieve it produces solutions very close to the optimal embedding, thus allowing us to evaluate the
performance of the Mob heuristic.

By itself, the knowledge that a graph G is a random geometric graph seems not to be very
helpful. A heuristic is required to construct approximate x- and y-coordinates of G's vertices in
the unit square. Unfortunately, the best candidate for doing so is a grid-embedding heuristic.

4.4 Experiments on Large Geometric Graphs

We evaluated the performance of the Mob hypercube and grid-embedding algorithms for geometric
graphs with up to 256K vertices and 512K edges by conducting experiments on the CM-2. Again,
both 1-to-1 and 16-to-1 mappings were studied. The exact number of edges, vertices and average
degree of the random graphs used in our experiments are given in Table 7. We generated �ve graphs
of average degree 4 and �ve graphs of average degree 8 to study the e�ect of increasing graph size
on solution quality and running time. We performed experiments on nine graphs with 16K vertices
and average degrees ranging from 3 to 16 to examine the e�ect of graph degree on the behavior
of the Mob algorithms. At least �ve runs were performed for each embedding. The mob schedule
used was the same as for random graphs, and is given in Section 3. Mob was always stopped after
8000 iterations.

The computation time needed for one iteration of Mob is the same as for random graphs, so
Tables 4 and 5 also apply to geometric graphs. We shall see that while Mob with a constant number
of iterations does not produce embeddings that are close to optimal, the reduction of average edge
lengths is larger than for random graphs.

4.5 Solution Quality of Mob

The quality of the solutions produced by Mob is shown in Tables 8 and 9 for 1-to-1 and 16-to-
1 embeddings. Table 8 gives results for hypercube embeddings, Table 9 gives results for grid
embeddings. The columns labeled Dim give the dimension of the hypercube in which the graph
is embedded. For the grid embeddings, Dim is the dimension of the hypercube containing a
2bDim=2c � 2dDim=2e grid. The columns labeled R give the average edge length produced by a
random embedding, those labeled Slice give the average edge length produced by the Slice heuristic,
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Figure 7: Comparison of gmin=gr with Slice=R for (a) degree 4 and degree 8 geometric graphs
embedded in grids.

and those labeled Mob give the average edge length in an embedding produced by Mob from an
initial random embedding, each normalized by the number of edges nd=2 in a graph, where d is the
average degree of a graph. The columns labeled Slice=R and Mob=R give the ratio of improvement
produced by Slice and Mob over a random solution.

Shown in Figures 7 and 8 are the ratios gmin=gr and hmin=hr for degree 4 and 8 random
geometric graphs compared to the ratio of Slice=R.

Our experiments show that:

� The Slice heuristic produces comparable or slightly better results than Mob for hypercube
embeddings, and considerably better results than Mob for grid embeddings.

� For �xed degree d, Mob=R changes slowly with graph size; Slice=R decreases mildly with
increasing graph size for hypercubes but strongly for grids. Thus, the gap between Slice and
Mob widens as graphs become larger.

� 16-to-1 mappings give better Mob=R ratios than 1-to-1 mappings.

� The grid-embedding Mob heuristic achieves signi�cantly lower Mob=R ratios than the hyper-
cube Mob heuristic.

� The ratio Mob=R rises with increasing average graph degree. The di�erences between grid
and hypercube embeddings and between 1-to-1 and 16-to-1 embeddings become smaller with
increasing graph degree.
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Figure 8: Comparison of hmin=hr with Slice=R for (a) degree 4 and degree 8 geometric graphs
embedded in hypercubes.

� The ratio Mob=R is smaller for geometric graphs than for random graphs. (Compare Ta-
bles 2, 3 to Tables 8, 9). For 16-to-1 and 1-to-1 grid embeddings and for 1-to-1 hypercube
embeddings, Mob=R is about four to eight times smaller. For 1-to-1 hypercube embeddings,
the ratio Mob=R for geometric graphs is about 0.5 to 0.6 of the ratio Mob=R for random
graphs. Although Mob with a constant number of iterations does not produce embeddings
that are close to optimal, the reduction of average edge lengths is larger than for random
graphs.

4.6 Rates of Convergence of Mob

Tables 8 and 9 also report the convergence ofMob for increasing number of iterations. The columns
labeled Iterations show the average embedding cost as percentages above best-ever embedding cost,
produced after 100, 1000, and 4000 iterations of Mob, respectively. Our experiments for geometric
graphs indicate that Mob still converges rapidly towards a solution that is good compared to the
best-ever solution produced by Mob. However, as can be inferred from the Iterations columns,
the cost ratio of a Mob solution divided by the solution produced by Slice generally increases with
increasing graph size.

4.7 Comparison to Graph-partitioning Algorithms

To calibrate our results, we again measured the graph partitions produced by the hypercube and
grid embeddings, as described in Section 3. Table 10 shows how the Mob hypercube and grid
embedding algorithms behaved as graph-partitioning algorithms, compared to the Mob and KL
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graph-partitioning algorithms.
The cost of the graph embeddings P = (A;B) is given in Table 10 as the bisection width

normalized by the number of edges nd=2. The Mob graph-partitioning heuristic produced better
results than the hypercube- and grid-embedding algorithms, but it does not approach the partitions
produced by Slice. At least with a constant number of iterations, the Mob heuristics produce
embeddings in which the average bisection width as a function of graph size is constant or decreases
slowly, whereas the normalized bisection width produced by Slice as a function of graph size are
approximately proportional to the normalized value of the estimate bmin given above (see equation
(5) ), namely,

p
d=2=3

p
n.

We found that both 16-to-1 embedding algorithms and the grid 1-to-1 embedding algorithm
produced good graph partitions that were larger by a factor of roughly 1:5 to 3 than the Mob
graph-partitioning algorithm. The KL graph-partitioning algorithm, which we ran only on graphs
with 32K or fewer vertices due to running-time considerations, produced results noticeably worse
than these three graph embeddings. The 1-to-1 hypercube embeddings are larger by a factor of
roughly 4 to 9.

4.8 Comparison to Simulated Annealing

Analogous to the experiments with random graphs, we compared the performance of theMob cube-
embedding heuristic on geometric graphs to the results reported for simulated annealing by Chen
et al [6,7]. To duplicate their experiments, we generated 10 random geometric graphs with our own
generator. Each graph had 128 vertices. The distance parameter for the in�nity metric was set to
rd =

p
d=4n = 0:117386 to obtain graphs of degree 7.

Five runs were performed for each graph with the in�nity metric and the results were averaged
over these runs. Each run of Mob was limited by 8000 iterations, and a schedule as described above
was used. The results, expressed as percent reduction in edge lengths of a random embedding, are
given in Table 11. Chen et al report that on ten random geometric graphs of average degree 7, a
reduction of 48.0% was achieved by SAC, a version of SA with the move set limited to hypercube
edges. We found that the average reduction produced by Mob is 49.5% for our own graphs. The
Slice heuristic produced solutions with 52.1% reductions. The best solutions were obtained when
the solutions produced by Slice were further improved by Mob.

5 Conclusions

We have developed a new Mob-based heuristic that exploits parallelism and gives high-quality em-
beddings of low degree graphs in grids and hypercubes. It is closely related to both the Kernighan-
Lin and simulated annealing heuristics. We have implemented our Mob heuristic on the CM-2
Connection Machine to demonstrate that it is fast and can handle very large graphs. The speed of
the Mob heuristic should be adequate for the optimized placement of large (100,000 to 1,000,000
gates) VLSI circuits. It can also be applied to other optimization problems in which local search
heuristics have been successful. It would be interesting to see the Mob heuristic used in an indus-
trial production system for VLSI gate-array placement or full custom logic placement. Mob's speed
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and its ability to handle unusually large problem sizes could reduce design time by several orders
of magnitude and would allow the creation of new tools to handle larger problem instances and
return higher-quality solutions.
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Table 1: Large random graphs of small degree.

Graph Vertices Edges Degree
Degree 4
4.16K 16,384 32,699 3.94
4.32K 32,768 12,996 3.97
4.64K 65,536 129,996 3.97
4.128K 131,072 259,898 3.97
4.256K 262,144 519,996 3.97
4.512K 524,288 1,039,999 3.97
Degree 8
8.8K 8,192 31,997 7.81
8.16K 16,384 64,995 7.93
8.32K 32,786 129,994 7.93
8.64K 65,536 259,997 7.93
8.128K 131,072 519,996 7.93
8.256K 262,144 1,039,998 7.93
Variable Degree
3.16K 16,384 24,574 2.99
4.16K 16,384 32,699 3.94
5.16K 16,384 40,923 4.99
6.16K 16,384 49,093 5.99
7.16K 16,384 57,199 6.98
8.16K 16,384 64,995 7.93
9.16K 16,384 73,693 8.99
10.16K 16,384 81,918 9.99
16.16K 16,384 130,996 15.99

Table 2: Hypercube-embedding results for large random graphs. The costs of the Mob hypercube-
embedding algorithm, expressed as average edge length, are compared to a hypercube embedding
chosen at random. Convergence is measured by expressing Mob's cost after a number of iterations
as a percentage over the best solution obtained.

16-to-1 mappings Degree 4
Iterations Iterations

Graph Dim R Mob Mob/R 100 1000 4000 Dim R Mob Mob/R 100 1000 4000
Degree 4
4.16K 10 5.0 1.538 .3076 50.0 13.1 3.6 14 7.0 2.559 .3655 62.7 16.1 6.6
4.32K 11 5.5 1.720 .3127 51.3 10.6 2.2 15 7.5 2.783 .3711 62.5 16.0 3.2
4.64K 12 6.0 1.861 .3102 55.8 13.9 3.0 16 8.0 2.924 .3655 66.2 16.0 2.7
4.128K 13 6.5 2.022 .3110 68.7 12.3 4.0 17 8.5 3.111 .3660 90.8 16.2 5.0
4.256K 14 7.0 2.175 .3107 72.7 13.3 3.9 18 9.0 3.251 .3612 97.7 17.3 4.5
4.512K 15 7.5 2.369 .3159 76.6 12.6 1.8 19 9.5 3.398 .3577 98.9 19.8 4.2
Degree 8
8.8K 9 4.5 2.207 .4904 20.6 4.9 1.0 13 6.5 3.497 .5380 28.5 6.9 1.2
8.16K 10 5.0 2.460 .4920 24.6 5.3 1.2 14 7.0 3.759 .5370 30.3 6.6 1.4
8.32K 11 5.5 2.712 .4931 25.4 4.7 0.9 15 7.5 4.007 .5343 31.8 7.1 1.6
8.64K 12 6.0 2.955 .4925 31.4 5.7 1.8 16 8.0 4.261 .5326 32.9 7.6 2.5
8.128K 13 6.5 3.201 .4925 29.6 6.6 1.7 17 8.5 4.517 .5314 33.8 8.5 2.7
8.256K 14 7.0 3.473 .4961 31.7 5.0 0.8 18 9.0 4.781 .5312 35.1 8.3 2.4
Variable Degree
3.16K 10 5.0 1.148 .2296 79.8 19.4 5.1 14 7.0 2.123 .3033 80.3 24.2 4.5
4.16K 10 5.0 1.538 .3076 50.0 13.1 3.6 14 7.0 2.559 .3655 62.7 16.1 6.6
5.16K 10 5.0 1.874 .3748 34.9 9.4 1.7 14 7.0 2.975 .4250 47.9 11.6 4.5
6.16K 10 5.0 2.111 .4222 28.7 7.6 1.3 14 7.0 3.291 .4701 40.0 9.1 2.2
7.16K 10 5.0 2.312 .4624 25.4 6.0 1.1 14 7.0 3.553 .5075 34.5 7.6 1.5
8.16K 10 5.0 2.460 .4920 24.6 5.3 1.2 14 7.0 3.759 .5370 30.3 6.6 1.4
9.16K 10 5.0 2.607 .5214 23.8 4.6 1.1 14 7.0 3.933 .5619 27.4 6.4 1.7
10.16K 10 5.0 2.719 .5434 21.3 4.3 1.1 14 7.0 4.085 .5836 24.3 5.7 1.6
16.16K 10 5.0 3.186 .6372 13.5 2.7 0.5 14 7.0 4.666 .6666 17.0 4.5 1.0
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Table 3: Grid-embedding results for large random graphs. The costs of the Mob grid-embedding
algorithm, expressed as average edge length, are compared to a grid embedding chosen at random.
Convergence is measured by expressing Mob's cost after a number of iterations as a percentage over
the best solution obtained.

16-to-1 mappings 1-to-1 mappings
Iterations Iterations

Graph Dim R Mob Mob/R 100 1000 4000 Dim R Mob Mob/R 100 1000 4000
Degree 4
4.16K 10 21.3 6.142 .2884 38.7 9.6 1.7 14 85.1 26.702 .3138 54.1 16.9 4.6
4.32K 11 32.0 9.312 .2910 40.2 11.8 2. 15 128.3 40.387 .3148 55.9 16.4 4.3
4.64K 12 42.6 12.486 .2931 41.5 12.9 2. 16 170.7 55.386 .3245 59.9 17.2 4.5
4.128K 13 64.0 18.917 .2956 43.4 13.0 2. 17 256.1 81.779 .3193 59.9 18.1 3.9
4.256K 14 85.3 25.186 .2953 49.6 12.4 1. 18 341.1 108.484 .3180 65.6 17.4 4.0
4.512K 15 128.0 37.787 .2952 52.8 12.2 3.3 19 512.2 163.316 .3189 68.4 18.7 4.2
Degree 8
8.8K 9 15.9 7.694 .4839 16.8 3.4 0. 13 64.1 31.987 .4990 24.9 7.9 2.2
8.16K 10 21.3 10.226 .4801 17.7 4.1 0.9 14 85.5 42.779 .5003 24.8 7.8 1.9
8.32K 11 32.1 15.525 .4836 18.1 4.4 0.7 15 127.9 64.102 .5012 28.4 7.9 1.7
8.64K 12 42.7 20.737 .4856 18.5 4.8 1.1 16 170.7 85.097 .4985 27.8 8.1 2.0
8.128K 13 64.0 31.063 .4854 18.5 5.2 1.3 17 256.5 127.866 .4985 29.7 9.5 4.9
8.256K 14 85.3 41.672 .4885 18.7 5.3 1.2 18 341.4 170.619 .4998 29.7 8.0 1.7
Variable Degree
3.16K 10 21.2 4.417 .2074 61.8 15.7 3.4 14 85.1 19.946 .2344 77.6 23.7 6.3
4.16K 10 21.3 6.142 .2884 38.7 9.6 1.7 14 85.1 26.702 .3138 54.1 16.9 4.6
5.16K 10 21.3 7.688 .3609 29.2 6.8 1.0 14 85.2 32.750 .3844 39.8 12.3 3.1
6.16K 10 21.2 8.727 .4117 24.2 6.0 1.3 14 85.8 36.978 .4310 33.7 10.1 2.3
7.16K 10 21.3 9.597 .4506 20.3 4.7 1.0 14 85.3 40.232 .4717 28.4 8.6 2.3
8.16K 10 21.3 10.226 .4801 17.7 4.1 0.9 14 85.5 42.779 .5003 24.8 7.8 1.9
9.16K 10 21.3 10.934 .5133 15.7 3.6 0.7 14 85.1 45.511 .5348 22.4 6.2 1.5
10.16K 10 21.3 11.450 .5376 14.7 3.3 0.7 14 85.3 47.416 .5559 19.8 6.1 1.4
16.16K 10 21.3 13.449 .6314 9.8 2.2 0.5 14 85.3 55.061 .6455 14.8 4.2 1.0

Table 4: Hypercube timing results. Execution times were measured for 1 Mob iteration on an 8K,
16K, and 32K CM-2.

16-to-1 mappings 1-to-1 mappings
Degree 4
Graph Dim 8K 16K 32K Dim 8K 16K 32K
4.16K 10 .0532 .0306 - 14 .0395 .0222 -
4.32K 11 .1089 .0547 .0314 15 .0740 .0405 .0223
4.64K 12 .2012 .1050 .0564 16 .1650 .0760 .0416
4.128K 13 .4060 .2113 .1139 17 .3073 .1572 .0799
4.256K 14 - .4165 .2190 18 - .3111 .1630
4.512K 15 - - .4302 19 - - .3160
Degree 8
8.8K 9 .0417 - - 13 .0323 - -
8.16K 10 .0734 .0446 - 14 .0590 .0329 -
8.32K 11 .1434 .0754 .0475 15 .1133 .0602 .0353
8.64K 12 .2841 .1618 .0803 16 .2305 .1169 .0664
8.128K 13 - .3163 .1544 17 - .2360 .1210
8.256K 14 - - .3031 18 - - .2441
Variable Degree
3.16K 10 .0555 .0310 - 14 .0406 .0225 -
4.16K 10 .0532 .0306 - 14 .0395 .0222 -
5.16K 10 .0712 .0462 - 14 .0610 .0346 -
6.16K 10 .0751 .0448 - 14 .0595 .0337 -
7.16K 10 .0737 .0418 - 14 .0592 .0328 -
8.16K 10 .0734 .0446 - 14 .0590 .0329 -
9.16K 10 .1157 .0648 - 14 .0974 .0540 -
10.16K 10 .1140 .0633 - 14 .0963 .0529 -
16.16K 10 .1106 .0617 - 14 .0988 .0525 -
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Table 5: Grid embedding timing results. Execution times were measured for 1 Mob iteration on an
8K, 16K, and 32K CM-2.

16-to-1 mappings 1-to-1 mappings
Degree 4
Graph Dim 8K 16K 32K Dim 8K 16K 32K
4.16K 10 .0726 .0428 - 14 .0640 .0355 -
4.32K 11 .1405 .0768 .0441 15 .1161 .0640 .0395
4.64K 12 .2682 .1422 .0784 16 .2252 .1152 .0691
4.128K 13 .5502 .2824 .1514 17 .4600 .2342 .1277
4.256K 14 - .5630 .2940 18 - .4762 .2500
4.512K 15 - - .5932 19 - - .5394
Degree 8
8.8K 9 .0583 - - 13 .0532 - -
8.16K 10 .1094 .0615 - 14 .0974 .0566 -
8.32K 11 .2092 .1224 .0643 15 .1886 .1134 .0626
8.64K 12 .4127 .2232 .1151 16 .4015 .2229 .1091
8.128K 13 - .4241 .2273 17 - .3950 .2156
8.256K 14 - - .4495 18 - - .4246
Variable Degree
3.16K 10 .0730 .0417 - 14 .0593 .0448 -
4.16K 10 .0726 .0428 - 14 .0640 .0355 -
5.16K 10 .1095 .0624 - 14 .0974 .0554 -
6.16K 10 .1101 .0632 - 14 .0976 .0563 -
7.16K 10 .1089 .0623 - 14 .0984 .0569 -
8.16K 10 .1094 .0615 - 14 .0974 .0566 -
9.16K 10 .1758 .1056 - 14 .1581 .0951 -
10.16K 10 .1734 .1060 - 14 .1607 .0962 -
16.16K 10 .1771 .0956 - 14 .1648 .0916 -

Table 6: Graph partitions of random graphs generated by cutting the hypercube and grid em-
beddings across a hyperplane. Bisection widths are normalized by the number of edges. The
Mob hypercube and grid heuristic produce bisection widths that are better than those of the KL
heuristic.

Graph R Mob Partition KL Partition Cube 16:1 Cube 1:1 Grid 16:1 Grid 1:1
Degree 4
4.16K .5 .1480 .1739 .1520 .1808 .1503 .1608
4.32K .5 .1512 .1765 .1551 .1835 .1510 .1616
4.64K .5 .1500 - .1541 .1804 .1521 .1619
4.128K .5 .1500 - .1545 .1813 .1525 .1636
4.256K .5 .1552 - .1547 .1797 .1527 .1629
4.512K .5 .1503 - .1567 .1770 .1524 .1633
Degree 8
8.8K .5 .2411 .2531 .2442 .2660 .2456 .2539
8.16K .5 .2442 .2581 .2453 .2671 .2449 .2539
8.32K .5 .2436 .2610 .2462 .2658 .2468 .2539
8.64K .5 .2444 - .2458 .2652 .2484 .2539
8.128K .5 .2442 - .2459 .2648 .2473 .2543
8.256K .5 .2440 - .2478 .2650 .2476 .2543
Variable Degree
3.16K .5 .1080 .1384 .1135 .1485 .1096 .1200
4.16K .5 .1480 .1739 .1520 .1808 .1503 .1608
5.16K .5 .1838 .2073 .1863 .2103 .1858 .1951
6.16K .5 .2085 .2290 .2100 .2330 .2095 .2220
7.16K .5 .2278 .2485 .2303 .2521 .2295 .2408
8.16K .5 .2442 .2581 .2453 .2671 .2449 .2539
9.16K .5 .2585 .2730 .2596 .2794 .2611 .2701
10.16K .5 .2694 .2847 .2710 .2910 .2729 .2814
16.16K .5 .3155 .3261 .3181 .3323 .3187 .3258
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Table 7: Large random geometric graphs of small degree.

Graph Vertices Edges Degree
Degree 4
4.16K 16,384 31,946 3.90
4.32K 32,768 64,222 3.92
4.64K 65,536 129,649 3.96
4.128K 131,072 258,561 3.95
4.256K 262,144 517,080 3.95
Degree 8
8.8K 8,192 32,233 7.87
8.16K 16,384 64,515 7.88
8.32K 32,786 129,661 7.91
8.64K 65,536 259,982 7.93
8.128K 131,072 520,719 7.95
Variable Degree
3.16K 16,384 24,327 2.97
4.16K 16,384 31,946 3.90
5.16K 16,384 40,542 4.95
6.16K 16,384 49,868 6.09
7.16K 16,384 56,557 6.90
8.16K 16,384 64,515 7.88
9.16K 16,384 72,397 8.84
10.16K 16,384 80,549 9.83
16.16K 16,384 130,514 15.93
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Table 8: Hypercube-embedding results for large geometric graphs. The cost of the Slice and Mob
hypercube-embedding algorithms, expressed as average edge length, are compared to a hypercube
embedding chosen at random. Convergence is measured by expressing Mob's cost after a number
of iterations as a percentage over the best solution obtained.

16-to-1 mappings
Iterations

Graph Dim R Slice Slice/R Mob Mob/R 100 1000 4000
Degree 4
4.16K 10 5.0 0.298 0.0596 0.249 0.0498 283.1 60.2 12.7
4.32K 11 5.5 0.318 0.0578 0.274 0.0498 304.6 52.6 10.7
4.64K 12 6.0 0.305 0.0508 0.298 0.0497 314.6 53.2 12.1
4.128K 13 6.5 0.320 0.0492 0.317 0.0488 349.4 60.7 22.1
4.256K 14 7.0 0.306 0.0437 0.338 0.0483 422.5 90.5 33.8
Degree 8
8.8K 9 4.5 0.402 0.0893 0.419 0.0931 147.7 29.2 12.3
8.16K 10 5.0 0.404 0.0808 0.465 0.0930 197.8 47.3 22.9
8.32K 11 5.5 0.426 0.0774 0.499 0.0907 230.6 64.3 25.1
8.64K 12 6.0 0.404 0.0673 0.536 0.0893 306.7 84.1 41.7
8.128K 13 6.5 0.422 0.0649 0.573 0.0881 339.3 91.5 47.8
Variable Degree
3.16K 10 5.0 0.273 0.0546 0.170 0.0340 356.0 70.3 12.7
4.16K 10 5.0 0.298 0.0596 0.249 0.0498 283.1 60.2 12.7
5.16K 10 5.0 0.322 0.0644 0.304 0.0608 242.0 53.9 11.1
6.16K 10 5.0 0.364 0.0728 0.389 0.0778 203.8 44.2 15.3
7.16K 10 5.0 0.382 0.0764 0.434 0.0868 205.6 47.7 21.0
8.16K 10 5.0 0.404 0.0808 0.465 0.0930 197.8 47.3 22.9
9.16K 10 5.0 0.417 0.0834 0.507 0.1014 208.1 52.4 29.5
10.16K 10 5.0 0.440 0.0880 0.529 0.1058 195.3 53.7 29.7
16.16K 10 5.0 0.535 1.1000 0.668 0.1336 167.7 54.3 32.3

1-to-1 mappings
Iterations

Graph Dim R Slice Slice/R Mob Mob=R 100 1000 4000
Degree 4
4.16K 14 7.0 1.661 0.2372 1.719 0.2456 68.4 17.1 6.7
4.32K 15 7.5 1.684 0.2245 1.747 0.2329 79.5 22.4 7.3
4.64K 16 8.0 1.676 0.2095 1.783 0.2229 90.8 27.1 10.3
4.128K 17 8.5 1.689 0.1986 1.808 0.2207 104.2 28.1 13.7
4.256K 18 9.0 1.676 0.1863 1.838 0.2042 120.1 32.1 17.4
Degree 8
8.8K 13 6.5 1.910 0.2938 2.069 0.3183 56.1 18.9 11.7
8.16K 14 7.0 1.893 0.2704 2.106 0.3009 72.3 24.3 14.7
8.32K 15 7.5 1.904 0.2539 2.140 0.2853 79.4 30.6 15.8
8.64K 16 8.0 1.904 0.2380 2.174 0.2718 94.3 35.7 17.9
8.128K 17 8.5 1.905 0.2242 2.213 0.2603 106.6 39.1 22.3
Variable Degree
3.16K 14 7.0 1.600 0.2286 1.565 0.2236 70.7 11.7 3.3
4.16K 14 7.0 1.661 0.2373 1.719 0.2456 68.4 17.1 6.7
5.16K 14 7.0 1.737 0.2481 1.867 0.2667 66.4 20.2 10.7
6.16K 14 7.0 1.811 0.2587 1.979 0.2827 69.4 23.1 12.6
7.16K 14 7.0 1.850 0.2643 2.045 0.2921 71.4 23.5 13.8
8.16K 14 7.0 1.893 0.2704 2.106 0.3009 72.3 24.3 14.7
9.16K 14 7.0 1.944 0.2777 2.171 0.3101 68.5 24.4 14.8
10.16K 14 7.0 1.987 0.2839 2.219 0.3170 65.7 23.8 14.8
16.16K 14 7.0 2.201 0.3144 2.468 0.3526 60.3 22.1 14.8
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Table 9: Grid-embedding results for large geometric graphs. The costs of the Slice and Mob grid-
embedding algorithms, expressed as average edge length, are compared to a grid embedding chosen
at random. Convergence is measured by expressing Mob's cost after a number of iterations as a
percentage over the best solution obtained.

16-to-1 mappings
Iterations

Graph Dim R Slice Slice/R Mob Mob/R 100 1000 4000
Degree 4
4.16K 10 21.280 0.298 0.0140 0.797 0.0375 958.8 347.5 210.9
4.32K 11 31.955 0.318 0.0099 1.142 0.0357 1575.3 580.1 324.3
4.64K 12 42.676 0.305 0.0071 1.780 0.0417 2149.3 874.3 580.9
4.128K 13 64.009 0.320 0.0050 2.627 0.0410 3325.8 1299.4 857.7
4.256K 14 85.342 0.306 0.0036 3.479 0.0408 5273.8 1847.6 1228.0
Degree 8
8.8K 9 15.998 0.402 0.0251 1.142 0.0714 708.9 282.1 202.5
8.16K 10 21.296 0.404 0.0190 1.435 0.0674 1029.4 455.7 301.7
8.32K 11 31.998 0.426 0.0133 2.301 0.0720 1624.5 746.5 527.0
8.64K 12 42.652 0.404 0.0095 3.089 0.0724 2334.1 1105.5 771.3
8.128K 13 63.970 0.422 0.0066 4.651 0.0727 3509.2 1604.7 1142.4
Variable Degree
3.16K 10 21.281 0.273 0.0128 0.489 0.0230 966.5 239.1 121.0
4.16K 10 21.280 0.298 0.0140 0.797 0.0375 958.8 347.5 210.9
5.16K 10 21.311 0.322 0.0151 1.011 0.0474 1049.5 391.3 260.2
6.16K 10 21.231 0.364 0.0171 1.238 0.0583 1040.0 419.2 280.1
7.16K 10 21.293 0.382 0.0180 1.373 0.0645 1048.1 442.0 299.6
8.16K 10 21.296 0.404 0.0190 1.435 0.0674 1029.4 455.7 301.7
9.16K 10 21.312 0.417 0.0200 1.616 0.0758 967.1 466.1 329.5
10.16K 10 21.311 0.440 0.0206 1.595 0.0749 1017.7 440.5 310.8
16.16K 10 21.319 0.535 0.0251 1.894 0.0889 910.4 431.8 311.4

1-to-1 mappings
Iterations

Graph Dim R Slice Slice/R Mob Mob/R 100 1000 4000
Degree 4
4.16K 14 85.374 1.708 0.0200 6.510 0.0763 1288.6 510.1 344.4
4.32K 15 127.980 1.765 0.0138 9.054 0.0707 2021.3 771.4 500.8
4.64K 16 170.618 1.728 0.0101 11.236 0.0659 3043.7 1084.0 674.2
4.128K 17 256.180 1.771 0.0069 15.903 0.0621 4321.8 1476.5 977.0
4.256K 18 341.428 1.728 0.0051 20.504 0.0601 6435.3 2572.7 1321.4
Degree 8
8.8K 13 64.153 2.087 0.0326 7.169 0.1117 936.5 433.0 285.7
8.16K 14 85.288 2.008 0.0235 9.057 0.1062 1450.0 637.5 415.1
8.32K 15 128.052 2.079 0.0162 12.744 0.0995 2173.8 938.4 609.7
8.64K 16 170.595 2.021 0.0118 16.852 0.0990 3019.9 1246.4 859.9
8.128K 17 255.985 2.080 0.0081 25.198 0.0984 4576.2 1936.5 1296.7
Variable Degree
3.16K 14 85.296 1.639 0.0192 5.011 0.0587 1170.5 426.1 265.7
4.16K 14 85.374 1.708 0.0200 6.510 0.0763 1288.6 510.1 344.4
5.16K 14 85.324 1.803 0.0211 7.402 0.0868 1422.9 578.3 381.6
6.16K 14 85.251 1.897 0.0220 8.196 0.0961 1434.9 604.2 402.8
7.16K 14 85.365 1.947 0.0228 8.449 0.0990 1464.1 618.5 413.0
8.16K 14 85.288 2.008 0.0235 9.057 0.1062 1450.0 637.5 415.1
9.16K 14 85.460 2.072 0.0242 9.453 0.1106 1431.7 624.5 425.2
10.16K 14 85.469 2.137 0.0250 9.259 0.1083 1417.5 611.7 407.0
16.16K 14 85.376 2.475 0.0290 10.199 0.1195 1219.6 593.0 372.0
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Table 10: Graph partitions of geometric graphs generated by cutting the hypercube and grid
embeddings across a hyperplane. Bisection widths are normalized by the number of edges. The
Mob hypercube and grid heuristic produce bisection widths comparable to those of the Mob graph-
partitioning heuristic and better than those of the KL heuristic.

Graph R Slice Mob Partition KL Partition Cube 16:1 Cube 1:1 Grid 16:1 Grid 1:1
Degree 4
4.16K .5 0.0031 0.0093 0.0376 0.0230 0.1174 0.0166 0.0291
4.32K .5 0.0027 0.0130 0.0421 0.0238 0.1081 0.0156 0.0284
4.64K .5 0.0014 0.0143 0.0409 0.0235 0.1053 0.0186 0.0266
4.128K .5 0.0015 0.0146 - 0.0238 0.1004 0.0185 0.0257
4.256K .5 0.0009 0.0116 - 0.0236 0.0974 0.0188 0.0243
Degree 8
8.8K .5 0.0066 0.0204 0.0438 0.0422 0.1472 0.0300 0.0420
8.16K .5 0.0047 0.0177 0.0476 0.0433 0.1423 0.0284 0.0422
8.32K .5 0.0037 0.0171 0.0463 0.0431 0.1382 0.0300 0.0390
8.64K .5 0.0026 0.0228 - 0.0431 0.1296 0.0297 0.0401
8.128K .5 0.0016 0.0196 - 0.0428 0.1250 0.0322 0.0413
Variable Degree
3.16K .5 0.0022 0.0077 0.0293 0.0146 0.1028 0.0091 0.0225
4.16K .5 0.0031 0.0093 0.0376 0.0230 0.1174 0.0166 0.0291
5.16K .5 0.0033 0.0162 0.0464 0.0288 0.1253 0.0203 0.0339
6.16K .5 0.0050 0.0139 0.0496 0.0365 0.1304 0.0257 0.0386
7.16K .5 0.0049 0.0154 0.0565 0.0414 0.1360 0.0248 0.0423
8.16K .5 0.0047 0.0177 0.0476 0.0433 0.1423 0.0275 0.0407
9.16K .5 0.0042 0.0103 0.0517 0.0459 0.1441 0.0284 0.0422
10.16K .5 0.0059 0.0213 0.0477 0.0483 0.1502 0.0320 0.0445
16.16K .5 0.0072 0.0175 0.0542 0.0579 0.1597 0.0335 0.0480

Table 11: Hypercube embeddings of 128-vertex, degree-7 geometric graphs. Comparison of Mob to
SA.

Heuristic Min Average Cost Average. Edge Length % of Random
Mob + Slice 620 676.0 1.694 47.7
Mob 649 702.7 1.758 49.5
Slice 664 737.6 1.849 52.1
Random 1320 1410.1 3.552 100.0
SAC (pushed) 694 742.8 1.691 48.0
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