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Abstract

Multi-grained parallel computers can be very e�ective on computationally intensive

problems that have important serial and parallel components. We examine the Mesh Su-

perHet, a model of this type consisting of the close coupling of a d-dimensional toroidal

mesh of coarse-grained processors to a serial machine containing memory modules con-

nected via a low-diameter network to a fast serial processor. We exhibit problems for

which the Mesh SuperHet is superior to its serial or parallel components alone and

develop tight performance bounds for sorting, the fast Fourier transform, and matrix

multiplication. As multi-grained machines become more common, studies such as this

will both reveal the fundamental limitations on such architectures and set the context

for algorithm development.

1 Introduction

In this article we explore multi-grained parallel architectures consisting of closely coupled
high-performance serial and parallel machines. We approach this topic believing that while
many important problems exhibit high-degrees of parallelism, they also have important serial
components which, if run on one processor of a parallel array, will run so slowly as to nullify
the e�ect of parallelism.

Anecdotal evidence suggests that multi-grained architectures can greatly reduce com-
putation time for large problems. It is reported that McRae solved a chemical process
resource-allocation problem \40 times faster than he could on a supercomputer alone" [1]
using a CRAY Y-MP connected via a high-speed link to a CM-2 Connection Machine. Oth-
ers report a factor of 5 to 10 reduction in elapsed time [9] for such architectures. This
evidence o�ers further support for multi-grained computers.

Our model for multi-grainedparallelism is theMesh SuperHetwhich we assert is a realistic
model that provides a reasonable mix of serial and parallel computation together with a
reasonable amount of structured communication between the two machines. It consists
of closely coupled serial and parallel machines, the former having a supercomputer-style
memory system and the latter being a p-processor, m-word/processor, d-dimensional toroidal
mesh. (A 2-D version of the machine is shown in Figure 1.) We assume that the front-end
memory system consists of a number of random-access memory modules of unlimited size
(simulated via a memory hierarchy) that are connected via a low diameter network to the
front-end processor. The front-end processor is assumed to execute instructions and access
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Figure 1: The two-dimensionalMesh SuperHet computer has p processors, m memory words
per mesh processor, and is connected via

p
p processors on the mesh face to a front-end that

has
p
p memory units of unlimited capacity that are addressable either by mesh proces-

sors or a serial front-end processor. The general Mesh SuperHet has a d-dimensional mesh
with s processors along each dimension, p = sd processors all together, and sd�1 = p1�1=d

processors (and front-end memory units) on a mesh face.

its memory modules � times as fast as a mesh processor, � � 1. The two machines are
coupled by connecting each processor on a mesh face (each face has p1�1=d processors) with
an individual memory module of the serial machine. We assume that the time to transmit n
words between adjacent processors or between a mesh-face processor and a memory module
requires n + � mesh processor cycles where � is the mesh latency.

The assumed coupling between the serial and parallel machines o�ers a moderately gen-
erous bandwidth but requires that data generated on the mesh be organized carefully for
front-end storage to avoid the creation of serial bottlenecks. We study close coupling be-
tween the serial and parallel machines in order to better understand its e�ect on the speedup
attainable with the parallel machine. As we show, for some problems, such as sorting, the
amount of coupling limits speedup whereas for others, such as the FFT and matrix multi-
plication, a full speedup is possible with limited coupling if the amount of memory per mesh
processor, m, is suÆciently large.

This computational model allows us to study the e�ect of allocating some of the cost of
multigrained parallel machine in a mesh and some in the traditional supercomputer front
end. The assumptions made about the performance of the two types of machine and their
coupling are realistic for modern high performance computers.

The e�ect of reducing the number of processors and memory modules that are connected
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together and reducing the bandwidth of the channels between them directly a�ects the time
to sort but only indirectly a�ects the time to compute the FFT and multiply matrices if
processors have enough memory to compensate for the reduced bandwidth.

We show that the performance of algorithms is weakly dependent on the latency � of the
mesh and the ratio � between the speed of the front-end and mesh processors.

We focus attention on problems that are too large to store on the mesh and for which
data must be moved between the front-end and the mesh before and after a computation.
Mesh-based algorithms for the three problems examined here when they �t entirely on the
mesh have been studied elsewhere (see Chapter 7 of [12]).

1.1 Contributions

We make four kinds of contributions. First, we exhibit a problem that is more quickly solved
on the Mesh SuperHet than on either its serial or parallel component alone.

Second, we explore variations in the Mesh SuperHet architecture. We show that the
model is robust under small changes in the number of interconnections between the mesh
and the front-end memory modules. We also show that the impact of mesh communication
latency � on algorithm performance is small as long as � is small by comparison with m,
the number of words per mesh processor. Finally, we show that increasing the ratio � of
the speed of the front-end and mesh processors has a small e�ect on the performance of
algorithms.

Third, we develop a lower bound on computation time for sorting when the number of
inputs, n, is large and show that a speedup of at most O(p1�1=d log(mp)) is possible on a
p-processor, d-dimensional, m-word/processor Mesh SuperHet for this problem.

Fourth, we develop fast algorithms for three representative problems on this machine.
We give an algorithm for sorting whose running time matches asymptotically that of the
lower bound. We also give algorithms for the FFT and matrix multiplication that exhibit
a full speedup when m is large relative to �, p, and 1=�, where � is the fraction of the
mesh-face processors that are connected to front-end memory modules.

1.2 Related Computational Models

The Mesh SuperHet model is a generalization of the model of Atallah and Tsay [2] and
that of Dehne, Fabri and Rau-Chaplin [5]. Atallah and Tsay connect a serial front end
to a p-processor d-dimensional mesh with a small number of memory words per processor.
They assume that at most p1�1=d (the number of processors on a mesh face) words can be
transferred between the mesh and the serial machine per unit time without any restrictions
on how the data is moved. They show that a speedup of O(p1�1=d log p) is possible for
sorting-related problems in computational geometry. Dehne, Fabri and Rau-Chaplin [5]
consider a machine consisting of a d-dimensional, p-processor mesh in which the memory is
large enough to hold the data for an entire problem. When a sorting problem �ts entirely on
a two-dimensional mesh, they show that a full speedup is possible if m satis�es m = 2
(

p
p).

Like Dehne et al., we assume that each processor on the mesh can have a large amount
of memory. Like Atallah and Tsay, we assume the problem is so large that it cannot �t
entirely on the processor array. Unlike Atallah and Tsay we severely restrict their model by
forcing data to move through individual channels between machines.
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Because this work concerns data movement between two machines it is related to that of
Kung [8] who has explored conditions under which the computation and I/O time on serial
machines are balanced for a number of problems. (Chapter 11 of [12] contains an accessible
treatment of this subject.) He has examined problems such as matrix multiplication, Gaus-
sian elimination, the FFT, and sorting; he also comments on these issues for two-dimensional
meshes.

Finally, it should be noted that the Mesh SuperHet has much in common with the Cray
Research, Inc. T3D machine. It has a supercomputer front-end and a three-dimensional
mesh of fast processors with fast local communications. It di�ers from our model in that
mesh processors are connected (in groups of 64) to the front-end via I/O channels, not
directly to front-end memory modules.

2 Testing the Limits of the Mesh SuperHet

In this section we consider two questions: \Is the front-end processor always needed?" and
\Are there problems solved more quickly on a Mesh SuperHet than on either the serial front
end or the parallel computer alone?"

2.1 Simulating the Serial Front End

We note that although the large memory of the serial machine is used heavily in the algo-
rithms developed in Sections 3, 4 and 5, the serial front-end processor is used only sparingly.
This causes us to ask if this processor is always necessary. In practice it is necessary because,
as explained earlier, many important computational problems either have an important se-
rial component or make use of (legacy) code written for a serial processor. However, as the
following theorem demonstrates, the work of the serial processor can done by the parallel
processors as long as the serial processor is used infrequently.

Theorem 1 Let Tserial be the number of steps executed by the serial front end of a d-
dimensional, p-processor Mesh SuperHet in a T -step computation. If Tserial = O

�
T=p1=d

�
,

the computation can be done without the front-end processor in O(T ) steps.

Proof The serial processor can access any front-end memory module in one unit of
time. To simulate this processor one mesh processor is designated as the replacement
for the serial processor. During a serial phase of the computation this processor accesses
a front-end memory module by dispatching one request to the corresponding mesh-face
processor. Since the distance on the mesh face between any two processors is O

�
p1=d

�
,

O(p1=dTserial) steps suÆce to simulate the serial front end and the result follows.

2.2 A Problem Better Solved on the Mesh SuperHet

While intuition says that a high-performance serial front-end processor can have a material
in
uence on the execution time for problems having a mix of serial and parallel structure, it
is diÆcult to exhibit a natural problem of this kind. For this reason we are content to exhibit
a problem with this structure that is arti�cially created to demonstrate that problems exist.
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Figure 2: A graph describing a computation that is computed more eÆciently on the Mesh
SuperHet than on either the serial front-end or the mesh alone. One vertex in each row
is special. It receives an input from a special vertex in the preceding row. Many columns
separate special vertices in adjacent rows. The open vertices are associated with variables.
Each closed vertex has one more input from a variable that is not shown.

Figure 2 exhibits a graph that we show is better solved on the 2-D p-processor Mesh
SuperHet than on either its serial component (the mesh is not used) or parallel compo-
nent (front-end memory modules are connected to mesh-face processors but the front-end
processor is disabled). The graph has

p
p columns each containing

p
p vertices. As shown

below, if the vertices in a given column are stored initially in a single front-end memory,
p
p

mesh-face processors can work almost independently on the columns except when values of
special vertices (one per row, connected via edges to remote vertices) are computed. If the
serial front-end processor can retrieve these remote values, the columns can be traversed inp
p steps. If not, the remote values have to be obtained by passing them through chains

of processors on the mesh face which increases the total computation time to an amount
proportional to p, as we show below.

To complete the description of the graph, we add a bit more detail. Each open graph
vertex is associated with a unique variable. Each one-input solid vertex actually has two
inputs, the output of its predecessor in the graph and the value of a unique variable not
shown. Finally, each (special) binary vertex has three inputs, outputs of the two graph
vertices to which it is connected plus a unique variable, also not shown. This graph has p
input variables and

p
p output vertices.

We assume that input variables associated with the jth column are stored in the jth
memory module (See Figure 1). The graph can be computed level by level in �(

p
p) steps

using the
p
pmesh-face processors to compute column values and the serial processor to fetch

remote values. However, if the rapid access to the front-end memorymodules provided by the
serial processor is not available, it must be simulated by mesh processors, introducing a factor
of approximately

p
p (the number of columns separating special vertices in adjacent rows)

in the computation time for each parallel step, making the computation time proportional
to p.

This argument fails if the columns can be permuted to place logically adjacent columns
in adjacent memory modules. A related problem with the desirable property has the same
structure except that a parameter ci, unknown when columns are assigned to memory mod-
ules, speci�es the column containing the special vertex in the ith row, 1 � i � p

p. These
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Figure 3: (a) Several levels of a parallel decision tree; (b) mp1=d levels of a large parallel
decision tree.

parameters can be stored in one front-end memory module or retrieved from separate mem-
ory modules by the front-end in time O(

p
p). Thus, this computation can be done in time

O(
p
p) on the Mesh SuperHet but only in time 
(p) on either submachine alone, whether

column variables are stored in the same module or not.

3 Sorting on the Mesh SuperHet

We derive a lower on the time to sort with comparison-based sorting algorithms on the
Mesh SuperHet and then describe an asymptotically optimum sorting algorithm. We assume
without loss of generality that all words to be sorted are distinct.

3.1 A Lower Bound on the Time to Sort

Our lower bound on the time to sort uses the parallel decision tree model of computation
[7, pp. 185], an extension of the well-known serial decision tree model. As suggested in
Figure 3(a), a parallel decision tree performs multiple comparisons in each step and then
executes one of several branches based on the outcomes.

For every comparison-based sorting algorithm there is a parallel decision tree. Each leaf
of such a treee corresponds to the order that the inputs fx1; x2; : : : ; xng have when sorted.
Since there are n! permutations of these words, every parallel decision tree has at least n!
leaves. We note that the paths through a parallel decision tree may not all have the same
length and that several di�erent paths may be associated with the same set of comparisons,
although performed in di�erent orders.

While the following lower bound on sorting time is stated for the Mesh SuperHet, it
applies to a more general class of machine, namely, those whose front-end can do O(p1�1=d

6



log(mp)) comparisons per parallel machine step, whose parallel machine has mp storage
locations, and whose mesh-face can pass �p1�1=d words per parallel step, 0 � � � 1.

Theorem 2 Let Tsort(n;m; p; d) be the time, measured in mesh processor steps, required by
a comparison-based algorithm to sort n elements, n � 4, on a p-processor,m-word/processor,
d-dimensional Mesh SuperHet in which �p1�1=d mesh-face processors are connected to front-
end memory modules, 0 � � � 1. Then, Tsort(n;m; p; d) satis�es the following inequality
where � is the ratio of the speed of the front-end processor to that of a mesh processor.

Tsort(n;m; p; d) � n logn

4(�+ (1 + �)p1�1=d log(2mp))

Proof Divide time up into intervals of mp1=d mesh processor steps. In any given
interval let e be the number of words entering and l the number leaving the mesh.
Clearly, e + l � �mp because at most �p1�1=d words can move across the mesh face
in one step. Since at the beginning of the interval there are at most mp words in the
array, at most e + l + mp � (1 + �)mp words can interact on the mesh during any
interval. Thus, at most ((1 + �)mp)! permutations of these elements can be identi�ed
by the mesh during an interval. The serial processor can make at most � comparisons
on each mesh step and at most �mp1=d comparisons in one interval. Since there are two

outcomes for each of these comparisons, at most 2�mp1=d outcomes can be identi�ed by

the front-end processor in one interval. Thus, at most ((1 + �)mp)!2�mp1=d outcomes
can be simultaneously identi�ed by both the front end and the mesh in one interval.

Let � be a subtree of the parallel decision tree corresponding to the comparisons made
by mesh processors and the serial front-end process in one interval, as suggested in
Figure 3(b). It follows that the number of distinguishable leaves of any such subtree �

is at most ((1 + �)mp)!2�mp1=d .

Consider the full decision tree associated with a comparison-based sorting algorithm
whose running time is Tsort(n;m; p; d). This time contains Tsort(n;m; p; d)=mp1=d inter-

vals of length mp1=d. Because at most ((1 + �)mp)!2�mp1=d outcomes can be identi�ed
in one interval it follows that at most

(((1 + �)mp)!2�mp1=d )Tsort(n;m;p;d)=mp1=d

outcomes can be identi�ed in time Tsort(n;m; p; d). Because the decision tree must have
at least n! leaves, Tsort(n;m; p; d) must satisfy the following lower bound.

Tsort(n;m; p; d) � mp1=d logn!= log
�
(1 + �)mp)!2�mp1=d

�

The desired result follows from the observations that (q=4) log2 q � log(q!) for q � 4 and
log2(q!) � q log2 q.

This lower bound shows that a speedup of at most about p1�1=d log(mp) is possible. A
full speedup of p is not achievable because it takes time proportional to mp1=d to move mp
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words on and o� the mesh, which is comparable to the time to merge mp words on the
mesh. Note the weak dependence of the bound on � and �. �, the ratio of the speed of the
front-end processor to that of a mesh processor, must be at least as large as 2p1�1=d log(mp)
when � = 1 for the speed of the front-end to a�ect the speedup of the combined machine.
(For p = 64, d = 2 and m = 1 Mbyte, � must be at least 368.)

It is interesting to note that, as shown by Dehne et al. [5], that the n words can be
sorted with a full speedup on a 2-D mesh without a front-end unit if the following conditions
hold: a) the n words �t into the memory of the p processors, that is, n = mp, and b) the
amount of memory per processor is large enough relative to the number of processors, that
is, m = 2
(

p
p).

We are particularly interested in the case for which n is much larger than mp, that is,
the mesh unit cannot solve the problem alone but is used to speed up an otherwise serial
problem.

3.2 An Asymptotically Optimal Sorting Algorithm

In this section we generalize the Atallah-Tsay sorting algorithm [2] (see Figure 4) to the
Mesh SuperHet. Our principal challenge is to manage data movement between the machines
so as to avoid creating serial bottlenecks.

The new algorithm sorts a list of n elements by dividing the list into q sublists, recursively
sorting the sublists, and then merging these lists together. Without loss of generality we

assume that n = qt(mp=3), t an integer, and q =
l
(mp=3)

1=2d
m
. The algorithm merges the

q sublists using the front-end and mesh cooperatively. It �nds the approximately (mp=3)
smallest words in the q lists and moves them to the mesh where they are merged. (The
complex details of this process are central to our extension of the Atallah-Tsay algorithm.)
This step is repeated with the next approximately (mp=3) smallest elements until all lists are
exhausted. Identi�cation, removal and merging of these words is done through coordinated
action by the serial front end and the mesh. Our extension to the Atallah-Tsay algorithm
involves a careful implementation of the procedure Merge (see Figure 4).

Since the front-end processor executes � steps in the time it takes for a mesh processor to
execute one step, we measure the time for a computation in multiples of the mesh processor
execution time.

Theorem 3 When mp � 3 2d, a set of n elements can be sorted on the p-processor, d-
dimensional Mesh SuperHet with m words per mesh processor in time Tsort(n;m; p; d) where

Tsort(n;m; p; d) = O

�
n logn

p1�1=d log(mp=3)

�
1 +

�

m

�
+

n

p
logm

�

The e�ect of latency � is small. In particular it can be ignored if m is large by comparison
with �, an assumption we make. In this case the second term in the above bound dominates
when

n logn

p1�1=d log(mp=3)
= O

�
n

p
logm

�

or when logn = O
�
log(mp=3) log(m)=p1=d

�
. When n is a polynomial in mp (the uninter-

esting case), namely, n = (mp)k for k a constant, a full speedup is possible when m is large
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Sort(List u of n words)

Divide u into sublists fvj, 1 � j � qg;
Recursively sort these into lists fwj, 1 � j � qg;
Merge sorted sublists fwj, 1 � j � qg;

Merge fwj, 1 � j � qg
Until done
Find (mp=3)th smallest word;

Extract mp=3 smallest words from q lists;

Move mp=3 smallest words to mesh;

Shorten lists fwj, 1 � j � qg ; (Update pointers)
Sort words on mesh;

Move sorted words to front end;

Figure 4: A sketch of the Atallah-Tsay sorting algorithm.

enough relative to p, namely, when logm = 
(k p1=d). When n grows more rapidly with
mp (the interesting case) or when m grows more slowly with p (unlikely), the speedup is at
most O(p1�1=d log(mp=3)).

We now give a proof of this result. Consider the planes of the mesh that are parallel to
the mesh-face, the plane connected to the front-end memory units. We assign a common
linear order to the p1�1=d processors on each of these parallel mesh planes and to the front-
end memory units. (We speak of the ith such processor on the mesh face and the ith
corresponding memory unit.) We also order the planes from front to back thereby giving
every processor a unique index.

The general sorting procedure divides the list of n words into q sublists each containing
n=q words. It sorts these sublists and then merges them. We show that the merging step
can be done in O

�
n(1 + �)=p1�1=d

�
steps using the front-end and the mesh. This gives the

following recurrence for Tsort(n;m; p; d), the time used by our algorithm.

Tsort(n;m; p; d) = qTsort

�
n

q
;m; p; d

�
+O

�
n

p1�1=d

�
1 +

�

m

��

The base case for our recursive procedure is the sorting of lists of n=qt = mp=3 words. Below
we give an algorithm to sort a list of mp=3 words that takes time Tsort(mp=3;m; p; d) where

Tsort(mp=3;m; p; d) = O

�
mp

p1�1=d

�
1 +

�

m

�
+m logm

�

which is the base case for the induction. The desired conclusion follows from these two
results.

Lemma 1 There exists a Mesh SuperHet algorithm with running time Tsort(wp;m; p; d)
satisfying the bound given below that sorts a list of wp words, m=3 � w � m. The wp words
are stored initially as lists of wp1=d words in contiguous locations in the p1�1=d front-end
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memory modules. After being sorted, they are stored in the same modules with the same
number of words per module.

Tsort(w;m; p; d) = O
�
(w + �)p1=d + w logw

�

Proof The wp words are moved across the mesh face and onto the memories of the
mesh processors in such a fashion that each mesh memory has w words. After a delay
of � processor cycles data moves across the mesh face. Since there are wp1=d words
per front-end memory module, through pipelining the wp words can be moved onto the
mesh in time O

�
(w + �)p1=d

�
. Each mesh processor then sorts its w words sequentially

in O(w logw) steps after which these sorted lists are merged on the mesh using an
extension of Batcher's bitonic sorting algorithm [3], as discussed below.

Batcher's bitonic sorting algorithm sorts p words in O(p1=d) steps on a p-processor, d-
dimensional mesh by executing a set of data-independent compare/exchange operations
(two keys are compared and exchanged if the �rst is larger than the second). Preparata
and Vuillemin [10] show how to map Batcher's algorithm, a normal algorithm, from the
hypercube to meshes. (Savage [12, page 307] provides an accessible treatment of these
results.)

To create a merging algorithm from Batcher's algorithm, each compare/exchange oper-
ation is replaced by a merge/split operation. A merge/split operation is supplied two
w-word sorted lists and produces two w-word sorted lists in which all elements of the
second list are greater than or equal to all words of the �rst. Each merge/split operation
is implemented on a serial mesh processor as a merge operation in O(w) steps.

Ignoring the time for data movement, this merging algorithm takes time O
�
wp1=d

�
.

Since the time to move one w-word block between adjacent processors is w + � and
Batcher's algorithm requires O

�
p1=d

�
(parallel) such data movement steps, the total

time to move data and merge it is O
�
(w + �)p1=d + w logw

�
.

Finally, since Batcher's algorithm doesn't necessarily leave the sorted sequence in the
common order of mesh processors, another application of Batcher's algorithm may be
necessary to move these lists to their desired �nal positions. This can be done by
associating unique keys to each sorted list of w words.

It follows that the total time to sort wp words and leave them in �nal positions on the
front end is O

�
(w + �)p1=d + w logw

�
.

As shown below, our new sorting algorithm invokes the Merge procedure of Figure 4
n=(mp=3) times, extracting mp=3 words from the q lists each time. It does this by moving
between mp=3 and mp words from front-end memory units to the mesh each time, processing
them (discarding words if necessary), and moving mp=3 sorted words back to front-end
memory units.

The Merge procedure is used to merge q sorted lists. These lists are organized into

blocks of (mp=3)1�1=d words arranged in ascending order. Blocks are placed on disks in

such a fashion that the �rst z = (m=3)1�1=d words (z an integer) are placed in ascending
order in consecutive locations of the �rst front-end memory unit, the next z are placed in
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ascending order in the same locations of the second front-end memory unit, etc. Thus, a
block can be moved between the front end and the mesh in z steps.

To extract words from the q sorted lists, Merge invokes the procedure Find based on the
algorithm of Frederickson and Johnson [6]. The Frederickson/Johnson algorithm, which is
too complicated to describe in this space, �nds the kth smallest word in q sorted lists. It has
a serial running time that is independent of the length of these lists, unlike that of Blum et.
al. [4] which �nds the kth smallest word in an unsorted list of n words in timeO(n) on a serial
processor. The following theorem describes the performance of the Frederickson/Johnson
algorithm.

Theorem 4 ([6]) Let t = min(k; q). An algorithm exists that �nds the k smallest item in
an b� q matrix of sorted columns in at most 
(q+ t log(k=t)) steps for some constant 
 > 0.

We apply this algorithm to our problem with k = (mp=3) and q =
l
(mp=3)1=2d

m
from

which it follows that t = q and its running time is (
=�)(q+q log(k=q)) � 2(
=�)q log(mp=3)

which is O
�
(mp=3)1=2d =�) log(mp=3)

�
in the time for one mesh step.

We now describe our modi�cation of the Extract procedure of Figure 4. It has one form
when the �rst mp=3 items are extracted and a second one when the remaining items are
removed.

Let 1 be a value larger than all other values and let � be the (mp=3)th smallest word
in the current set of q lists stored in the front-end memory units.

Our �rst version of Extract copies to the mesh all blocks that contain � or words smaller

than �. Because at most q =
l
(mp=3)1=2d

m
blocks may contain larger words and each block

has (mp=3)1�1=d words, at most (mp=3)1�1=dq � mp=3 words larger than � are moved to
the mesh. Combined with the mp=3 words less than or equal to �, at most 2mp=3 words
are moved to the mesh. These words are placed in the memory of the mesh processors
with at most m words per memory. Through pipelining this data movement occurs in
time O

�
(m + �)p1=d

�
. In O

�
p1=d(1 + �)

�
time the value of � is then broadcast to all mesh

processors. In time O(logm) each processor identi�es each of its words larger than �. Blocks
on the mesh whose mirror images on the front-end contain a word larger than � (these blocks
will be moved to the mesh in the next round) are copied back to their original positions in
the front-end memory units with values less than or equal to � replaced by 1 in time
O
�
(m + �)p1=d

�
. The front-end is also given the identity of these blocks. (This corresponds

to shortening the lists in Figure 4.)
On the mesh all words greater than � are replaced by 1, leaving the words on each

processor in sorted order. The words are then sorted using Batcher's algorithm in time
O
�
(m + �)p1=d

�
. The mp=3 words other than 1 are written back to the front-end memory

units into positions reserved for the merged sorted list in time O
�
(m + �)p1=d

�
.

The second and later applications of Extract use �, the mp=3th smallest word among
those that have not been been removed. A block containing such words may also contain
words previously replaced by 1 (words that were less than or equal to a previous value of
�) or words larger than the current value of �. (See Figure 5.) There are at most 2q such

blocks. Since each block has (mp=3)
1�1=d

words, there are 2q (mp=3)
1�1=d

such words which
is at most 2mp=3 (equivalently dae � a2 or a � p

2 for a = (mp=3)1=2d) when mp=3 � 2d.

11
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1
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1
1
1

1

q =
l
(mp=3)

1=2d
m
sorted lists

b = n=q words/list

(mp=3)1�1=d words/block

Figure 5: Sorted columns on which Extract operates. Columns are subdivided into sorted

blocks containing (mp=3)1�1=d words. Each block is uniformly distributed over the front-end

memory units, (m=3)1�1=d words per unit. Pointers identify the next word larger than the
next (mp=3) elements in each column. Blocks containing words less than or equal to the
mp=3th smallest word not yet removed, �, may contain words that are larger than � and
words marked as 1 that were removed on previous steps.

Adding to these words the mp=3 words less than or equal to � and greater than the previous
value of �, at most mp words are moved to the mesh. We then write back to the front-end
memory those blocks containing words larger than � after replacing words less than or equal
to � by 1. On the mesh we then replace words larger than � with 1, sort all words on
the mesh, move the mp=3 sorted words other than 1 to their �nal positions on front-end
memory units, and shorten the lists. As discussed in the proof of Lemma 1, the time for
these executions of the Extract, Move, Shorten, and Sort procedures is O((m + �)p1=d).

It follows that the time for each pass of the Merge procedure satis�es the following bound
when mp � 3 2d.

Tmerge = O

��
1

�

�
(mp=3)1=2d log(mp=3) + (m + �)p1=d

�

Thus, Tmerge = O
�
(m + �)p1=d

�
when the second term dominates, that is, when log a � ab

for a = (mp=3)1=2d and b = (�=2d)(1 + �=m)m1�1=d31=d. Since loga � a when a � 1, the
inequality loga � ab holds when b � 1, that is, when �(1 + �=m)m1�1=d31=d � 2d which is
easily satis�ed for typical values of d, such as 2 or 3. For example, it is satis�ed if � � 2d
(the front end is 2d times faster than a mesh processor) or � = 1 and m � 3d (the front end
is the same speed as a mesh processor but each processor has at least 3d memory locations).
Thus, without loss of generality, Tmerge = O

�
(m + �)p1=d

�
holds when mp � 3 2d.

Since Merge is invoked 3n=mp times, under these conditions the total time to merge the
q sorted lists is O

�
n(1 + �=m)=p1�1=d

�
and Theorem 3 follows.

12
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Figure 6: Decomposition of the FFT graph F (5) on 32 inputs into 4 copies of F (3), the FFT
graph on 8 inputs, and 8 copies of F (2) on 4 inputs. The edges between bottom and top
FFT subgraphs in F (5) are not in the graph but are added to show vertices common to two
FFT subgraphs.

4 The Fast Fourier Transform Algorithm

The fast Fourier transform (FFT) algorithm computes the discrete Fourier transform (DFT)
on n inputs in time O(n logn) on a serial computer when n = 2k for integer k. We now
develop a Mesh SuperHet algorithm for it, assumingm and p are powers of 2. We show that
when each mesh processor has enough memory, a full speedup is possible. This surprising
result, which di�ers from that for sorting, follows from the fact that a full speedup is possible
in the computation of an FFT on mp inputs (the number that will �t on the mesh) when m
is suÆciently large.

Our algorithm uses the well-known decomposition of the FFT into FFT subgraphs shown
in Figure 6 [13]. The FFT graph on 2a inputs, F (a), can be decomposed into 2r top subgraphs

fF (a�r)
t;i j 1 � i � 2rg on 2a�r inputs and 2a�r bottom subgraphs fF (r)

b;j j 1 � j � 2a�rg on
2r inputs.

Let mp = 2r. For n = 2k our algorithm computes F (k), the FFT graph on n inputs,

by decomposing it into m = 2r top subgraphs fF (k�r)
t;i j 1 � i � 2rg on 2k�r inputs

and n=mp = 2k�r bottom subgraphs fF (r)
b;j j 1 � j � 2k�rg on 2r inputs. The bottom

subgraphs fF (r)
b;j j 1 � j � 2k�rg are computed individually by moving mp inputs to the

mesh, performing the FFT computation, and moving the results to the front-end memory

units. Below we describe the computation of F
(r)
b;j . We then compute the top subgraphs

fF (k�r)
t;i j 1 � i � 2rg recursively by decomposing them into top subgraphs fF (k�2r)

t;i j 1 �
i � 2rg and bottom subgraphs fF (r)

b;j j 1 � j � 2k�rg. This process is repeated until F (k)
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is decomposed into d(logn)=(logmp)e layers with n=mp FFT subgraphs on r inputs in each
layer except possibly the top layer. Without serious loss of generality we assume that logn
is divisible by logmp.

Let TFFT (n;m; p; d) be the time to compute F (k). Below we show that TFFT (mp;m; p; d),
the base case for TFFT (n;m; p; d), satis�es TFFT (mp;m; p; d) = O

�
m log(mp) + (m + �)p1=d

�
.

Furthermore, the time to move mp data items on and o� the mesh and permute the out-
puts of an FFT subgraph so that they are accessible in parallel by subsequent FFT graphs
is O

�
(m + �)p1=d

�
. Thus,mp inputs can be moved to the mesh, the FFT computed on them,

and the outputs moved back to front-end memoryunits in timeO
�
m log(mp) + (m+ �)p1=d

�
.

The �rst term in this expression dominates and a full speedup of O(p) for this computation
is possible when log(mp) � (1 + �=m)p1=d.

From the decomposition given above it follows that TFFT (n;m; p; d) satis�es the following
recursion.

TFFT (n;m; p; d) = (mp)TFFT (n=mp;m; p; d)

+ (n=mp)O

�
mp log(mp)

p

�
1 +

(1 + �=m)p1=d

logmp

��

The solution to this recurrence is stated in the following theorem.

Theorem 5 The FFT algorithm on n inputs can be computed on the p-processor, d-dimen-
sional Mesh SuperHet with m words per mesh processor and interprocessor latency of � in
time TFFT (n;m; p; d) where

TFFT (n;m; p; d) = O

�
n logn

p

�
1 +

(1 + �=m)p1=d

logmp

��

A full speedup is possible when log(mp) � (1 + �=m)p1=d.

The fact that a full speedup holds can be seen intuitively as follows: the FFT on n inputs
can be decomposed into (logn)=(logmp) layers with n=mp FFT graphs onmp inputs in each
layer. If each FFT graph in one layer can be computed in time O (mp log(mp)=p), then the
FFT graph on n inputs can be computed in time O ((n=mp)(logn= logmp)(mp log(mp)=p))
which is O(n logn=p).

Computation of Bottom FFT Graphs We now describe our algorithm to compute a
bottom subgraph F (r) onmp = 2r inputs when m = 2d, p = 2c, and r = c+d. Our algorithm

decomposes F (r) into m = 2d top subgraphs on p = 2c inputs, fF (c)
t;j j 1 � j � 2dg, and

p bottom subgraphs on m inputs, fF (d)
b;j j 1 � j � 2cg. It �rst moves mp inputs from the

front end to the mesh in time O
�
(m + �)p1=d

�
placing m inputs in each of the p processor

memories. The subgraphs F (d) are computed in parallel on individual processors in time
O(m logm). The m top subgraphs F (c) on p inputs (whose outputs are the outputs of F (r))
are computed m=p per processor. The inputs to the top subgraphs are the outputs of the
p bottom subgraphs. It follows that to compute the m=p FFT subgraphs produced at each
processor (each on p inputs) requires moving m=p outputs from each of the p processors to
a single processor. This data movement corresponds to a matrix transposition. We now
describe how this is done.

14



Data Transposition on the Mesh As mentioned in Section 3.2, a common linear order
is assigned to the front-end memory units and the p1�1=d processors in each plane of the
mesh. Let these processors be indexed from 0 to p1�1=d � 1. Since the planes are ordered
from the �rst to the p1=dth, a linear order is given to each of the p processors. Let the
processors be indexed from 0 to p� 1 and let the locations in each memory unit be indexed
from 0.

The �rst m=p of the top FFT subgraphs are assigned to the �rst processor, the second
m=p top subgraphs are assigned to the second processor, etc. Because the jth input to the
ith top FFT subgraph is the ith output of the jth bottom FFT subgraph, we must move
outputs of the bottom FFT subgraphs to those processors at which the top FFT subgraphs
are computed. This is done by moving to each of the processors a group ofm=p of the outputs
produced by each bottom subgraph (every pth output, as suggested in Figure 6). This step,
which amounts to a matrix transposition, can be done in parallel in O((m + �)p1=d) steps
using a routing algorithm, as explained in the proof of Lemma 1. The top subgraphs are
then computed in O((m=p)(p log p)) = O(m log p) steps because each processor computes
m=p FFT subgraphs on p inputs serially. It follows that F (r) on 2r = mp inputs can be
computed on the mesh in time O(m log(mp) + (m+ �)p1=d).

Data Transpositionon theMesh SuperHet As described above, F (k) on n = 2k inputs

is computed from its decomposition into mp = 2r top subgraphs fF (k�r)
t;i j 1 � i � 2rg on

n=mp = 2k�r inputs and n=mp = 2k�r bottom subgraphs fF (r)
b;j j 1 � j � 2k�rg on

mp = 2r inputs. In turn, each top subgraph F
(k�r)
t;i is decomposed into top FFT subgraphs

on k � 2r inputs and bottom FFT subgraphs on r inputs. This process is repeated until
F (k) is decomposed into logn= log(mp) layers each containing 2k�r = n=mp FFT subgraphs
on r inputs.

This is a straightforward recursive construction except for the fact that if the outputs
of the bottom FFT subgraphs are stored in the same order in the front-end memory units,
then many top FFT subgraphs will need to retrieve each of their inputs from the same
memory unit, as can be seen by consulting Figure 6. This would serialize the computation.
To permit parallel access to the inputs of FFT subgraphs on mp = 2r inputs in one layer,
we cyclically rotate the outputs of successive such FFT subgraphs in the previous layer by
suÆciently many places such that if an output from one FFT subgraph is sent to the sth
front-end memory unit, the same output in the next FFT subgraph is sent to the (s + 1)st
(with wraparound) memory unit. Because the jth input to the ith top FFT subgraph is
the ith output of the jth bottom FFT subgraph, this insures that the inputs to an FFT
subgraph on 2r inputs into which the top FFT subgraph is divided receives its inputs in
parallel. This provides the desired result.

Reducing the Size of the Mesh Face If the number of channels crossing the mesh face
is reduced from p1�1=d to �p1�1=d, 0 � � � 1, the e�ect on the above algorithm is to increase
the time to move data onto and o� of the mesh from O

�
(m+ �)p1=d

�
to O

�
(m + �)p1=d=�

�
.

For suÆciently large m a full speedup continues to be possible.
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Figure 7: Placement of matrix elements in a 2-D mesh before starting the computation of
the product C = A � B. Elements in C remain stationary while those in A and B move
horizontally and vertically, respectively.

5 Matrix Multiplication

In this section we describe an algorithm for the multiplication of two n � n matrices on
the p-processor, d-dimensional Mesh SuperHet when at most �p1�1=d channels are used,
0 < � � 1. This algorithm provides a full speedup when m is suÆciently large relative to p.
Kung [8] has made similar observations for serial, I/O-limited machines.

Our algorithm extends to d dimensions the 2-D systolic algorithm to multiply two s � s
matrices described by Preparata and Vuillemin [11]. Their 2-D algorithm (which ignores
latency) places the entries in the s� s matrices A = fAi;jg and B = fBi;jg in an s � s 2-D
mesh, one element per processor, as shown in Figure 7. (The �rst row of A is placed in the
�rst row of the mesh. The ith row of A is rotated left i � 1 places before placing it in the
ith row. A similar translation of columns of B generates the placement shown.) The (i; j)
entry in the product matrix C = AB is formed by taking the product of entries of A and B
in the (i; j) mesh processor and adding it to the current value of Ci;j (which is initially 0),
rotating all rows of A left one place cyclically and all columns of B up one place cyclically,
and repeating the �rst two steps until all products are formed and accumulated. The number
of steps executed by this algorithm is s � 1 if all the data is initially on the mesh in the
correct positions and data can be moved horizontally and vertically simultaneously. Since
the classical serial algorithm executes s2(2s � 1) steps, this 2-D systolic algorithm exhibits
a speedup of O(p) where p = s2. It requires s � 1 data movement steps.

This 2-D algorithm can be extended in the obvious way to compute the product of two
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s
p
m=3� s

p
m=3 matrices on a p-processor (p = s2), m-word/processor 2-D mesh in which

two
p
m=3 �p

m=3 submatrices instead of two elements is stored in the memory of each

mesh processor. Thus, the processor in row i column j contains a
p
m=3�

p
m=3 submatrix

from each of A, B, and C. The product of submatrices of A and B is formed and added to
the submatrix of C which is initially the zero matrix. The rotation of submatrices of A and
B described above is then done and the process repeated.

This algorithmrequires at most 2s
�p

m=3
�3

computation steps to multiply two s
p
m=3�

s
p
m=3 matrices and O(s(m+�)) data movement steps where � is the latency of the mesh.

Thus, the running time of this algorithm, including the time for data movement between
mesh processors, is O

�
s
�
m3=2 + �

��
= O

�p
p
�
m3=2 + �

��
.

This algorithm can be extended to run on the s�s�� � �s d-dimensional mesh, d even and
s = p1=d, in which each processor is identi�ed by a d-tuple a = (a1, a2, : : :, ad), 0 � ai � s�1,
and processors whose d-tuples di�er in one place and whose values di�er by 1 are adjacent.
The processors with the same values for ad�1 and ad form a (d� 2)-dimensional submesh.
When the submeshes are treated as processor nodes, they form a 2-D mesh.

To multiply sk
p
m=3� sk

p
m=3 matrices A and B, k = d=2, store m=3 entries of these

matrices in each the p processor memories. Each matrix associated with a (d�2)-dimensional
mesh is an sk�1

p
m=3� sk�1

p
m=3 matrix. To form the product of matrices A and B, we

view them as 2-D matrices and recursively invoke the algorithm to multiply matrices on a
(d � 2)-dimensional mesh. Because the outer 2-D algorithm performs O(s) computations
(each of which takes time O

�
sk�1m3=2

�
) and O(s) data movements (each of which is done

in time O(
�
sk�1(m+ �)

�
), the total time to multiply two sk

p
m=3� sk

p
m=3 matrices on

the mesh is O
�
sk(m3=2 + �)

�
= O

�p
p(m3=2 + �)

�
. Thus, two matrices that �t on the d-

dimensional mesh can be multiplied with a full speedup when m is suÆciently large relative
to p and �.

Consider now the computation of the product W = U � V = (Wr;s) of two n � n
matrices U = (Ur;s) and V = (Vr;s) where we view U , V and W as (n=q) � (n=q) matrices,

q = sk
p
m=3, with entries that are q � q matrices for 1 � r; s � (n=q).

The product W = U �V is formed by taking the block inner products of rows of U with
columns of V . These inner products are done with (n=q)3 products and (n=q)2(n=q � 1)
sums of q � q block matrices. The matrix multiplication algorithm uses the mesh to form
such inner products.

To compute Wr;s =
Pn=q

t=1 Ur;tVt;s, for each value of 1 � t � n=q move Ur;t and Vt;s to the
mesh, multiply and discard them but add their product P to the partial sum of Wr;s which
is initially the zero matrix. Wr;s is stored on the front-end memory after its computation is
complete.

Suppose now that a fraction � of the processors on a mesh face are connected to a like
number of front-end memory units. The time necessary to move one q � q matrix onto or
o� of the mesh is O

�
(m + �)p1=d=�

�
.

It follows that the time to compute the product of two n � n matrices on the Mesh
SuperHet is at most (n=q)3 times the time to move two sk

p
m=3� sk

p
m=3 matrices to the

mesh (which is O
�
(m + �)p1=d=�

�
, multiply them (which is O

�p
p(m3=2 + �)

�
), and move

the results back to the front-end (which is O
�
(m + �)p1=d=�

�
. Here q = sk

p
m=3 =

p
mp=3.

The bound given below follows from this analysis.
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Theorem 6 Let Tmatrix(n;m; p; d) be the number of steps to multiply two n�n matrices on
the p-processor d-dimensional Mesh SuperHet with � channels between the mesh and front
end when � is the mesh interprocessor latency. Then for d even, Tmatrix(n;m; p; d) satis�es
the following upper bound:

Tmatrix(n;m; p; d) = O

�
n3

p

�
1 +

�

m3=2
+

p1=d

�
p
mp

�
1 +

�

m

���

As this result demonstrates, a full speedup can be achieved by matrix multiplication
on the Mesh SuperHet when m � max

�
�2=3; p2=d�1=�2

�
. This result demonstrates that

interprocessor latency, �, is not important as long as it is small by comparison with m3=2.

6 Conclusion

We have studied multigrain parallel computation using as model the Mesh SuperHet. It
consists of the interconnection of serial and parallel processors. The parallel processor is
a p-processor, d-dimensional toroidal mesh whereas the serial front end contains a serial
processor and p1�1=d random-access memory modules. The processors on the face of the
mesh are each connected directly to a memory module. The front-end processor executes �
times as many instructions per unit time as each mesh processor. The time to move n words
between two mesh processors or between a mesh processor and a memory module is n + �
where � is the latency of the machine. Each mesh processor has m words of local memory.

We have addressed the question of whether the serial front-end processor is essential and
have studied three problems on the Mesh SuperHet, namely, sorting, the FFT, and matrix
multiplication.

We have shown that a (somewhat arti�cial) problem exists that executes more quickly
(in time O(

p
p)) on the 2-D Mesh SuperHet than on either its serial or parallel components

alone (in time 
(p)). We have also shown that the serial front end can be disabled without
more than a constant-factor loss in the running time T of a problem if it uses the front end
for fewer than O(T=p1=d) steps.

In our examination of sorting, the FFT, and matrix multiplication we have derived a
non-trivial lower bound on the time to sort and use the trivial factor of O(p) speedup for the
other two problems. We exhibit algorithms for these three problems that are asymptotically
optimal when the amount of mesh-processor memory is suÆciently large. In particular, we
show that on large problems when the amount of memory per processor, m, is large enough,
a speedup of at most O(p1�1=d log(mp=3)) is possible whereas a speedup of O(p) is possible
for the FFT and matrix multiplication, even when the number of mesh-face channels is very
small. We also show that the e�ect on speedup of � and � is small for these problems if m
is large enough.

As multi-grained computers become more prevalent, they will be used for a large variety
of computationally intensive tasks. Thus, it is important to understand the opportunities of
and limitations on this architecture. Not only must experiments be conducted to determine
how best to exploit the architectural details of existing machines, studies such as this must
be done to understand the fundamental limitations on such architectures and set the context
for algorithm development.
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