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José G. Casta˜nos and John E. Savage

Department of Computer Science
Brown University

E-mail: fjgc,jes g@cs.brown.edu

Abstract

In this paper we describe a parallelh-refinement al-
gorithm for unstructured finite element meshes based on
the longest-edge bisection of triangles and tetrahedrons.
This algorithm is implemented inPARED, a system that
supports the parallel adaptive solution of PDEs. We dis-
cuss the design of such an algorithm for distributed mem-
ory machines including the problem of propagating refine-
ment across processor boundaries to obtain meshes that
are conforming and non-degenerate. We also demonstrate
that the meshes obtained by this algorithm are equivalent
to the ones obtained using the serial longest-edge refine-
ment method. We finally report on the performance of this
refinement algorithm on a network of workstations.

Keywords: mesh refinement, unstructured
meshes, finite element methods, adaptation.

1. Introduction

The finite element method (FEM) is a powerful and
successful technique for the numerical solution of partial
differential equations. When applied to problems that ex-
hibit highly localized or moving physical phenomena, such
as occurs on the study of turbulence in fluid flows, it is de-
sirable to compute their solutions adaptively. In such cases,
adaptive computation has the potential to significantly im-
prove the quality of the numerical simulations by focusing
the available computational resources on regions of high
relative error.

Unfortunately, the complexity of algorithms and soft-
ware for mesh adaptation in a parallel or distributed en-
vironment is significantly greater than that it is for non-
adaptive computations. Because a portion of the given
mesh and its corresponding equations and unknowns is as-
signed to each processor, the refinement (coarsening) of a
mesh element might cause the refinement (coarsening) of
adjacent elements some of which might be in neighboring
processors. To maintain approximately the same number
of elements and vertices on every processor a mesh must

be dynamically repartitioned after it is refined and portions
of the mesh migrated between processors to balance the
work.

In this paper we discuss a method for the paral-
lel refinement of two- and three-dimensional unstructured
meshes. Our refinement method is based on Rivara’s serial
bisection algorithm [1, 2, 3] in which a triangle or tetrahe-
dron is bisected by its longest edge. Alternative efforts to
parallelize this algorithm for two-dimensional meshes by
Jones and Plassman [4] use randomized heuristics to refine
adjacent elements located in different processors.

The parallel mesh refinement algorithm discussed in
this paper has been implemented as part of PARED [5, 6, 7],
an object oriented system for the parallel adaptive solu-
tion of partial differential equations that we have devel-
oped. PARED provides a variety of solvers, handles selec-
tive mesh refinement and coarsening, mesh repartitioning
for load balancing, and interprocessor mesh migration.

2. Adaptive Mesh Refinement

In the finite element method a given domain
 is di-
vided into a set of non-overlapping elements
i such as tri-
angles or quadrilaterals in 2D and tetrahedrons or hexahe-
drons in 3D. The set of elements
i; 1 � i � n; and its as-
sociated verticesVj ; 1 � j � m; form a meshM . With the
addition of boundary conditions, a set of linear equations is
then constructed and solved. In this paper we concentrate
on the refinement ofconforming unstructuredmeshes com-
posed of triangles or tetrahedrons. On unstructured meshes,
a vertex can have a varying number of elements adjacent to
it. Unstructured meshes are well suited to modeling do-
mains that have complex geometry. A mesh is said to be
conforming if the triangles and tetrahedrons intersect only
at their shared vertices, edges or faces. The FEM can also
be applied to non-conforming meshes, but conformality is
a property that greatly simplifies the method. It is also as-
sumed to be a requirement in this paper.

The rate of convergence and quality of the solutions
provided by the FEM depends heavily on the number, size
and shape of the mesh elements. The condition number
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Figure 1:The refinement of the mesh in(a) using a nested
refinement algorithm creates a forest of trees as shown in
(b) and(c). The dotted lines identify the leaf triangles.

of the matrices used in the FEM and the approximation
error are related to the minimum and maximum angle of
all the elements in the mesh [8]. In three dimensions, the
solid angle of all tetrahedrons and their ratio of the radius
of the circumsphere to the inscribed sphere (which implies
a bounded minimum angle) are usually used as measures of
the quality of the mesh [9, 10]. A mesh isnon-degenerate
if its interior angles are never too small or too large. For
a given shape, the approximation error increases with ele-
ment size (h), which is usually measured by the length of
the longest edge of an element.

The goal of adaptive computation is to optimize the
computational resources used in the simulation. This goal
can be achieved by refining a mesh to increase its resolution
on regions of high relative error in static problems or by re-
fining and coarsening the mesh to follow physical anoma-
lies in transient problems [11]. The adaptation of the mesh
can be performed by changing the order of the polynomi-
als used in the approximation (p-refinement), by modifying
the structure of the mesh (h-refinement), or a combination
of both (hp-refinement). Although it is possible to replace
an old mesh with a new one with smaller elements, most
h-refinement algorithms divide each element in a selected
set of elementsR from the current mesh into two or more
nested subelements.

In PARED, when an element is refined, it does not get
destroyed. Instead, the refined element inserts itself into a
tree, where the root of each tree is an element in the initial
mesh and the leaves of the trees are the unrefined elements
as illustrated in Figure 1. Therefore, the refined mesh forms
a forest of refinement trees. These trees are used in many
of our algorithms.

Error estimates are used to determine regions where
adaptation is necessary. These estimates are obtained from
previously computed solutions of the system of equations.
After adaptation imbalances may result in the work as-
signed to processors in a parallel or distributed environ-
ment. Efficient use of resources may require that elements
and vertices be reassigned to processors at runtime. There-
fore, any such system for the parallel adaptive solution
of PDEs must integrate subsystems for solving equations,

adapting a mesh, finding a good assignment of work to
processors, migrating portions of a mesh according to a
new assignment, and handling interprocessor communica-
tion efficiently.

3. PARED: An Overview

PARED is a system of the kind described in the last
paragraph. It provides a number of standard iterative
solvers such as Conjugate Gradient and GMRES and pre-
conditioned versions thereof. It also provides bothh- and
p-refinement of meshes, algorithms for adaptation, graph
repartitioning using standard techniques [12] and our own
Parallel Nested Repartitioning(PNR) [7, 13], and work mi-
gration.

PARED runs on distributed memory parallel comput-
ers such as the IBM SP-2 and networks of workstations.
These machines consist of coarse-grained nodes connected
through a high to moderate latency network. Each node
cannot directly address a memory location in another node.
In PARED nodes exchange messages using MPI (Message
Passing Interface) [14, 15, 16]. Because each message has
a high startup cost, efficient message passing algorithms
must minimize the number of messages delivered. Thus,
it is better to send a few large messages rather than many
small ones. This is a very important constraint and has a
significant impact on the design of message passing algo-
rithms.

PARED can be run interactively (so that the user can
visualize the changes in the mesh that results from mesh
adaptation, partitioning and migration) or without direct
intervention from the user. The user controls the system
through a GUI in a distinguished node called thecoordina-
tor, PC . This node collects information from all the other
processors (such as its elements and vertices). This tool
uses OpenGL [17] to permit the user to view 3D meshes
from different angles. Through thecoordinator, the user
can also give instructions to all processors such as specify-
ing when and how to adapt the mesh or which strategy to
use when repartitioning the mesh.

In our computation, we assume that an initial coarse
mesh is given and that it is loaded into the coordinator. The
initial mesh can then be partitioned using one of a num-
ber of serial graph partitioning algorithms and distributed
between the processors. PARED then starts the simulation.
Based on someadaptation criterion[18], PARED adapts
the mesh using the algorithms explained in Section 5. Af-
ter the adaptation phase, PARED determines if a workload
imbalance exists due to increases and decreases in the num-
ber of mesh elements on individual processors. If so, it
invokes a procedure to decide how to repartition mesh el-
ements between processors; and then moves the elements
and vertices. We have found that PNR gives partitions with
a quality comparable to those provided by standard meth-
ods such as Recursive Spectral Bisection [19] but which
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Figure 2:Mesh representation in a distributed memory ma-
chine using remote references.

handles much larger problems than can be handled by stan-
dard methods.

3.1. Object-Oriented Mesh Representations

In PARED every element of the mesh is assigned to
a unique processor. Vertices are shared between two or
more processors if they lie on a boundary between parti-
tions. Each of these processors has a copy of the shared
vertices and vertices refer to each other using remote ref-
erences, a concept used in object-oriented programming.
This is illustrated in Figure 2 on which the remote refer-
ences (marked with dashed arrows) are used to maintain the
consistency of multiple copies of the same vertex in differ-
ent processors. Remote references are functionally similar
to standard C pointers but they address objects in a different
address space.

A processor can use remote references to invoke meth-
ods on objects located in a different processor. In this case,
the method invocations and arguments destined to remote
processors are marshalled into messages that contain the
memory addresses of the remote objects. In the destina-
tion processors these addresses are converted to pointers to
objects of the corresponding type through which the meth-
ods are invoked. Because the differentnodes are inher-
ently trusted and MPI guarantees reliable communication,
PARED does not incur the overhead traditionally associated
with distributed object systems.

Another idea commonly found in object oriented pro-
gramming and which is used in PARED is that of smart
pointers. An object can be destroyed when there are no
more references to it. In PARED vertices are shared be-
tween several elements and each vertex counts the number
of elements referring to it. When an element is created,
the reference count of its vertices is incremented. Simi-
larly, when the element is destroyed, the reference count of
its vertices is decremented. When the reference count of a
vertex reaches zero, the vertex is no longer attached to any
element located in the processor and can be destroyed. If a
vertex is shared, then some other processor might have a re-
mote reference to it. In that case, before a copy of a shared

vertex is destroyed, it informs the copies in other processors
to delete their references to itself. This procedure insures
that the shared vertex can then be safely destroyed without
leaving dangerous dangling pointers referring to it in other
processors.

Smart pointers and remote references provide a simple
replication mechanism that is tightly integrated with our
mesh data structures. In adaptive computation, the struc-
ture of the mesh evolves during the computation. During
the adaptation phase, elements and vertices are created and
destroyed. They may also be assigned to a different pro-
cessor to rebalance the work. As explained above, remote
references and smart pointers greatly simplify the task of
creating dynamic meshes.

4. Adaptation Using the Longest Edge Bisec-
tion Algorithm

Many h-refinement techniques [20, 21, 22] have
been proposed to serially refine triangular and tetrahedral
meshes. One widely used method is the longest-edge bisec-
tion algorithm proposed by Rivara [1, 2]. This is a recursive
procedure (see Figure 3) that in two dimensions splitseach
triangle
i from a selected set of trianglesR by adding
an edge between the midpointVs of its longest side to the
opposite vertex. In the case thatVs makes a neighboring
triangle,
j, non-conforming, then
j is refined using the
same algorithm. This may cause the refinement to prop-
agate throughout the mesh. Nevertheless, this procedure
is guaranteed to terminate because the edges it bisects in-
crease in length. Building on the work of Rosenberg and
Stenger [23] on bisection of triangles, Rivara [1, 2] shows
that this refinement procedure provably produces two di-
mensional meshes in which the smallest angle of the re-
fined mesh is no less than half of the smallest angle of the
original mesh.

The longest-edge bisection algorithm can be general-
ized to three dimensions [3] where a tetrahedron is bisected
into two tetrahedrons by inserting a triangle between the
midpoint of its longest edge and the two vertices not in-
cluded in this edge. The refinement propagates to neigh-
boring tetrahedrons in a similar way. This procedure is also
guaranteed to terminate, but unlike the two dimensional
case, there is no known bound on the size of the small-
est angle. Nevertheless, experiments conducted by Rivara
[3] suggest that this method does not produce degenerate
meshes.

In two dimensions there are several variations on the
algorithm. For example a triangle can initially be bisected
by the longest edge, but then its children are bisected by the
non-conforming edge, even if it is that is not their longest
edge [1]. In three dimensions, the bisection is always per-
formed by the longest edge so that matching faces in neigh-
boring tetrahedrons are always bisected by the same com-
mon edge.
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Bisect(
i)
let Vp, Vq andVr be vertices of the triangle
i

let (Vp; Vq) be the longest side of
i and letVs be the midpoint of(Vp; Vq)
bisect
i by the edge(Vr ; Vs), generating two new triangles
i1 and
i2

while Vs is a non-conforming vertexdo
find the non-conforming triangle
j adjacent to the edge(Vp; Vq)
Bisect(
j)

end while

Figure 3:Longest edge (Rivara) bisection algorithm for triangular meshes.

Because in PARED refined elements are not destroyed
in the refinement tree, the mesh can be coarsened by replac-
ing all the children of an element by their parent. If a parent
element
i is selected for coarsening, it is important that all
the elements
j that are adjacent to the longest edge of
i

are also selected for coarsening. If neighbors are located in
different processors then only a simple message exchange
is necessary. This algorithm generates conforming meshes:
a vertex is removed only if all the elements that contain that
vertex are all coarsened. It does not propagate like the re-
finement algorithm and it is much simpler to implement in
parallel. For this reason, in the rest of the paper we will
focus on the refinement of meshes.

5. Parallel Longest-Edge Refinement

The longest-edge bisection algorithm and many other
mesh refinement algorithms that propagate the refinement
to guarantee conformality of the mesh are not local. The
refinement of one particular triangle or tetrahedron
i can
propagate through the mesh and potentially cause changes
in regions far removed from
i. If neighboring elements
are located in different processors, it is necessary to prop-
agate this refinement across processor boundaries to main-
tain the conformality of the mesh.

In our parallel longest edge bisection algorithmeach
processorPi iterates between a serial phase, in which there
is no communication, and a parallel phase, in which each
processor sends and receives messages from other proces-
sors. In the serial phase, processorPi selects a setRi

of its elements for refinement and refines them using the
serial longest edge bisection algorithms outlined earlier.
The refinement often creates shared vertices in the bound-
ary between adjacent processors. To minimize the number
of messages exchanged betweenPi andPj, Pi delays the
propagation of refinement toPj until Pi has refined all the
elements inRi. The serial phase terminates whenPi has
no more elements to refine.

A processorPi informs an adjacent processorPj that
some of its elements need to be refined by sending a mes-
sage fromPi to Pj containing the non-conforming edges
and the vertices to be inserted at their midpoint. Each edge
is identified by its endpointsVp andVq and its remote ref-
erences (see Figure 4(a)). If Vp andVq are shared vertices,

(a)

Pj

Pi

(c)(b)

Pj

Pi

j

Pi

P

Figure 4: (a) In the parallel longest edge bisection algo-
rithm some elements (shaded) are initially selected for re-
finement.(b) If the refinement creates a new (black) ver-
tex on a processor boundary, the refinement propagates to
neighbors.(c) Finally the references are updated accord-
ingly.

thenPi has a remote reference to copies ofVp andVq lo-
cated in processorPj. These references are included in the
message, so thatPj can identify the non-conforming edge
e and insert the new vertexVs. A similar strategy can be
used when the edge is refined several times during the re-
finement phase, but in this case, the vertexVs is not located
at the midpoint ofe.

Different processors can be in different phases during
the refinement. For example, at any given time a processor
can be refining some of its elements (serial phase) while
neighboring processors have refined all their elements and
are waiting for propagation messages (parallel phase) from
adjacent processors.Pj waits until it has no elements to
refine before receiving a message fromPi. For every non-
conforming edgee included in a message toPj , Pj creates
its shared copy of the midpointVs (unless it already exists)
and inserts the new non-conforming elements adjacent to
Vs into a new setR0

j of elements to be refined. The copy
of Vs in Pj must also have a remote reference to the copy
of Vs in Pi. For this reason, whenPi propagates the refine-
ment toPj it also includes in the message a reference to
its copies of shared vertices. These steps are illustrated in
Figure 4.Pj then enters the serial phase again, where the
elements inR0

j are refined.
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Figure 5: (a) Both processors select (shaded) mesh el-
ements for refinement. The refinement propagates to a
neighboring processor(b) resulting in more elements be-
ing refined(c).

5.1. The Challenge of Refining in Parallel

The description of the parallel refinement algorithm is
not complete because refinement propagation across pro-
cessor boundaries can create two synchronization prob-
lems. The first problem,adaptation collision, occurs when
two (or more) processors decide to refine adjacent elements
(one in each processor) during the serial phase, creating
two (or more) vertex copies over a shared edge, one in each
processor. It is important that all copies refer to the same
logical vertex because in a numerical simulation each ver-
tex must include the contribution of all the elements around
it (see Figure 5).

The second problem that arises,termination detection,
is the determination that a refinement phase is complete.
The serial refinement algorithm terminates when the pro-
cessor has no more elements to refine. In the parallel ver-
sion termination is a global decision that cannot be deter-
mined by an individual processor and requires a collabora-
tive effort of all the processors involved in the refinement.
Although a processorPi may have adapted all of its mesh
elements inRi, it cannot determine whether this condition
holds for all other processors. For example, at any given
time, no processor might have any more elements to re-
fine. Nevertheless, the refinement cannot terminate because
there might be some propagation messages in transit.

The algorithm for detecting the termination of parallel
refinement is based on Dijkstra’s general distributed termi-
nation algorithm [24, 25]. A global termination condition is
reached when no element is selected for refinement. Hence
if R is the set of all elements in the mesh currently marked
for refinement, then the algorithm finishes whenR = ;.

The termination detection procedure uses message ac-
knowledgments. For every propagation message thatPj

receives, it maintains the identity of its source (Pi) and to
which processorsPk it propagated refinements. Each prop-
agation message is acknowledged.Pj acknowledges toPi

after it has refined all the non-conforming elements created
by Pi’s message and has also received acknowledgments
from all the processors to which it propagated refinements.

A processorPi can be in two states: an inactive state
is one in whichPi has no elements to refine (it cannot send
new propagation messages to other processors) but can re-
ceive messages. IfPi receives a propagation message from
a neighboring processor, it moves from an inactive state to
an active state, selects the elements for refinement as spec-
ified in the message and proceeds to refine them. LetRi be
the set of elements inPi needing refinement. A processor
Pi becomes inactive when:

� Pi has received an acknowledgment for every propa-
gation message it has sent.

� Pi has acknowledged every propagation message it
has received.

� Ri = ;.

Using this definition, a processorPi might have no
more elements to refine (Ri = ;) but it might still be in
an active state waiting for acknowledgments from adjacent
processors. When a processor becomes inactive,Pi sends
an acknowledgment to the processors whose propagation
message causedPi to move from an inactive state to an
active state.

We assume that the refinement is started by the coordi-
nator processor,PC. At this stage,PC is in the active state
while all the processors are in the inactive state.PC ini-
tiates the refinement by sending the appropriate messages
to other processors. This message also specifies the adapta-
tion criterion to use to select the elementsRi for refinement
in Pi.

When a processorPi receives a message fromPC , it
changes to an active state, selects some elements for refine-
ment either explicitly or by using the specified adaptation
criterion, and then refines them using the serial bisection
algorithm, keeping track of the vertices created over shared
edges as described earlier. When it finishes refining its ele-
ments,Pi sends a message to each processorPj on whose
shared edgesPi created a shared vertex.Pi then listens for
messages.

Only whenPi has refined all the elements specified
byPC and is not waiting for any acknowledgment message
from other processors does it sends an acknowledgment to
PC . Global termination is detected when the coordinator
becomes inactive. WhenPC receives an acknowledgment
from every processor this implies that no processor is re-
fining an element and that no processor is waiting for an
acknowledgment. Hence it is safe to terminate the refine-
ment.PC then broadcasts this fact to all the other proces-
sors.

6. Properties of Meshes Refined in Parallel

Our parallel refinement algorithm is guaranteed to ter-
minate. In every serial phase the longest edge bisection
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LetR be a set of elements to be refined
while there is an element
i 2 R do

bisect
i by its longest edge
insert any non-conforming element
j intoR

end while

Figure 6:General longest-edge bisection (GLB) algorithm.

algorithm is used. In this algorithm the refinement prop-
agates towards progressively longer edges and will even-
tually reach the longest edge ineach processor. Between
processors the refinement also propagates towards longer
edges. Global termination is detected by using the global
termination detection procedure described in the previous
section. The resulting mesh is conforming. Every time a
new vertex is created over a shared edge, the refinement
propagates to adjacent processors. Because every element
is always bisected by its longest edge, for triangular meshes
the results by Rosenberg and Stenger on the size of the min-
imum angle of two-dimensional meshes also hold.

It is not immediately obvious if the resulting meshes
obtained by the serial and parallel longest edge bisection al-
gorithms are the same or if different partitions of the mesh
generate the same refined mesh. As we mentioned earlier,
messages can arrive from different sources in different or-
ders and elements may be selected for refinement in differ-
ent sequences.

We now show that the meshes that result from refining
a set of elementsR from a given meshM using the serial
and parallel algorithms described in Sections 4 and 5, re-
spectively, are the same. In this proof we use the general
longest-edge bisection (GLB) algorithm outlined in Figure
6 where the order in which elements are refined is not spec-
ified. In a parallel environment, this order depends on the
partition of the mesh between processors. After showing
that the resulting refined mesh is independent of the order
in which the elements are refined using the serial GLB al-
gorithm, we show that every possible distribution of ele-
ments between processors and every order of parallel re-
finement yields the same mesh as would be produced by
the serial algorithm.

Theorem 6.1 The mesh that results from the refinement of
a selected set of elementsR of a given meshM using the
GLB algorithm is independent of the order in which the
elements are refined.

Proof: An element
i is refined using the GLB
algorithm if it is in the initial setR or refinement
propagates to it. An element
i 62 R is refined
if one of its neighbors creates a non-conforming
vertex at the midpoint of one of its edges. The
refinement of
i by its longest edge divides the
element into two nested subelements
i1 and
i2

called the children of
i. These children are in
turn refined by their longest edge if one of their

edges is non-conforming. The refinement proce-
dure creates a forest of trees of nested elements
where the root of each tree is an element in the
initial meshM and the leaves are unrefined ele-
ments. For every element
i 2 M , let �i be the
refinement tree of nested elements rooted at
i

when the refinement procedure terminates.

Using the GLB procedure elements can be se-
lected for refinement in different orders, creating
possible different refinement histories. To show
that this cannot happen we assume the converse,
namely, that two refinement historiesH1 andH2

generate different refined meshes, and establish a
contradiction. Thus, assume that there is an ele-
ment
i 2 M such that the refinement trees�1i
and�2i , associated with the refinement histories
H1 andH2 of 
i respectively, are different. Be-
cause the root of�1i and�2i is the same in both
refinement histories, there is a place where both
trees first differ. That is, starting at the root, there
is an element
j that is common to both trees but
for some reason, its children are different. Be-
cause
j is always bisected by the longest edge,
the children of
j are different only when
j is
refined in one refinement history and it is not re-
fined in the other. In other words, in only one of
the histories does
j have children.

Because
j is refined in only one refinement his-
tory, then
j 62 R, the initial set of elements
to refine. This implies that
j must have been
refined because one of its edges becamenon-
conforming during one of the refinement histo-
ries. Let D1 be the set of elements that are
present in both refinement histories, but are re-
fined inH1 and not inH2. We defineD2 in a
similar way.

For each refinement history, every time an ele-
ment is refined, it is assigned an increasing num-
ber. Select an element
i from eitherD1 or
D2 that has the lowest number. Assume that we
choose
i fromD1 so that
i is refined inH1 but
not inH2. In H1, 
i is refined because a neigh-
boring element
j created a non-conforming ver-
tex at the midpoint of their shared edgee. There-
fore
j is refined inH1 but not inH2 because
otherwise it would cause
i to be refined in both
sequences. This implies that
j is also inD1

and has a lower refinement number than
i con-

- 6 -



tradicting the definition of
i. It follows that the
refinement histories are the same.

Consider now the parallel refinement algorithm de-
scribed in Section 5. Although it refines elements on indi-
vidual processors serially, these processors refine their el-
ements in parallel. As shown below, the resultant mesh is
the same as would be produced in the serial case.

Corollary 6.2 Given a meshM and a set of elementsR
to refine, for every partition of the elements between pro-
cessors, the parallel GLB algorithm generates the same re-
fined mesh as does the serial GLB algorithm.

Proof: For every partition of the elements and
every order of refinement within processors that
is consistent with the GLB algorithm, there is a
linear order that can be established of element re-
finements. From Theorem 6.1 it follows that the
refined mesh associated with every linear order-
ing is the same.

Clearly the result of Theorem 6.1 holds for any nested
refinement algorithm in which the refinement of elements
occurs in an order that is independent of which side or face
is non-conforming.

7. Experimental Results

In the previous section we have shown that the meshes
obtained using the parallel refinement algorithm described
in this paper are the same as those obtained using the
widely used serial longest-edge bisection algorithm. There-
fore the quality of the resulting meshes using any of the
measures mentioned in Section 2 is the same as that ob-
tained using serial refinement.

To evaluate the performance of our parallel algorithm
we performed a series of tests using a network of four
to thirty-two Sun Ultra-1 workstations, each with128Mb
of memory, running Solaris 2.6, and connected through a
100Mbps network. In these tests we worked with meshes
that contained millions of elements and vertices. The per-
formance of the parallel refinement algorithm strongly de-
pends on the quality of the partition of the mesh between
processors. If many adjacent elements are located in dif-
ferent processors the cost of communication is very high.
Nevertheless, for good partitions of the mesh there is a
reasonable communication overhead. We also examine
the time required to locally adapt unstructured meshes and
compare it with the other phases of the adaptation proce-
dure.

7.1. Global Refinement of Irregular Meshes

Starting from irregular two- and three-dimensional
meshes defined in the unit square and cube we performed

successive global parallel refinements of all the elements of
the mesh. In our two-dimensional example we start with a
mesh that contains 902 elements and 492 vertices and after
11 refinements we obtain a mesh with 3,586,501 elements
and 1,795,390 vertices. Our initial three-dimensional mesh
contains 793 elements and 233 vertices. After 7 re-
finements its number of elements and vertices grows to
3,1177,713 and 585,128, respectively.

After the mesh is refined, it is repartitioned between
processors. PARED allows the user to choose from a
large variety of partitioning algorithms. One of these is
Multilevel-KL, a serial graph partitioningalgorithmoffered
as part of the Chaco package [12]. It generates high quality
partitions of meshes but at the cost of a large overhead that
is prohibitive for large meshes. Multilevel-KL was used in
the experiments described below to provide good partitions
for the initial assignment of elements to processors. Be-
cause Multilevel-KL is a serial algorithm, an entire graph
must be moved to one processor to partition it. For very
large refined meshes, the time required by Multilevel-KL
is very large (on the order of 20 minutes in some cases)
and required the use of a Sun server with 2 GB of memory.
We have developed an alternative incremental partition-
ing heuristic called Parallel Nested Repartitioning (PNR)
[7, 13] that very quickly generates very high quality parti-
tions incrementally as a mesh is refined and coarsened.

We used two different measures to evaluate the perfor-
mance of the parallel refinement algorithm. For every pro-
cessor, we count the number of new edge refinements sent
to other processors during each of the successive global re-
finements of the mesh. This is a measure of the amount of
communication occurring in the parallel refinement algo-
rithm. The maximum number of edge refinements sent by
any processor in each level are shown in Figure 7. On very
large meshes the size of the messages is relatively small
compared to the number of elements created in each pro-
cessor.

The total refinement time in the different levels of the
refinement is shown in Figure 8. We can report that the
refinement time is dominated by the time for local refine-
ment of meshes on individual processors, not the cost of
interprocessor communication.

7.2. Local Adaptive Refinement of Irregular
Meshes

We have mentioned earlier that local refinement of the
mesh using the longest edge bisection algorithm can po-
tentially cause refinement to propagate through all the ele-
ments of the mesh and, in the parallel case, through all the
processors. In the previous examples, there is very little
propagation because all the elements have similar size. By
performing repeated global refinements of the mesh it is not
likely that the refinement of an element would propagate to
distant regions of the mesh requiring several messages be-
tween processors to obtain a conforming mesh.
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2D Irregular Mesh 3D Irregular Mesh
Level 4 Proc 8 Proc 16 Proc 32 Proc 4 Proc 8 Proc 16 Proc 32 Proc

1 21 22 17 15 51 52 51 48
2 14 22 16 14 146 109 92 79
3 19 31 17 23 213 162 187 153
4 26 29 31 20 433 383 336 307
5 31 36 36 33 811 744 613
6 37 47 35 41 1613 1221
7 87 56 65 62
8 73 131 83 74
9 129 143 101

10 190 143
11 206

Figure 7: Largest number of new edge refinements sent by a processor to other processors in each refinement phase by per-
forming successive refinements on an irregular 2D and 3D meshes (Multilevel-KL partitions).

A good static test of locally adapted meshes is the two-
dimensional problem defined by Laplace’s equation�u =
0 in the square
 = (�1; 1)2 with the following Dirichlet
boundary conditions [26]:

g(x; y) = cos(2�(x� y))
sinh(2�(x+ y + 2))

sinh(8�)
:

The analytical solution for this problem is known to be
u(x; y) = g(x; y) at every point of the domain
. This
solution is smooth but changes rapidly close to the corner
(1; 1). A similar problem has been defined in three dimen-
sions. We use these two problems to study the performance
of the refinement algorithm and compare it with the other
components of PARED.

First we loaded into the coordinator unstructured two-
and three-dimensional meshes with elements of approxi-
mately uniform size. We computed a partition of these
meshes using the Chaco [12] graph partitioning library and
we distributed mesh elements between our workstations.

After setting a maximum error criterion the simulation
is started in parallel. PARED solves the equations in par-
allel and computes an error estimate. While the estimate
exceeds the maximum error desired, the mesh is adapted
locally, the load balanced using PNR, work migrated, and
the equations solved again using the new mesh. For these
tests we solved the system of equations in parallel using the
Conjugate Gradient method with Jacobi preconditioner. In
this example of a static problem, only refinement was used.
Each refinement phase increases the number of mesh ele-
ments and vertices in the region of rapid solution change,
as shown in Figure 9. Using linear basis functions more
than 1 million elements and 17 levels of local refinement
were needed to achieve the desired error in the 2D case and
about 800,000 and 11 levels of refinement were needed in
the 3D case.

We examined the time spent by PARED in each of the
solution, refinement, partition, and migration phases for the

2D and 3D versions of Laplace’s equation described above.
The results from these experiments are shown in Figures 10
and 11 for the 2D and 3D problems, respectively. There are
several things that stand out from these experiments. First,
in the 2D case the time spent solving the equations clearly
dominates the time to refine elements and partition and mi-
grate them. Second, in the 3D case the time spent solving
equations is comparable to the time for refinement and mi-
gration while the time for partitioning is negligible. In a
subsequent paper we describe new techniques for reducing
the migration cost.

The local refinement time varies widely between pro-
cessors. When the mesh is partitioned between processors
it is likely that most of the elements that are refined will
be located on one or a few processors. As mentioned ear-
lier, each element selected for refinement is bisected by its
longest side and the refinement propagates to adjacent ele-
ments and across processor boundaries to maintain the con-
formality of the mesh. In this phase, the largest amount of
time is spent refining elements that are local to the proces-
sor; communication overhead is small.

For every refinement element, we also computed the
processor depthof the propagation, that is, how many mes-
sages between processors are required to make that element
conformant. Even in these examples with very high dissim-
ilar physical scales, the depth is never more than 4 so it is
unlikely that the refinement will propagate through a large
number of processors.

8. Related work

PARED follows in the spirit of the Distributed Irreg-
ular Mesh Environment (DIME) [27] by Roy Williams at
the California Institute of Technology. DIME is an early
system for the adaptive solution of PDEs using 2D unstruc-
tured meshes. DIME uses a database of vortices to maintain
the identity ofeach mesh structure.
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Figure 8: Refinement time for the global successive refinements of a irregular(a) two-dimensional mesh and(b) three-
dimensional irregular mesh when Multilevel-KL is used.

Figure 9:Irregular two- and three-dimensional regular meshes adaptively refined to solve Laplace’s equation of a problem that
exhibits high physical activity in one of its corners.

The Scalable Unstructured Mesh Computation
(SUMAA3d) project at the Argonne National Laboratories
is another related project. In [4] an algorithm for the
parallel refinement of 2D meshes using the longest edge
bisection is introduced. In this method, the mesh is
partitioned by vertices, although elements areownedby
only one processor. To avoid the synchronization problem
of refining adjacent elements in neighboring processors,
this refinement method uses heuristics. Each element is
assigned a color obtained from a random assignment of
values to triangles and only elements with the same color
are refined in the same phase. Because adjacent elements
have a high probability of having a different color, they are
not likely to be refined at the same time.

In [28] an adaptive environment for unstructured prob-
lems called PMDB is presented. PMDB refines tetra-
hedrons using a variety of different subdivision patterns.
PMDB first marks a set edges for refinement. Then each
element is refined into two or more tetrahedrons depending
on which of its edges are marked. In the case that this pro-
cedure creates a tetrahedron with very sharp angles, then

some adjacent tetrahedrons might be additionally refined
but only if they are located in the same processor. PMDB
does not propagate the refinement across processor bound-
aries.

9. Conclusions

In this paper we have presented an algorithm for
the refinement of two- and three-dimensional unstructured
meshes on distributed memory parallel computers. We
build on the work done for similar serial refinement algo-
rithms by proving that the meshes generated by this parallel
refinement algorithm are identical to those obtained by se-
rial methods. Our refinement procedure is general, does
not use heuristics and can be applied to two- and three-
dimensional meshes.

We have shown that our parallel refinement algorithm
is efficient and does not require significant overhead, al-
though good partitions of the mesh between processors are
still required. We have shown that using this refinement
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Figure 10:Adaptation times for two-dimensional mesh.
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Figure 11:Adaptation times for three-dimensional mesh.
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algorithm we can rapidly obtain meshes with millions of
elements and vertices. We have also used this refinement
algorithm to locally adapt meshes with very localized high
relative error. In this case, we have shown that the local
refinement times are comparable to the times spent in other
phases of the adaptation procedure, such as partition and
migration, while in the 2D case, the total time of the adap-
tation procedure is dominated by the solving time.

This refinement procedure is part of PARED, an inte-
grated system for the adaptive solution of PDEs. PARED

uses a parallel object oriented framework that has greatly
simplified the development of our code.
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