
Generalized Scans and Tri-Diagonal Systems

Paul F. Fischer�

Franco P. Preparatay

John E. Savagey

Brown University
Providence, Rhode Island 02912

Abstract

Motivated by the analysis of known parallel techniques for the solution of linear tridi-
agonal system, we introduce generalized scans, a class of recursively de�ned length-
preserving, sequence-to-sequence transformations that generalize the well-known pre�x
computations (scans). Generalized scan functions are described in terms of three algo-
rithmic phases, the reduction phase that saves data for the third or expansion phase and
prepares data for the second phase which is a recursive invocation of the same function
on one fewer variable. Both the reduction and expansion phases operate on bounded
number of variables, a key feature for their parallelization. Generalized scans enjoy a
property, called here protoassociativity, that gives rise to ordinary associativity when
generalized scans are specialized to ordinary scans. We show that the solution of posi-
tive de�nite block tridiagonal linear systems can be cast as a generalized scan, thereby
shedding light on the underlying structure enabling known parallelization schemes for
this problem. We also describe a variety of parallel algorithms including some that are
well known for tridiagonal systems and some that are much better suited to distributed
computation.

1 Introduction

The original motivation for this paper were some intriguing questions arising in the par-
allel solution of tridiagonal systems of linear equations, a problem fundamental in its own
right and for its bearing on the solution of banded systems (naturally viewed as block
tridiagonal systems). Over the years, a number of direct factorization methods amenable
to e�cient parallelization have been developed. They include Stone's \scan-based" (or
\recursive doubling") algorithm [St73], \odd-even cyclic reduction" [H65] [Swa74] [Swe74]
[Swe77], and \partitioning" [J87] [W81]. These methods reveal various enabling factors of
NC-parallelization, which we now brie
y review.

�Division of Applied Mathematics. (p�@cfm.brown.edu) Supported in part by NSF Grant ACS-9405403
and AFOSR Grant F49620-95-1-0074.

yDepartment of Computer Science. The research of F.P. Preparata (franco@cs.brown.edu) and J.E. Savage
(jes@cs.brown.edu) was supported in part by the O�ce of Naval Research under contract N00014-91-J-4052,
ARPA Order 8225. In addition F.P. Preparata and J.E. Savage were supported in part by NSF Grants
CCR-9400232 and MIP-902570, respectively.

1



Stone's algorithm [St73] solves a tridiagonal system with coe�cient matrix A by invert-
ing the diagonal matrix D arising from the LDU decomposition of A. This decomposition
is obtained through the solution of a linear recurrence of second order in the following two
cases: either (i) the base ring is commutative (a property absent in the block-tridiagonal
case), or (ii) all upper or lower o�-diagonal terms are invertible (a strong condition, espe-
cially in the block case). Since analysis of such recurrences reveals an underlying semigroup
and its solution is given by the computation of the pre�xes over such semigroup, the well-
known NC-parallelizability of the latter (scan computation [LF80]) yields a fast algorithm.

Cyclic (or even-odd) reduction of a tridiagonal system successively eliminates and renum-
bers the even- or odd-numbered variables. After a single elimination step, the resultant
system is again tridiagonal in the remaining variables, which can be renumbered to yield
a new system of half the original size. The elimination and renumbering of variables can
proceed in parallel because the odd- (or even-) numbered equations are only indirectly cou-
pled. Block cyclic-reduction (BCR) has also been studied as a means of extending this
approach to banded systems [J85]. Here there is no apparent semigroup operation enabling
the emerging parallelism that imposes any additional constraint on the matrices beyond
positive-de�niteness.

A related parallel technique is represented by partitioning, or substructuring, algorithms
[W81] [DS84] [M85] [J87]. When a system of n equations of bandwidth 2s+1 is to be solved
on a p-processor parallel computer, the diagonal band of the coe�cient matrix is partitioned
as a block-tridiagonal system of order 2p�1. Speci�cally, the block matrices on the diagonal
are of two sizes: p large blocks, or \substructures," of size m = d((n�s(p�1))=pe and p�1
blocks of size s called \separators." A �rst phase eliminates the substructures: Because
they are coupled only via the separators, the system associated with each substructure can
be factored simultaneously to eliminate blocks directly above and below the substructures.
Updates to the separator elements during this initial phase are additive and therefore may
be asynchronous. The remaining small block-tridiagonal system of order (p�1), with blocks
of order s, can be solved, for example, by BCR. Thus substructuring is equivalent to BCR
if one takes the substructure size equal to the separator size, which for the tridiagonal case,
implies m = s = 1.

The intriguing question was the identi�cation of the underlying connections among
these parallelizing techniques. We have succeeded in reformulating the general problem
as a length-preserving transformation of input sequences to output sequences of which the
ordinary pre�x computations (also known as scans) are very special and important cases.
For this reason we have named such transformation generalized scans. A very interesting
feature of the generalized-scan operators is a property, called here protoassociativity,
which becomes ordinary associativity on the set of suitably de�ned (�xed-length) strings of
input symbols (a semigroup).

It should be emphasized that in this paper we adopt a purely algebraic viewpoint because
our intent is to elucidate the algebraic structure that enables parallelism. Therefore we are

2



not concerned with the numerical behavior of the techniques, such as stability, and we do
not consider iterative methods for which noteworthy solutions [R94] [RP85] for tridiagonal
systems have been presented in the literature.

The paper is organized as follows. In Section 2 we introduce the notion of generalized
scans and verify that ordinary scans are a special case of them. Next in Section 3 we
discuss the characteristic property of generalized scans (protoassociativity) and relate it to
ordinary associativity. Finally in Section 4 we cast the solution of a block tridiagonal system
as a generalized scan thereby revealing its inherent parallelism, which had been partially
exhibited by the algorithms appearing in the literature.

2 Generalized Scans

After brie
y reviewing the standard scan operation, we introduce the generalized scan
operation.

Let S = (S;�) denote a semigroup consisting of a set S and an associative operator

� : S2 ! S. The scan function f
(n)
scan : Sn ! Sn maps the sequence x = (x1, x2, : : :, xn)

to the sequence y = (y1; y2; : : : ; yn), that is, f
(n)
scan(x) = y where

yi = x1 � x2 � : : :� xi i = 1; 2; : : : ; n

The function f
(n)
scan can be computed on a parallel machine in time O(logn) with (optimal)

work proportional to n [LF80]. Scan computations have been used to solve a large variety
of computational problems [B89].

De�nition 2.1 For sets SIN, SOUT, and SM and nonnegative integers � and �, �+� > 0,
let R : S�+�+1

IN ! S�+�
IN , � : S�+�+1

IN ! SM, T : S�+�
IN ! S�+�

OUT, and E : S�+�
OUT � SM !

S�+�+1
OUT be four functions.

For � + 1 � j � n � � let f
(n;�;�)
reduction;j : S

n
IN ! Sn�1

IN � SM be de�ned as

f
(n;�;�)
reduction;j(x) = r = (r1; r2; : : : ; rj�1; rj+1; : : : ; rn; cj)

where

ri = xi for i < j � � and i > j + �
(rj��; : : : ; rj�1; rj+1; : : : ; rj+�) = R(xj��; : : : ; xj+�)

cj = �(xj��; : : : ; xj+�)

Here cj is the record at the jth position. Also, let f
(n;�;�)
expansion;j : S

n�1
OUT � SM ! Sn

OUT be

de�ned by

f
(n;�;�)
expansion;j(by1; : : : ; byj�1; byj+1; : : : ; byn; cj) = (y1; y2; : : : ; yn)

3



where

yi = byi for i < j � �
yi = byi�1 for i > j + �

(yj��; : : : ; yj+�) = E(byj��; : : : ; byj�1; byj+1; : : : ; byj+� ; cj)

An (�; �)-generalized scan function f
(n;�;�)
gen scan : Sn

IN ! Sn
OUT is a length-preserving

transformation of an input sequence x to an output sequence y = f
(n;�;�)
gen scan(x) de�ned as

follows:

f (n;�;�)gen scan(x) =

(
T (x) when n = (�+ �)

f
(n;�;�)
expansion;n��(f

(n�1;�;�)
gen scan (f

(n;�;�)
reduction;n��(x)); cn��(x)) when n � �+ � + 1

Thus, an (�; �)-generalized scan function on n inputs can be viewed as suppressing the
last index that is preceded by � and followed by � input indices and storing the record at
position n� �, cn�� , to be used later in the expansion phase. The same (�; �)-generalized
scan function on n � 1 inputs is applied to the n � 1 outputs produced by the reduction
phase after which the expansion phase adds a new output and modi�es the � and � outputs
appearing before and after the (n� �)th output.

The scan function f
(n)
scan is an instance of a generalized scan function for which � = � = 1,

SIN = SOUT = SM = S, � : S � S ! S is an associative operation (for all a; b; c 2 SIN,
a� (b� c) = (a� b)� c), and

R(u1; u2; u3) = (u1; u2 � u3)

�(u1; u2; u3) = u2

E(v1; v3; u2) = (v1; v1 � u2; v3)

T (u1; u2) = (u1; u1 � u2)

To see that this interpretation of a standard scan computation is correct, note that after
the reduction phase, a scan computation is done on the sequence (x1; : : : ; xn�2; xn�1 � xn)
which provides yi = x1 � � � � � xi for 1 � i � n� 2 and yn = x1 � � � � � xn. The carry from
the reduction phase is cn�� = cn�1 = xn�1 which is combined with yn�2 to compute yn�1.

Let R(j), E(j), and F [s] denote reduction and expansion on the jth index and the (�; �)-
generalized scan function on all but the the indices in the sequence s. Also, let F [�] denote
the (�; �)-generalized scan function on all n inputs (i.e., sequence s is the empty sequence �).
Thus, an (�; �)-generalized scan function is de�ned recursively by the following expression
where the functions are applied in left-to-right order:

F [�] = R(n��)F [(n��)]E(n��)

4



It follows that we can write F [�] as follows:

F [�] = R(n��) � � �R(�+1)TE(�+1) � � �E(n��)

where T = F [q] and q = (n� �; n� � � 1; : : : ; �+ 1). When s = (n� �; : : : ; n� �� t) this
implies that we can write F [s] as follows

F [s] = R(n���t�1)F [(n��;:::;n���t�1)]E(n���t�1)

This recursive de�nition of an (�; �)-generalized scan function requires that reductions
be performed on inputs in decreasing order of their index. We shall see later that, when a
speci�c condition is satis�ed, the indices can be suppressed in any order.

The quadruple (R; �; E; T) is called the generalized scan operator. The set of �+�+1
arguments of R and � is called the support of the operator. To de�ne minimal values of �
and �, we stipulate that R e�ectively depends upon each variable of its support. (R depends

on variable xj if there are values for the other variables such that a change in xj causes a
change in the output).

De�nition 2.2 Represent R and E by (R1; R2; : : : ; R�+�) and (E1; E2; : : : ; E�+�+1) re-

spectively where Rj : S
�+�+1
IN ! SIN and Ej : S

�+�
OUT � SM ! SOUT . The generalized scan

operator (R; �; E; T ) is protoassociative if for all x1; : : : ; x�+�+2 2 SIN and 1 � j � �+�

Rj(x1; R1(x2; : : : ; x�+�+2); : : : ; R�+�(x2; : : : ; x�+�+2))
= Rj(R1(x1; : : : ; x�+�+1); : : : ; R�+�(x1; : : : ; x�+�+1); x�+�+2))

(1)

and for all y1; : : : ; y�+�+1 2 SOUT and 2 � j � �+ �

Ej(E2(y1; : : : ; y�+� ; r4); : : : ; E�+�+1(y1; : : : ; y�+�+1; r4); r2)
= Ej(E1(y1; : : : ; y�+�; r3); : : : ; E�+�(y1; : : : ; y�+�; r3); r1)

(2)

where r1 = �(x1; : : : ; x�+�), r2 = �(x2; : : : ; x�+�+1), r3 = �(R(x1; : : :x�+�); x�+�), and
r4 = �(x1; R(x2; : : :x�+�+1)).

Since a generalized scan function passes inputs outside the support of R and E to its
outputs without alteration, this de�nition states that over any (�+�+2) inputs the order of
two consecutive reductions and subsequent expansions can be exchanged. As stated below,
this implies that the value of a generalized scan function is the same for any reduction and
corresponding expansion order.

Theorem 2.1 Let n � (� + � + 2). Given an (�; �)-generalized scan function f
(n;�;�)
gen scan :

Sn
IN ! Sn

OUT whose generalized scan operator (R; �; E; T) is protoassociative, all orders of

suppression of indices yield the same value for f
(n;�;�)
gen scan. That is,

F [�] = R(i1) �R(i2) � � �R(in����)TE(in����) � � �E(i2) �E(i1)

for every permutation (i1; i2; : : : ; in����) of (�+ 1; �+ 2; : : : ; n� �).

5



x1

x5

x6

y1

y2

y4

y5

y6

fgen_scan(x1,x2,x3,x4,x5,x6)

fgen_scan(x1,x2,x4,x5,x6)x1

x2

x4

x5

x6

x3

y1

y2

y4

y5

y6

y3

^^^^

^

^

^ ^

^

^

x2

x4

(6,1,1)

^

^

^

^

^

(5,1,1)

r3

Figure 1: A realization of a generalized scan on six inputs with � = � = 1 in which the
reduction and expansion occur on the third, �fth, second, and fourth inputs, in that order.

Proof From equation (1) the reduction by suppression of index (n � �) followed by

index (n���1) produces the same input to f
(n�2;�;�)
gen scan as does the suppression of index

(n���1) followed by index (n��). Also, from (2) expansion on index (n��) followed
by index (n� � � 1) produces the same output as does expansion on index (n� � � 1)
followed by index (n��). It follows that both reduction/expansion orders produce the
same value for the generalized scan function. That is,

F [�] = R(n��) �R(n���1)F [(n��;n���1)]E(n���1) �E(n��)

= R(n���1) �R(n��)F [(n��;n���1)]E(n��) �E(n���1)

Because the �rst reduction/expansion phase can be done on index (n � � � 1) pre-
ceded/followed by a generalized scan function on the remaining indices, it follows by
induction that �rst reduction/expansion can be done on any index and that any reduc-
tion/expansion order is permissible, which is the desired conclusion.

Shown in Figure 1 is a serial decomposition of the scan function f
(6)
scan = f

(6;1;1)
gen scan using its

representation as a generalized scan function. Here reduction is carried out in the following
sequence: third, �fth, second, and fourth. At this point the string has length 2 and the
bottom of recursion is executed (hexagonal-shaped node). Finally, expansion occurs in the
reverse order of reduction. Data moves along edges from left to right. The hexagonal-shaped

6



Figure 2: The graph resulting from folding the network of Figure 1 about the hexagonal
module. Each edge is to be interpreted as a pair of directed arcs with opposite orientation.

vertex computes the scan function on two inputs. Dashed lines in Figure 1 symbolize storage
of an element for later use.

The symmetry of reductions and expansions of a generalized scan allows for its realiza-
tion as a graph obtained by folding the graph about its midpoint and fusing corresponding
reduction and expansion vertices, as suggested in Figure 2. In the folded graph data moves
from left to right in the reduction phase to the bottom-of-recursion vertex on the right and
then back to the input in the expansion phase.

The preceding correct interpretation of the standard scan does not agree with the usual
implementation by means of a tree network. We now illustrate an alternative interpretation
that corresponds indeed to a tree computation. We assume that S is a monoid, i.e. it
contains the identity element � (adjunction of the identity is always feasible) with the
property � � x = x � � = x. We extend the input sequence x = (x1, x2, : : :, xn) with an
identity term to its right to obtain x = (x1, x2, : : :, xn, �) and de�ne y = (�; y1; y2; : : : ; yn)
to be the shifted scan of x, with the usual meaning for yj , j = 1; : : : ; n. For � = 0 and
� = 1 we de�ne the following functions

R(u1; u2) = (u1 � u2)

�(u1; u2) = u1

E(v1; u1) = (v1; v1 � u1)

T (1)(u) = �

We then have the following recursion for j � 1:

f
(n�1;0;1)
reduction;j(x) = (x1; : : : ; xj�1; xj � xj+1; xj+2; : : : ; xn; �; xj) = (x�; xj)

f (n�1;0;1)genscan (x�) = (�; by1; : : : ; byj�1; byj+1; : : : ; byn)
7



Finally the expansion phase computes yj = byj�1 � xj and inserts it among the other
outputs thereby yielding (�; y1; : : : ; yn), as claimed. It is a simple exercise to verify that the
graph description of the shifted scan just de�ned yields the familiar binary tree network.

Next we examine some important properties of generalized scans, which also characterize
their inherent parallelism.

3 Properties of generalized scans

In the preceding section we have shown that a schedule of index suppressions represented by
a permutation of (�+1; �+ 2; : : : ; n� �) correctly evaluates the generalized scan function.

While the above de�nition of a generalized scan presents the corresponding computation
as serial, a little thought reveals that the de�nition hides parallelism that can be exploited.
A set of successive index suppressions whose domains do not overlap can be executed in
parallel. More speci�cally, we now give an algebraic circuit interpretation of the inherent
parallelism of the computation.

We recall that an algebraic circuit is a directed acyclic graph whose vertices represent
either variables or functions. The function computed by a circuit is that obtained through
the application of functional composition on the functions associated with vertices. The
size of an algebraic circuit is the number of vertices associated with functions and its depth
is the number of vertices on the longest path from an output vertex to an input vertex.

Theorem 3.1 Given the functions fR; �; E; Tg, the generalized scan function f
(n;�;�)
gen scan can

be realized by an algebraic circuit of size O(n) and depth O(log
 n) where 
 = (� + � +
1)=(�+ �).

Proof We give a recursive construction that exhibits parallelism. Let n0 = n. Initially,
the indices j = k(� + � + 1) � � for 1 � k � m1 where m1 = bn0=(� + � + 1)c are
suppressed (reduction phase). These suppressions can be performed in parallel because
the domains and ranges of the reductions do not overlap. This operation is implemented
by a single stage of appropriate modules acting in constant time. This step produces a
sequence of n1 = n0�m1 � (n+1)=
 outputs, which become the inputs to a (recursively
de�ned) generalized scan circuit.

On the output of the latter circuit, a single stage of appropriate modules performs in
constant time the expansion operation on the same set of indices as the initial reduction.
Since the initial step reduces the input size by a factor of 
, it is clear that the depth of
the circuit is proportional to log
 n. Moreover, the size, S(n), of the circuit on n inputs
satis�es S(n) � m1 + S(n1) � n=(�+ � + 1) + S((n+ 1)=
) which is linear in n.

Let Auniform be the algorithm used in the proof of Theorem 3.1. While Auniform makes
explicit the parallelism inherent in a generalized scan function, it may be quite ine�cient on

8



Figure 3: Reduction steps for a generalized scan on four inputs when � = � = 1.

a network of p serial processors operating in parallel (the distributed computing model).
On such networks the time to communicate between two processors can be much larger
than the time to execute a single instruction. As a consequence, a naive implementation of
Auniform can require many more interprocessor communication steps than a more careful
implementation. In particular, if the p processors in a network are given a linear order

and the variables of f
(n;�;�)
gen scan are assigned to processors consecutively in groups of size n=p

when n=p� (�+�+1), then in each of the O(log
 n) parallel phases each pair of adjacent
processors must exchange data.

An alternative approach, referred to as Adistributed, can reduce the number of phases on
which messages are exchanged between processors to O(log
 p). Since p is typically much
smaller than n and the time for each message is large, this can result in a large savings in
execution time.

In Adistributed, each of the p processors works on its local set of n=p variables as long as
possible. All processors apply reduction steps to their n=p variables until at most �+�+1
variables remain. Shown in Figure 3 is the graph associated the reduction phase of a (1; 1)-
generalized scan on four inputs. It demonstrates that no communication is needed until as
many reductions as possible have been performed on one processor. Let m � (�+�+1)p be
the total number of variables remaining on all p processors. At this point the p processors

must cooperate through the exchange of messages to compute f
(m;�;�)
gen scan. Applying Auniform

to this problem requires O(log
 m) = O(log
 p) inter-processor communications after which
the expansion steps can be performed within each processor without the further exchange
of messages. We summarize these observations below.

Theorem 3.2 Given the functions fR; �; E; Tg, the generalized scan function f
(n;�;�)
gen scan can

be realized on a network of p linearly connected processors in O(n
p
) independent parallel

steps plus O(log
 p) communication steps. The communication cost ranges between O(p)
and O(log p) as the communication time becomes independent of the interprocessor distance

on the linear array.

In addition to the illustrated parallelizability, we now discuss an important consequence
of the protoassociativity of generalized scans. Consider now an input string of length
3(� + �), represented through its indices 1; : : : ; 3(� + �), and suppose to apply to it an

9



...

...

(a) (b) (c)

...

...

Figure 4: An associative operator in a generalized scan (illustrated for a tridiagonal system
solver).

arbitrary schedule of suppressions of indices �+ 1; �+2; : : : ; 2�+ �+1, yielding as output
a string of (�+ �) terms (any such schedule, as a consequence of protoassociativity, yields
the same result). Among all equivalent suppression schedules consider the two following
ones:

1. Suppression of indices �+ 1; : : : ; 2�+ �, followed by the suppression of indices 2� +
� + 1; : : : ; 3�+ 2�;

2. Suppression of indices 2�+ � + 1; : : : ; 3�+ 2�, followed by the suppression of indices
�+ 1; : : : ; 2�+ �.

Since the two schedules are equivalent, if we consider a string of �+� consecutive terms
of SIN as an element of a set �, and consider the previously de�ned suppression of � + �

contiguous indices as a binary operation \�" on �, the established equivalence reveals that
� is associative, i.e., (�; �) is a semigroup. This observation ties protoassociativity to the
standard algebraic notion of associativity, and sheds light on the comparable suitability to
parallelization of traditional scans and generalized scans.

As a �nal remark, if we test the interpretation of scan as a generalized scan expressed
by equation (1) for protoassociativity, with reference to the function R for a normal scan
we �nd

R1(x1; x2; x3 � x4) = R1(x1; x2 � x3; x4)

R2(x1; x2; x3 � x4) = R2(x1; x2 � x3; x4)

The �rst line yields the trivial relation x1 = x1; the second one, however, yields x2 � (x3 �
x4) = (x2 � x3)� x4, i.e., standard associativity. An analogous result is obtained referring
to function E.

10



4 Solving Block Tridiagonal Systems

A tridiagonal system of equations over the ring R in the unknowns y1, y2, : : :, yn is described
by the following equations:

ajyj�1 + bjyj + cjyj+1 = dj ; for 1 � j � n

where aj , bj , cj and dj are in R and coe�cients with indices j � 0 or j � n + 1 are zero.
This set of equations is described by the tridiagonal matrix A of coe�cients shown below.

A =

2666666666664

b1 c1
a2 b2 c2

a3 b3
. . . cj�1
aj bj

. . . cn�1
an bn

3777777777775
The system of equations associated with the matrix A is

Ay = x (3)

(where, of course, y and x are column vectors). Without loss of generality we may assume
that R is itself a ring of b� b matrices over a ring of elements.

We are interested in solving such systems when the matrix A is positive de�nite

(especially when R is a ring of b� b matrices). If the matrix A is not positive de�nite, as
is well-known, the system ATAy = AT

x has the same solution as (3) and the matrix ATA

is (symmetric) positive de�nite (although its bandwidth is twice as large).
The data for this system (3) is conveniently characterized by the following set of n

four-tuples (referred to here for convenience as the lambda notation):

�i = (ai; bi; ci; di) 1 � i � n (4)

We now describe a method of factoring a tridiagonal matrix that allows us to describe its
solution as the computation of a generalized scan function. To simplify the exposition, we
illustrate the procedure for a speci�c example and follow with the general form. Consider
the case n = 6 266666664

b1 c1
a2 b2 c2

a3 b3 c3
a4 b4 c4

a5 b5 c5
a6 b6

377777775

0BBBBBBB@

y1
y2
y3
y4
y5
y6

1CCCCCCCA
=

0BBBBBBB@

d1
d2
d3
d4
d5
d6

1CCCCCCCA
:

11



Elimination of the coe�cients in the third column (chosen arbitrarily) via one round of
Gaussian elimination yields the modi�ed system:2666666664

b1 c1
a2 bb2 0 bc2

a3 b3 c3ba4 0 bb4 c4
a5 b5 c5

a6 b6

3777777775

0BBBBBBB@

y1
y2
y3
y4
y5
y6

1CCCCCCCA
=

0BBBBBBBB@

d1bd2
d3bd4
d5
d6

1CCCCCCCCA
: (5)

Expressions for the hatted variables (e.g. bbi) obtained from the Gaussian elimination is
given below for the general case. The crucial observation is that (5) is equivalent to the
pair of problems: 2666664

b1 c1
a2 bb2 bc2ba4 bb4 c4

a5 b5 c5
a6 b6

3777775

0BBBBB@
y1
y2
y4
y5
y6

1CCCCCA =

0BBBBB@
d1bd2bd4
d5
d6

1CCCCCA : (6)

and

y3 = b�13 (d3 � a3y2 � c3y4) : (7)

We see that with one round of Gaussian elimination on an arbitrary index, we recover a
tridiagonal system (6) with one less equation, to be solved (formally) via recursion, and a
single equation for y3 which is solved subsequently.

For an arbitrary index j the information needed to compute yj as well as solve the
reduced system is captured by the following lambda notation:

b�i =
8>>><>>>:

(aj�1; bbj�1; bcj�1; bdj�1 ) i = j � 1

(aj ; b�1j ; cj; dj ) (special) i = j

(baj+1; bbj+1; cj+1; bdj+1 ) i = j + 1
(ai; bi; ci; di ) otherwise

(8)

with bbj�1 = bj�1 � cj�1b
�1
j aj baj+1 = �aj+1b

�1
j ajbcj�1 = �cj�1b

�1
j cj bbj+1 = bj+1 � aj+1b

�1
j cjbdj�1 = dj�1 � cj�1b

�1
j dj bdj+1 = dj+1 � aj+1b

�1
j dj

(9)

After solving the new set of n�1 equations to produce the result vector (by1; by2; : : : ; byn�1)
the original system of equations is solved as follows: these n� 1 results are passed directly

12



to the output and yj is computed by combining b�j with byj�1 and byj+1. If we view yj�1, yj ,
and yj+1 as computed from byj�1, byj , and byj+1 in the preceding stage, then

yi = byi for i 6= j � 1
yj = b�1j (dj � aj byj�1 � cj byj)

We now realize that solving a tridiagonal system of equations amounts to computing a
generalized scan function with the following operator (for � = � = 1):

R(�j�1; �j; �j+1) = (b�j�1; b�j+1; �(�j�1; �j; �j+1))
�(�j�1; �j; �j+1) = b�j
E(byj�1; byj+1; b�j) = (byj�1; b�1j (dj � aj byj�1 � cjbyj); byj+1)

T (�1; �n) = ((b1� c1b
�1
n an)

�1(d1 � c1b
�1
n dn); (bn � anb

�1
1 c1)

�1(dn � anb
�1
1 d1))

It is also relatively easy to verify that the above operator is protoassociative.
It is important to note that the parallel solution of block tridiagonal matrices obtained

by casting this problem as the solution of a generalized scan computation requires only that
the diagonal matrices b1, b2, : : :, bn be invertible, a property guaranteed by the assumption
that the matrix is positive de�nite, and not that any of the o�-diagonal entries be invertible.

We note that the schedule Auniform corresponds to the well known cyclic reduction
algorithm (e.g., [H65] [Swa74] [Swe74] [Swe77]), while Adistributed corresponds to the parti-
tioning method (e.g., [J87] [W81]). Both approaches exploit as a common foundation the
protoassociativity of the generalized scan operations described here.

The algorithms given above to solve a tridiagonal system can be applied to banded
positive de�nite systems, with identical upper and lower bandwidth b, by covering the non-
zero entries in the coe�cient matrix with block tridiagonal matrices. Positive de�niteness
implies that the diagonal blocks in this covering are non-singular and that this property is
inherited by the reduced matrices.

Theorem 4.1 An algorithm exists to solve any n � n banded linear system of upper and

lower bandwidth b can be solved with O(nW (b)=b) work and O(T (b) logn) parallel time where

W (b) and T (b) are respectively the work and parallel time to invert a b � b non-singular

matrix. Furthermore, this algorithm only requires that diagonal block matrices by invertible.

However, the solution of banded systems can also be obtained without explicit use of
the block repackaging of the matrix, but rather, by a direct application of the notion of
generalized scan. This can be seen as follows.

For simplicity, we refer to matrices with identical lower and upper bandwidth b, although
with no signi�cant loss of generality. The suppression of an individual block, in the natural
generalization of the the described method to block matrices, can be emulated by the

13



successive suppressions of the b indices pertaining to that block, in any order. (The inversion
of a b� b matrix is replaced by b steps of Gaussian elimination.) The only important detail
is that the index suppression is carried out by a generalized scan operator of adequate
support, speci�cally with � = � = 2b� 1. The inputs to the generalized-scan operator are
now (4b� 1)-tuples of scalar entries, rather than 4-tuples. Note, however (as can be easily
seen), that only 3b of these entries are nonzero, and that each 4b-tuple contains a total
of (b � 1) zero entries (at its left and/or right end). Clearly the work performed by this
implementation matches the one performed by the block approach; its main interest lies in
the fact that it avoids explicit matrix inversion and that it embodies an additional instance
of generalized-scan computations.

References

[B89] Guy E. Blelloch, Scans as Primitive Parallel Operations IEEE Transactions on

Computers, 38:11:1526{1538, 1989

[DS84] J.J. Dongarra and A.H. Sameh. On Some Parallel Banded System Solvers. Par-
allel Computing, 1:223{235, 1984.

[H65] R.W. Hockney. A Fast Direct Solution of Poisson's Equation Using Fourier
Analysis. JACM, 12:95{113, 1965.

[J85] S.L. Johnsson. Solving Narrow Banded Systems on Ensemble Architectures.
Research Report YALEU/DCS/RR-418 Dept. of Computer Science, Yale Uni-
versity New Haven, CT, August 1985.

[J87] S.L. Johnsson. Solving Tridiagonal Systems on Ensemble Architectures SIAM
J. of. Sci. Statist. Comput., 8:354{392, 1987.

[LF80] R. E. Ladner and M. J. Fischer. Parallel Pre�x Computation. JACM, 27:831{
838, Oct. 1980.

[M85] U. Meier. A Parallel Partition Method for Solving Banded Systems of Linear
Equations. Parallel Computing, 2:33{43, 1985.

[RP85] V. Pan and J. H. Reif E�cient Parallel Solution of Linear Systems Procs. 7th
Annl. ACM Symp. on Theory of Computing, 143-152, Providence, RI (May 6-8,
1985).

[R94] J. H. Reif O(log2 n) Time E�cient Parallel Factorization of Dense, Sparse Sep-
arable, and Banded Matrices. Procs. 6th Annl. ACM Symp. on Parallel Algo-

rithms and Architectures, 278-289, Cape May, NJ (June 27-29, 1994).

14



[St73] H.S. Stone. An E�cient Parallel Algorithm for the Solution of a Tridiagonal
Linear System of Equations. JACM, 20:27{38, Jan. 1973.

[Swa74] P.N. Swarztrauber. A Direct Method for the Discrete Solution of Separable
Elliptic Equations. SIAM J. of Num. Anal., 11:1136{1150, 1974.

[Swe74] R.A. Sweet. A Generalized Cyclic-Reduction Algorithm. SIAM J. of Num.

Anal., 11:506{520, 1974.

[Swe77] R.A. Sweet. A Cyclic-Reduction Algorithm for Solving Block Tridiagonal Sys-
tems of Arbitrary Dimension. SIAM J. of. Num. Anal., 14:706{720, 1977.

[W81] H.H. Wang. A Parallel Method for Tridiagonal Equations. ACM Trans. Math.

Software, 7:170{183, 1981.

15


