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Today computers have several levels of memory hierarchy. To obtain good performance on these
processors it is necessary to design algorithms that minimize I/O traffic to slower memories in

the hierarchy. In this paper, we study the computation of option pricing using the binomial and

trinomial models on processors with a multilevel memory hierarchy. We derive lower bounds
on memory traffic between different levels of hierarchy for these two models. We also develop

algorithms for the binomial and trinomial models that have near-optimal memory traffic between

levels. We have implemented these algorithms on an UltraSparc IIIi processor with a 4-level of
memory hierarchy and demonstrated that our algorithms outperform algorithms without cache

blocking by a factor of up to 5 and operate at 70% of peak performance.

Categories and Subject Descriptors: G.4 [Mathematical Software]: Efficiency, Algorithm de-
sign and analysis

General Terms: Algorithms,Performance,Experimentation
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1. INTRODUCTION

An option contract is a financial instrument that gives the right to its holder to
buy or sell a financial asset at a specified price referred to as strike price, on or
before the expiration date. The current asset price, volatility of the asset, strike
price, expiration time, and prevailing risk-free interest rate determine the value of
an option. Binomial and trinomial option valuation are two popular approaches
that value an option using a discrete time model [Kwok 1998; Cox et al. 1979]. The
binomial option pricing computation is modeled by the directed acyclic pyramid
graph G

(n)
biop with depth n and n+ 1 leaves shown in Figure 1. Here the expiration

time is divided into n intervals (defined by n + 1 endpoints), the root is at the
present time, and the leaves are at expiration times. We use G(n)

biop to determine the
price of an option at the root node iteratively, starting from the leaf nodes.

The trinomial model improves over the binomial model in terms of accuracy and
reliability [Kwok 1998]. The trinomial option pricing computation is represented
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Fig. 1. The graph G
(n)
biop

with depth n and n + 1 = 8 leaves.

]

Fig. 2. G
(n)
triop with depth n = 4 and 2n + 1 = 9 leaves.

using the directed acyclic graph with in-degree 3 denoted G
(n)
triop of depth n on

2n + 1 leaves shown in Figure 2. As in the binomial model, we divide the time to
expiration into n intervals and let the root be at the present time and the leaves
be at expiration times. As in the binomial model, we use G(n)

triop to determine the
price of an option at the root node iteratively, starting from the leaf nodes. The
trinomial model assumes that the price of an asset can go three ways: up, down,
and remain unchanged. This is in contrast to the binomial model where the price
can only go two ways: up and down.

The number of floating point operations for pricing an option in both models
with n intervals is of the order of n2. We compute a better estimate of the op-
tion price with increasing value of n [Kwok 1998]. [Gerbessiotis 2004; Higham
2002; Thulasiram and Bondarenko 2002] have proposed sequential and parallel im-
plementations for binomial option pricing that suffer from low performance. This
occurs because they do not address memory hierarchy issues, which are critical to
get performance on advanced RISC processors. Recently, [Zubair and Mukkamala
2008] has developed implementations that utilize the memory hierarchy to improve
performance for Binomial pricing for European options.
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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In this paper, we derive lower bounds on memory traffic between different levels
of the hierarchy for binomial and trinomial computation. We also give algorithms
for binomial and trinomial models that exhibit a constant-factor optimal amount
of memory traffic between different levels. We implemented these algorithms on
an UltraSparc IIIi processor with a 4-level memory hierarchy and demonstrated
that our algorithms outperform algorithms without cache blocking by a factor of
up to 5. Our algorithms are fast, they run in seconds for typical applications,
namely, options expiring in six months in which estimates are made once per minute
(about n = 60, 000 samples). The codes for these algorithms are available at
http://www.cs.odu.edu/˜zubair/OPCodes.

The multicore processors add another dimension to the memory hierarchy. They
have varying degrees of sharing of caches by cores at different levels. Most archi-
tectures have cores with a private Level-1 cache. Depending on the architecture, a
Level-2 cache is shared by two or more cores and a Level-3 cache is shared by four
or more cores. The main memory is typically shared by all cores. The degree of
sharing at a level varies from one multicore processor to another. These character-
istics have been captured in a new model, called the Unified Memory Model, which
is described in [Savage and Zubair 2009; 2008].

The rest of the paper is organized as follows. The general question of designing
algorithms for efficient use of memory hierarchies is discussed in Section 2. Sec-
tion 3 describes the computational requirements for the two option pricing models.
Section 4 develops memory traffic bounds using the memory hierarchy model. In
Section 5 we propose optimal algorithms for valuing options using the binomial and
trinomial option pricing models. Section 6 discusses implementation and experi-
mental results for the proposed algorithms. In Section 7 we examine cache-oblivious
algorithms for memory management. Finally, in Section 8 we draw conclusions.

2. MEMORY HIERARCHIES

Today computers have several levels of memory hierarchy. To obtain good perfor-
mance on these processors it is necessary to design algorithms that minimize I/O
traffic to slower memories in the hierarchy [Hennessy and Patterson 2007; Kumar
et al. 1996]. A typical processor today consists of five levels of memory. The level
closest to the CPU is Level-0, which is a set of registers, typically 32 to 128; Level-1
and Level-2 are cache memories; Level-3 is the main memory followed by hard disk
at Level-4. Some example processors with two level caches are the Intel Pentium
III, Sun Ultrasparc IIIi, and IBM Power 3. (See Table I.) As we consider problem
sizes that easily fit in main memory available on current systems, we focus on a
4-level memory hierarchy (Level-0 to Level-3). Additionally, our experiments were
on a machine that uses multilevel inclusion policy for its memory hierarchy. In
memory hierarchies either the multilevel inclusion or exclusion policy is enforced.
In the former, a copy of the value in each location in a level-l cache is maintained in
all higher level caches. These copies may be dirty, that is, not currently consistent
with the value in the lowest level cache containing the original, and are updated
as needed. The exclusion policy, which applies to the above rules, does not reserve
space for values held in lower level caches. The results are derived for this case.
However, they also hold for the inclusion policy when the memory associated with
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Table I. Processors with two level caches

Processor Level-1 Cache Level-2 Cache

Ultrasparc IIIi 64KB Data 1024KB Shared

Intel Pentium III 16KB Data 512KB Shared

IBM Power 3 64KB Data 4096 KB Shared

a cache in the lower bounds is the difference between the capacity of a cache and
that of all its subcaches.

The cache blocking technique is used to reduce memory traffic to slower memo-
ries in the hierarchy [Hennessy and Patterson 2007]. Cache blocking partitions a
given computation such that the data required for a partition fits in a processor
cache. For computations, where data is reused many times, this technique reduces
memory traffic to slower memories in the hierarchy [Hennessy and Patterson 2007].
The cache blocking technique has been extensively applied to linear algebra appli-
cations [Dongarra et al. 1990; Anderson et al. 1999; K̊agström et al. 1998; Gupta
et al. 1998; Goto and van de Geijn 2008; Agarwal et al. 1994a]. Since accessing data
from a slower memory is expensive, an algorithm that rarely goes to slower mem-
ory performs better. Level-0 blocking helps in reducing the number of load/store
instructions by bringing the data into registers and reusing it. Blocking for Level-
1 and Level-2 caches increases the reuse from the respective caches and helps in
reducing the traffic to the slower level of memory. The amount of memory traffic
that can be reduced between different levels of memory depends on the application,
memory hierarchy architecture, and the effectiveness of the blocking algorithm.

Another factor that has an influence on the memory traffic is the storage of
data. [Gustavson 2003] has shown that the inefficiency due to the storage of two-
dimensional arrays both in Fortran and C programming languages can be addressed
using a new generalized data structure for storing these arrays. One issue with most
of these algorithms is that they need to be parameterized to be able to work on
different processors with different cache sizes. For this reason various researchers
have explored cache-oblivious algorithms [Frigo et al. 1999; Penner 2004]. However,
portability comes at a price. [Yotov et al. 2007] have experimentally demonstrated
that even highly optimized cache-oblivious programs perform significantly worse
than corresponding cache aware programs for dense linear algebra applications.
They point to two major reasons for this performance gap: ineffective utilization
of the pipeline by cache oblivious algorithms; and the inability to effectively hide
memory latency by cache oblivious algorithms.

Another reason that portability reduces performance is the difficulty in blocking
for Level-0 memory (registers) by cache-oblivious algorithms. A typical cache-
oblivious algorithm works by recursively partitioning the computational domain
until a computation size is reached that is determined by the call overheads. Stop-
ping the recursion of a cache oblivious algorithm without being aware of the number
of registers available on the processor can lead to ineffective blocking for registers.
Modern compilers are capable of unrolling and performing tiling to block for regis-
ters. However, an explicit blocking for registers is required in many cases.
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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3. OPTION PRICING MODELS

In this section, we describe the computational requirements for option pricing for
two standard models. In particular, we describe the computation for pricing a put
option contract that gives the right to its holder to sell an asset whose current price
is Q at a strike price K ≤ Q with the expiration time T . We assume that the
prevailing risk-free interest rate is r, and volatility of the asset is ν. To illustrate
the computation for both models, we divide the expiration time into n intervals
with each time interval dt = T/n. For more details on these models, please refer to
[Kwok 1998; Cox et al. 1979].

3.1 Binomial Model

We use a G(n)
biop with time interval dt = T/n to illustrate the computation. In G(n)

biop

the level increases as we go up the tree. We identify ith node at level j by (j, i),
where 1 ≤ j ≤ n+ 1 and 1 ≤ i ≤ n+ 2− j. As part of initialization we define asset
and option prices at leaf nodes (j = 1). Asset price q1i at node (1, i) is given by
q1i = Qdnu2(i−1), where u = eν

√
dt and d = u−1. Here u and d indicate the fraction

by which an asset can go up or down respectively in one time interval. The initial
price of the option at node (1, i), c1i , is simply the option payoff at the node, which
is given by c1i = MAX(K − q1i , 0). Next we iteratively compute option prices at
nodes at level j + 1 using prices at level j as defined below.

cj+1
i = (puc

j
i+1 + pdc

j
i )e
−rdt (1)

qj+1
i = qji ∗ u (2)

cj+1
i = MAX(K − qj+1

i , cj+1
i ) (3)

Here, cji and qji = Qdnu2(i−1)+j−1 are the option price and asset price respectively
at (j, i). Also, pu and pd are pseudo-probabilities given by

pu =
erdt − d
u− d

pd = 1− pu

The final output, cn+1
1 is the option price at the root node. Note that com-

putations (2) and (3) are only required for American options. From the memory
traffic perspective the difference between American and European options is that
American option requires access to an additional array that stores asset prices.

The computation for a call option is similar except that the expression for payoff
(3) is replaced by

cj+1
i = MAX(qj+1

i −K, cj+1
i )

In this paper, we do not make a distinction between call and put options because
from the computation and memory perspective they are identical. Though it is
possible to optimize computations further for special cases, for example American
call options without dividends are never exercised early [Kwok 1998] and are treated
as European options.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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3.2 Trinomial Model

We identify ith node at level j by (j, i), where 1 ≤ j ≤ n + 1 and 1 ≤ i ≤
2n+ 1− 2(j − 1). As part of initialization we define asset and option prices at leaf
nodes (j = 1). Asset price q1i at node (1, i) is given by Qdnui−1, where u = eλν

√
dt,

and d = e−λν
√
dt. Here, λ is a free parameter and a value of one reduces this model

to a binomial model. The initial price of the option at node (1, i) is simply the
option payoff at the node, which is given by MAX(K − q1i , 0). Next we iteratively
compute option prices at nodes at level j+1 using prices at level j as defined below.

cj+1
i = (puc

j
i+2 + pmc

j
i+1 + pdc

j
i )e
−rdt (4)

qj+1
i = qji ∗ u (5)

cj+1
i = MAX(K − qj+1

i , cj+1
i ) (6)

Here, cji and qji are the option price and asset price respectively at (j, i); and pu,
pm, and pd are pseudo-probabilities given by

pu =
1

2λ2
+

(r − ν2

2 )
√
dt

2λν

pm = 1− 1
λ2

pd =
1

2λ2
−

(r − ν2

2 )
√
dt

2λν

Note that computations (5) and (6) are only required for American options. The
final output, cn+1

1 is the option price at the root node. The computation for a call
option is similar except that the expression for payoff is changed as described in
binomial computation for the call option.

4. BOUNDS ON MEMORY TRAFFIC

The memory hierarchy model described below was introduced to develop lower
bounds on the memory traffic between adjacent levels in a memory hierarchy [Savage
1995]. (See also [Savage 1998, Chapter 11].) This model is an extension of the
red-blue model introduced by [Hong and Kung 1981], a game played on directed
acyclic graphs with red and blue pebbles in which red (blue) pebbles denote primary
(secondary) storage locations. An I/O operation occurs when a blue pebble is placed
on a vertex carrying a red pebble or vice versa. The memory hierarchy game
described below extends this model to multiple levels. These models have been
applied to matrix multiplication, FFT, and applications involving permutations.
We use the hierarchical model to derive lower bounds on a 4-level memory hierarchy
for option pricing using the binomial and trinomial models. This model captures the
details of memory hierarchies that suffice to make explicit the essential dependence
of algorithms on the sizes of multiple caches Other models have been proposed to
capture similar aspects of this problem. See for example [Savage and Vitter 1987;
Aggarwal et al. 1987; Aggarwal et al. 1987; Vitter 2006].
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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4.1 The Memory Hierarchy Game

We assume that the capacity of memory at level-l is σl, for 0 ≤ l ≤ 2, which is the
number of words it can hold. We further assume that the caches uses the multilevel
inclusion policy, which implies that data in the Level-l cache is a subset of the data
in the Level-(l + 1) cache.

Let Tl(σ,G) denote the memory traffic between levels l and l−1 in the hierarchy
where traffic is measured by the number of words that move between the levels and
σ is a vector denoting the amount of memory available at each level. Later we derive
lower bounds on Tl(σ,G) for G(n)

biop and G
(n)
triop. The key to deriving these bounds

is to compute the S-span of G(n)
biop and G

(n)
triop, which is defined in Section 4.2.

4.1.1 Rules of the Memory Hierarchy Game. The 4-level Memory Hierarchy
Game (MHG) is played on directed acyclic graphs (DAGs) with σl pebbles at level
l, 0 ≤ l ≤ 2, and an unlimited number of pebbles at level 3. Placement of a level-l
pebble on a vertex corresponds to moving the data associated with the vertex to
the level-l memory. Computations are done on data in the first-level memory. Zero
level computations can only be done at a vertex if the data needed are in zero-level
memory, that is, the predecessors of the vertex carry zero-level pebbles. Data is
moved to level l on a vertex only from level l− 1 or l+ 1. This is possible only if a
pebble at level l− 1 or l+ 1 resides on the vertex. The full set of rules of the MHG
is given below.

R1. (Computation Step) A zero-level pebble can be placed on any vertex all of
whose immediate predecessors carry zero-level pebbles.

R2. (Pebble Deletion) Except for level-3 pebbles on output vertices, a pebble at
any level can be deleted from any vertex.

R3. (Initialization) A level-3 pebble can be placed on an input vertex at any time.
R4. (Input from Level-l) For 1 ≤ l ≤ 3, a level-(l− 1) pebble can be placed on any

vertex carrying a level-l pebble.
R5. (Output to Level-l) For 1 ≤ l ≤ 3, a level-l pebble can be placed on any vertex

carrying a level-(l − 1) pebble.

The MHG has resource vector σ = (σ0, σ1, σ2), where σj ≥ 1 for 0 ≤ j ≤ 2 is
the number of storage locations at level-l. As we are assuming a multilevel inclusion
policy, the total number of storage words up to and including level l is also σl. Zero-
level pebbles can slide from a predecessor to a successor vertex, which corresponds
to using a register as both the source and target of an operation.

4.2 Computational Inequalities

Definition 1. The S-span of a DAG G, ρ(S,G), is the maximum number of
vertices of G that can be pebbled in a zero-level pebble game starting with any initial
placement of S red pebbles.

Once we have the S-span of a dag, we apply the following results of MHG devel-
oped first in [Savage 1995] and strengthened in [Savage and Zubair 2009] to derive
lower bounds on Tl(σ,G).

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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Theorem 4.1. Consider a pebbling of the DAG G with n input and m output
vertices in an L-level memory hierarchy game under the multilevel inclusion policy.
Let ρ(S,G) be the S-span of G and |V ∗| be the number of vertices in G other than
the inputs. Assume that ρ(S,G)/S is a non-decreasing function of S.

Then, for 0 ≤ l ≤ L − 1 the communication traffic between the lth and (l − 1)st
levels, T (L)

l (σ,G), satisfies the following lower bound where σ(l−1) is the number of
pebbles at level l − 1.

T
(L)
l (σ,G) ≥

σ(l−1)|V ∗|
ρ(2σ(l−1), G)

It is also trivially true that T (L)
l (σ,G) ≥ (n+m).

Below we derive new upper bounds on the S-span of the graphs G(n)
biop and G(n)

triop

which, with the above result, provides new lower bounds on T
(L)
l (σ,G(n)

biop) and

T
(L)
l (σ,G(n)

triop). Note that |V ∗| = n(n + 1)/2 and |V ∗| = n2 for the two graphs,
respectively.

4.3 Lower Bounds for G
(n)
biop

Definition 2. For i < j, let pji denote a path in a G(n)
biop from a node at level i

to a node at level j containing a sequence of nodes xi, xi+1, . . . xj. (A leaf vertex is
at level 1.) The length of a path is the number of edges that it contains.

Lemma 4.1 [Cook 1974]. G
(n)
biop requires a maximum of S = n + 1 pebbles to

place a pebble on the output vertex. The graph can be pebbled completely with n+ 1
pebbles without repebbling any vertices.

Proof. Initially all vertices are unpebbled and all paths from inputs to the
output are pebble-free. There is some last path pn+1

1 from an input to the output
that is free of pebbles. This path has n + 1 vertices. When a pebble is placed on
the input to pn+1

1 , the graph already had pebbles on each of the paths leading to
each of the n other vertices on pn+1

1 . Thus, when the input to pn+1
1 is pebbled, the

graph has at least n+ 1 pebbles on it.
To show that the graph can be pebbled completely without repebbling any ver-

tices, place all n + 1 pebbles on the inputs, slide the leftmost pebble up one level
and then proceed to slide the remaining pebbles up one level to pebble the leaves
of the subgraph G

(n−1)
biop with n leaves. The rest follows by induction.

Theorem 4.2. The S-Span of G(n)
biop satisfies ρ(S,G(n)

biop) ≤ S(S − 1)/2.

Proof. Let V be the set of vertices that are pebbled from an initial placement
of S pebbles. These are vertices that are pebbled without using any of the caches.
V consists of one or more disjoint sets of vertices. Let V1, V2, . . . , Vm be these sets
and let s1, s2, . . . , sm be the number of pebbles placed on the vertices of these sets
initially. Then, S =

∑
i si.

Consider one of these sets, say Vi. Let ki be the number of vertices on the longest
directed path p∗ in this set. (Edges are directed from leaves toward the output.) Let
vL be the last vertex on p∗. It follows that Vi cannot be larger than the subgraph
G

(ki)
biop that contains p∗.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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Using the argument of Lemma 4.1, there must be at least ki pebbles in Vi when
the last path to vL is closed. Thus, si ≥ ki. Furthermore, it is possible to pebble
all vertices in G(ki)

biop with ki pebbles. The number of vertices that are pebbled in Vi
other than the vertices carrying pebbles initially is at most ki(ki − 1)/2.

The total number of vertices that can be pebbled, τ , satisfies τ ≤
∑
i ti ≤∑

i ki(ki− 1)/2. Using the identity a(a− 1) + b(b− 1) ≤ (a+ b)((a+ b)− 1), where
a, b ≥ 0, it follows that τ ≤ S(S − 1)/2.

Applying Theorem 4.1 we have the following result.

Theorem 4.3. The computation of G(n)
biop on a 4-level memory hierarchy system

with storage σl at level l or less satisfies the following lower bound on memory traffic
for 1 ≤ l ≤ 3.

Tl(σ,G
(n)
biop) ≥

n(n+ 1)
4(σl−1 − 1))

4.4 Lower Bounds for G
(n)
triop

In the case of trinomial option pricing, the memory traffic is governed by the tri-
nomial graph shown in Figure 2.

Lemma 4.2. G
(n)
triop requires S = 2n + 1 pebbles to pebble the output vertex. It

can be pebbled completely with 2n+ 1 pebbles without repebbling any vertices.

Proof. Initially all vertices are unpebbled and all paths from inputs to the
output are pebble-free. There is some last path pn+1

1 from an input to the output
that is free of pebbles. This path has n internal vertices plus the leaf vertex. When
a pebble is placed on the input to pn+1

1 , the graph already had pebbles on each of
the paths leading to each of the n other vertices on pn+1

1 . Since there are two such
paths per vertex, when the input to pn+1

1 is pebbled, the graph has at least 2n+ 1
pebbles on it.

The graph can also be pebbled with 2n + 1 pebbles without repebbling vertices
by sliding the pebbles up one level starting with the leftmost pebble and proceeding
to the right. A total of (n+ 1)2 steps is needed.

Theorem 4.4. The S-Span of G(n)
triop satisfies ρ(S,G(n)

triop) ≤ (S − 1)2/4.

Proof. The proof of this result is similar to that of Theorem 4.2. The only
difference is that the number of vertices that can be pebbled in G

(k)
triop with 2k + 1

leaves from a starting position in which 2k + 1 pebbles reside on the leaves is
t = (2(k − 1) + 1) + (2(k − 2) + 1) + · · ·+ (2(0) + 1) = k2, as we now show. If the
ith set, Vi, which has si pebbles on it initially, has a longest path of length ki (it
has ki + 1 vertices), then si ≥ 2ki + 1. A total of τ vertices can be pebbled where
τ satisfies τ ≤

∑
i ti ≤

∑
i k

2
i . Since ki ≤ (si − 1)/2, τ ≤

∑
i(si − 1)2/4. Using the

identity a2 + b2 ≤ (a+ b)2, where a, b ≥ 0, it follows that τ ≤ (S − 1)2/4.

Again applying Theorem 4.1, we have the following result.

Theorem 4.5. The computation of G(n)
triop on a 4-level memory hierarchy system

with storage σl at level l or less satisfies the following lower bound on memory traffic
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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for 1 ≤ l ≤ 3.

Tl(σ,G
(n)
triop) ≥

4n2

(σl−1 − 1)

5. OPTIMAL ALGORITHMS

We now develop cache blocking algorithms that greatly reduce the traffic between
levels in a memory hierarchy. They are based on the recursive partition of the
computation into smaller blocks, where blocks at each level of recursions fit into
the corresponding level of memory hierarchy. Partitioning at the first recursion
results in blocks that fit in the Level-2 cache; partitioning at the next recursion
results in blocks that fit in the Level-1 cache, and so on. This partitioning ensures
that once we bring the required data for a block into a faster memory in hierarchy,
we reuse the data a sufficient number of times before bringing in the data for
the next block. This reduces the traffic between different levels of the memory
hierarchy. The algorithm for binomial option pricing is similar to the one proposed
in [Zubair and Mukkamala 2008] for a single level cache for European option pricing.
However, the algorithm we propose in this paper for binomial option pricing works
for multiple levels of the memory hierarchy.

5.1 Binomial Option Pricing

We present a multilevel algorithm (Algorithm 1), the outermost loop of which is
shown below. This algorithm assumes that data in G

(n)
biop is recursively partitioned

into blocks at different levels of the memory hierarchy and that the computation is
done from the leftmost leaf. We could equally well have chosen to compute from
the rightmost leaf.

The first level of partitioning is for the Level-2 cache and is illustrated in Figure 3.
G

(n)
biop is partitioned into rhombuses (or partial rhombuses, namely, triangles) b1j,i

of size m (there are m vertices on each side) for 1 ≤ j ≤ (n + 1)/m, and 1 ≤
i ≤ (n + 1)/m − j + 1. To keep our description simple, we treat triangles as
complete rhombuses and assume that m evenly divides n+ 1. The run time TR is
increased by a fraction of approximately m/(n + 1). (Let α = (n + 1)/m. G

(n)
biop

has α(α + 1)/2 blocks, all of which are rhombuses except for the α triangles on
the left boundary. Replacing these triangles by rhombuses increases the number of
operations by α(m2/2), a fraction of 1/(α+ 1) of the total.) Replacing triangles by
rhombuses has no effect on the number of I/O operations.

Algorithm 1: Processes G(n)
biop

for i = 1 to (n+ 1)/m do
for j = 1 to i do

processRhombus(b1j,i,m)
end

end

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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m

1
11b

1
12b 1

13b 1
14b

1
23b1

22b

1
33b

1
24b

1
34b

1
44b

Fig. 3. G
(n)
biop

partitioned into blocks of size m

The algorithm processes the blocks in the order b11,1, b11,2, b12,2, b11,3, b12,3, b13,3,
etc. That is, the blocks are processed along diagonals that slant up to the left. We
could also process the blocks by rows, that is, in the order b11,1, b11,2, b11,3, b11,4, b12,2,
b12,3, etc. Both orders create the same amount of memory traffic.

To pebble the vertices in block b1j,i requires that the Level-2 cache contain the
boundary values (each value consists of two quantities, cji and qji ) on the top side
of the block below it, b1j−1,i, the boundary values on the right side of the block to
its left, b1j,i−1, and the upper-right corner value of the block below the latter block,
b1j−1,i−1. Hence, the total number of values needed to process a block1 of size m is
2m, which is also the storage requirement for the Level-2 cache, σ2. Algorithm 1
is a high-level description of the outermost algorithm recursion. We ignore the
special handling of the first row of blocks as their first row does not require any
computation.

To handle data movement between the Level-1 and Level-2 caches, each m ×m
rhombus is decomposed into (m/q)2 q×q rhombuses. By the reasoning given above
the storage requirement for Level-1 cache is σ1 = 2q. Finally, each q × q rhombus
is decomposed into (q/r)2 r × r rhombuses. The storage requirement for Level-1
cache is σ0 = 2r. Here we assume that r divides m and q. A high-level description
of the second algorithm is given in Algorithm 2.

Memory Traffic. We estimate the memory traffic between main memory (Level-3
cache) and the Level-2 cache by observing that while processing a typical block, we
replace m values in Level-2 cache resulting in a total I/O traffic of 2m values. Note
that the total I/O traffic for the first block in the second nested loop of Algorithm1.
is 4m as the number of values that need to be replaced for processing this block is
2m. However, the memory traffic is dominated by processing of typical blocks with
I/O traffic of 2m values per block. To get the total traffic we need to multiply the

1Strictly speaking the number of qj
i s needed to process a block is one less than the required number

of cj
i s.
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Algorithm 2: Processes processRhombus(b1j1,i1 , m)

for i = 1 to m/q do
for j = 1 to m/q do

processRhombus(b2j,i, q)
end

end

average memory traffic for processing a block by the number of blocks of size m. It
follows that the total memory traffic between Level-3 (main memory) and Level-2
cache, T3, is given by

T3 ≈ 2m
(
n2

2m2

)
=
n2

m

Using the same reasoning we can get an estimate for T2 and T1.

T2 ≈ 2q
(
n2

2m2

)(
m2

q2

)
=
n2

q

T1 ≈ 2r
(
n2

2m2

)(
m2

q2

)(
q2

r2

)
=
n2

r

From Theorem 4.3 we observe that T3, T2, and T1 for the proposed algorithm are
optimal to within a constant factor of 8.

5.2 Trinomial Option Pricing

Without loss of generality, the trinomial option pricing algorithm is evaluated from
the leftmost vertex. The blocking algorithm for G(n)

triop is similar to the blocking

algorithm of G(n)
biop. It recursively partitions the G(n)

triop to block for different levels of
the memory hierarchy. The first level of partitioning for Level-2 cache is illustrated
in Figure 4. All blocks have a rhombus shape except those along the left edge of
G

(n)
triop. As in the case of G(n)

biop, we treat an incomplete rhombus as a complete one
and assume that m divides 2n+ 1. Using similar reasoning as for the binomial, we
find the total number of values needed to process a block of size m is σ2 = 3m.

The order in which the rhombuses are visited makes a difference for this case al-
though it has no effect for the binomial option pricing model. If the rhombuses are
visited on diagonals slanting up and to the left, 4m I/O operations are required for
each rhombus. However, if the rhombuses are visited by rows, only 2m I/O oper-
ations are required. We have implemented both methods. A high-level description
of the outermost algorithm recursion for the first ordering is given in Algorithm 3.
We ignore the special handling of the first row of blocks.

To handle data movement between the Level-1 and Level-2 caches, we partition
a rhombus of size m into (m/q)2 q × q rhombuses b2j,i such that all the required
data fits in Level-1 cache, that is σ1 = 3q. A high-level description of the second
recursion is given in Algorithm 4. For the final recursion, we partition each rhombus
of size q into r × r rhombuses. The amount of storage needed at Level-0 cache is
σ0 = 3r.
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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Algorithm 3: Processes G(n)
triop

for i = 1 to (2n+ 1)/m do
for j = 1 to d i2e do

processRhombus(b1j,i,m)
end

end

1
11b

1
12b 1

13b 1
14b 1

15b

1
23b 1

24b 1
25b

1
35b

m

Fig. 4. G
(n)
triop partitioned into blocks of size m

Algorithm 4: Processes processRhombus(b1j1,i1 , m)

for i = 1 to m/q do
for j = 1 to m/q do

processRhombus(b2j,i, q)
end

end

Memory Traffic. We estimate the memory traffic between main memory (Level-3
cache) and the Level-2 cache for the two orderings. For the first ordering, while
processing a typical block we replace 2m values in Level-2 cache resulting in a total
I/O traffic of 4m values. For the second ordering the I/O traffic per block consists
of 2m values. Note that the total I/O traffic for blocks on the left boundary is
6m because the number of values that need to be replaced to process them is 3m.
However, the memory traffic is dominated by processing of typical blocks with I/O
traffic of 4m values per block. To get the total traffic we need to multiply the
average memory traffic for processing a block by the number of blocks of size m. It
follows that the total memory traffic between Level-3 (main memory) and Level-2
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cache for the two orderings, T (1)
3 and T

(2)
3 , is given by

T
(1)
3 ≈ 4m

(
n2

m2

)
=

4n2

m

T
(2)
3 ≈ 2m

(
n2

m2

)
=

2n2

m

Using the same reasoning we get estimates for T (i)
2 and T

(i)
1 , i ∈ {1, 2}.

T
(1)
2 ≈ 4q

(
n2

m2

)(
m2

q2

)
=

4n2

q

T
(2)
2 ≈ 2q

(
n2

m2

)(
m2

q2

)
=

2n2

q

T
(1)
1 ≈ 4r

(
n2

m2

)(
m2

q2

)(
q2

r2

)
=

4n2

r

T
(2)
1 ≈ 2r

(
n2

m2

)(
m2

q2

)(
q2

r2

)
=

2n2

r

From Theorem 4.5 we observe that T (1)
3 , T (1)

2 , and T (1)
1 for the proposed algorithm

are optimal to within a factor of 3 whereas T (2)
3 , T (2)

2 , and T (2)
1 are optimal to within

a factor of 1.5. This difference is due to the observation made earlier that the
horizontal ordering results in memory traffic that is a factor of two less compared
to the diagonal ordering.

6. IMPLEMENTATION AND EXPERIMENTAL RESULTS

We implemented the proposed algorithms on a Sun Workstation with Solaris 10
OS and UltraSPARC IIIi processor operating at 1050 MHz. The UltraSPARC IIIi
processor has a 64 KB Level-1 data cache organized as 4-way set associative and
has a line size of 32 bytes. The data cache can hold up to 8K double precision
floating-point data. The processor also has a Level-2 cache of 8 MB which is shared
between instruction and data. As we consider problem sizes up to a maximum
of 64K leaf nodes for both models, we can accommodate all the required data in
Level-2 cache. Thus for our experimentation, we ignored partitioning for Level-2.

The UltraSparc IIIi processor executes two floating-point instructions in one cy-
cle, so the peak performance of the processor is 2.1 GFLOPS. To evaluate the
performance of various algorithms, we use wall clock execution time. To evaluate
how well a given algorithm matches the underlying architecture, we also compute
algorithm performance as the percentage of the theoretical peak performance for
the target machine. For example, when we get 1.05 GFLOPS on the Sun Worksta-
tion, our code is running at 50% of the peak. All our algorithms were implemented
using Fortran 90/95. We compiled all our code including vanilla code with the
“-fast” option, which combines various complementary optimizations for the target
processor [Garg and Sharapov 2001]. Where specified, for some results we also used
the “-nodepend” option to turn off compiler based cache blocking. As mentioned
earlier, to keep our implementation simple we treat incomplete rhombuses as com-
plete rhombuses. We handle this in the implementation by padding the arrays,
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Table II. Performance of the optimal algorithm for binomial option pricing when rhombuses are

visited on diagonals slanting up and to the left

8192 0.14 1490 71.0%
16384 0.55 1501 71.5%
32768 2.17 1508 71.8%
65536 8.60 1511 71.9%

n+1 Execution 
Time (sec) MFLOPS % Peak

Table III. Performance of the optimal algorithm for binomial option pricing when rhombuses are

visited by rows

8192 0.14 1496 71.2%
16384 0.55 1506 71.7%
32768 2.16 1512 72.0%
65536 8.57 1515 72.1%

n+1 Execution 
Time (sec) MFLOPS % Peak

storing asset and option price with zeros. This does not have a significant impact
on the performance numbers reported in this paper.

The performance results for the binomial optimal algorithm when rhombuses are
visited on diagonals slanting up and to the left are summarized in Table II. We also
include the results for the binomial optimal algorithm when rhombuses are visited
by rows in Table III. As expected, the results are similar for both the algorithms.
For these results, we compiled the code using the “-fast” and “nodepend” options
of the Sun compiler. The first column indicates problem size (we use the number
of leaves in the binomial model as the problem size). Observe that we obtained
around 70% of the peak performance for this algorithm. One major reason we are
not doing better than 70% of the peak is due to the the use of the MAX function
inside the nested loop (equation (3) in Section 3). The use of this function creates
a bottleneck for the pipeline as it results in a branch instruction inside the nested
loop [Hennessy and Patterson 2007].

The results reported in the Table II are for a block size of 512 for Level-1 cache
blocking. This value was chosen as a result of an experiment. The maximum size
of Level-1 block is determined by the size of data cache on the processor. Figure 5
plots execution time for various block sizes for n = 65336. From the figure it is clear
that once we go beyond a block size of 4096, the performance drops. We selected
the block size of 512, which is in the acceptable range.

For Level-0 blocking, we selected a block of size 4. The maximum size of Level-0
blocking is determined by the number of registers available on the processor. A
register tiling improves the ratio of the number of floating point operations to the
number of loads/stores. To understand this, consider Algorithm 5 for a 2×2 register
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tiling based on our optimal algorithm. Note that lines 3 to 9 corresponds to load
data from Level-1 cache into registers; and lines 22 to 27 correspond to stores from
register into cache. The rest of the lines 10-21 correspond to computations. Observe
that a 2× 2 tiling improves the ratio of the number of floating point operations to
the number of loads/stores from 6/5 to 24/13 (a MAX operation is counted as two
floating point operation); and it also increases the number of instructions inside
the main body giving flexibility in scheduling to minimize data dependency. To see
the number of floating point and load/stores operations for an algorithm without
tiling, please refer to equations (1)-(3). We have three floating point operations
due to (1). Note we do not count multiplication with an exponential as it is done
outside the inner loop. There is one floating point operation for (2), and two for
(3) resulting in a total of 6 floating point operations. There are three loads for cji ,
cji+1, and qji ; and two stores for cj+1

i , and qj+1
i for a total of 5 loads/stores. The

count for 2×2 tiling can be seen from Algorithm 5. A 4×4 tiling increases the ratio
further to 96/29. In general, for a r × r tiling this ratio is given by 6r2/(8r − 3).
However, as we increase tiling we increase the required register count. Once we
increase tiling beyond the number of available registers on the processor, we start
observing spilling in the compiled code that offsets the advantage of tiling. Spilling
occurs when the compiler transfers some variables from registers to cache, resulting
in slower access. In other words, the number of available registers in the processor
limits the largest amount of tiling. For our implementation, we found 4 × 4 tiling
to be optimal. It should be mentioned here that modern compilers are capable of
loop unrolling and in general are efficient. However, for nested loops with varying
bounds like in our case, a user with a knowledge of runtime constraints can do a
better job of unrolling.

For comparison, we implemented a vanilla algorithm, which refers to a straightfor-
ward implementation of binomial option pricing without any explicit cache blocking
for Level-0 and Level-1. The performance results for the vanilla algorithm are sum-
marized in Table IV. For these results, we compile the vanilla code with “-fast” and
“-nodepend” options of the Sun compiler. The first column indicates problem size
(note that we use the number of leaves in the binomial model as the problem size).
Observe that the vanilla algorithm’s performance varies from 8% to 9% of the peak
performance as compared to the proposed optimal algorithm that achieves approx-
imately 70% of the peak performance. We also compiled the vanilla code with the
“-fast” option and without the “-nodepend” option, thus letting the Sun compiler
do cache blocking and unrolling. The results of this experiment are summarized
in Table V. Observe, that the compiler-based cached blocking does improve the
performance but is still a factor of 2 lower than the optimal algorithm.

The performance results for the two variations of the optimal algorithm for the
trinomial model are summarized in Tables VI and VII. Observe that there is a slight
improvement for the case when rhombuses are visited by rows, but not significant.
We suspect that this is due to the interplay between various parameters such as
set-associativity, block size, and replacement policy. For comparison we include
the results for the vanilla algorithm in Tables VIII and IX. The optimal algorithm
performance results shown in Tables VI and VII are for a block size of 255 for Level-
1 blocking. As in the binomial implementation, we treat all blocks as complete
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Cache-Optimal Algorithms for Option Pricing · 17

Algorithm 5: A 2× 2 Register Tiling
for (j ← 1; j ≤ m; j ← j + 2) do1

for (i← 1; i ≤ m; i← i+ 2) do2

x1 ← cji−13

x2 ← cj−1
i4

x3 ← cj−1
i+15

x4 ← cj−1
i+26

y1 ← qji−17

y2 ← qj−1
i8

y3 ← qj−1
i+19

x2 ← p′ux3 + p′dx210

x3 ← p′ux4 + p′dx311

y2 ← y2 ∗ u12

y3 ← y3 ∗ u13

x2 ←MAX(K − y2, x2)14

x3 ←MAX(K − y3, x3)15

x1 ← p′ux2 + p′dx116

x2 ← p′ux3 + p′dx217

y1 ← y1 ∗ u18

y2 ← y2 ∗ u19

x1 ←MAX(K − y1, x1)20

x2 ←MAX(K − y2, x2)21

cj+1
i−1 ← x122

cj+1
i ← x223

cji+1 ← x324

qj+1
i−1 ← y125

qji ← y226

qji+1 ← y327

end28

end29

Table IV. Performance of the vanilla algorithm for binomial option pricing with “-fast -nodepend”

compiler options (compiler based cache blocking turned off)

8192 0.45 506 24.1%
16384 2.09 409 19.5%
32768 8.86 375 17.9%
65536 35.75 366 17.4%

n+1 Execution 
Time (sec) MFLOPS % Peak
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Fig. 5. Performance of optimal binomial pricing algorithm for various blocks sizes for n = 65536

Table V. Performance of the vanilla algorithm for binomial option pricing with “-fast” compiler

option (compiler based cache blocking turned on)

8192 0.32 719 34.2%
16384 1.19 718 34.2%
32768 4.62 719 34.2%
65536 18.20 719 34.2%

n+1 Execution 
Time (sec) MFLOPS % Peak

Table VI. Performance of the optimal algorithm for trinomial option pricing when rhombuses are

visited on diagonals slanting up and to the left

8415 0.11 1450 69.0%
16575 0.40 1453 69.2%
31875 1.44 1455 69.3%
64515 5.80 1457 69.4%

2n+1 Execution 
Time (sec) MFLOPS % Peak

rhombuses by padding the arrays with zeroes. For Level-0 blocking we use a block
size of 5 resulting in a 5× 5 register tiling.
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Table VII. Performance of the optimal algorithm for trinomial option pricing when rhombuses are

visited by rows

8415 0.10 1514 72.1%
16575 0.39 1498 71.4%
31875 1.41 1486 70.8%
64515 5.72 1479 70.4%

2n+1 Execution 
Time (sec) MFLOPS % Peak

Table VIII. Performance of the vanilla algorithm for trinomial option pricing with “-fast -

nodepend” compiler options (compiler based cache blocking turned off)

8415 0.26 650 31.0%
16575 1.22 493 23.5%
31875 4.87 438 20.8%
64515 20.28 420 20.0%

Execution 
Time (sec) MFLOPS % Peak2n+1

Table IX. Performance of the vanilla algorithm for trinomial option pricing with “-fast” compiler

option (compiler based cache blocking turned on)

8415 0.17 902 42.9%
16575 0.61 944 45.0%
31875 2.17 966 46.0%
64515 8.65 978 46.6%

2n+1 Execution 
Time (sec) MFLOPS % Peak

7. CACHE-OBLIVIOUS IMPLEMENTATION

A cache-oblivious algorithm [Frigo et al. 1999] is one that does not depend on cache
parameters such as cache size. Observe that our proposed algorithms partition the
computation into blocks of sizes that fit in cache. In other words, we need to know
the cache size to implement our optimal algorithms. The number of levels in the
memory hierarchy determines the number of recursions in our algorithms. We show
that our algorithms can be made independent of these parameters. We also prove
that the adapted algorithms are optimal for the cache-oblivious model. The cache-
oblivious model consists of a processor with one level ideal cache of size Z (it holds
Z words) and a line size of L. The performance of a cache-oblivious algorithm is
measured by the number of cache misses it experiences. When a cache miss occurs,
a line of L words is retrieved from secondary memory. Each cache miss requires
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that data be retrieved from secondary memory. Note also that to create space in
the cache, a like amount of data generally has to be moved to secondary storage, a
fact that may double the amount of I/O. For more details, see [Frigo et al. 1999].

A Cache-Oblivious Algorithm for the Binomial Model. For simplicity we describe
the algorithm for a complete rhombus that contains the binomial pyramid of N
leaves2, where N is a power of 2. The algorithm, similar to the cache-aware algo-
rithms proposed in this paper, recursively partitions the computation into smaller
blocks. Here we partition a rhombus into four rhombuses of equal sizes. That is,
a rhombus of size N at the start of recursion is partitioned into four rhombuses,
R1
i,j of size N/2 each, for 1 ≤ i, j ≤ 2. We continue the recursion until we reach a

small size determined by the call overheads. We illustrate the recursive kernel in
Algorithm 6, where we stop the recursion when we have a rhombus of size 1. Note
that the first call to the recursive algorithm is with l = 0, and the last call with
l = log2N − 1.

Algorithm 6: Recursive processRhombus(Rli,j ,
N
2l )

l← l + 11

if N
2l < 1 then2

for i = 1 to 2 do3

for j = 1 to 2 do4

processRhombus(Rli,j ,
N
2l )5

end6

end7

else8

Compute option price for single node using binomial computation9

(Equations 1-3)
end10

Analysis. Let P (N) and M(N) be estimates for the number of cache misses for
a pyramid of size N and the containing rhombus. We derive a bound on M(N)
and estimate P (N) by M(N)/2 because the rhombus contains about twice as many
vertices as the pyramid. We now obtain an approximate bound to M(N) when the
cache has size Z. Clearly, M(N) ≤ 4M(N/2). At some point in the recursion, l,
we reach a stage where we partition the rhombus of size Z/2 into four rhombuses
R1
i,j of size Z/4 each, for 1 ≤ i, j ≤ 2. Observe that data required to process a

rhombus of size Z/4 fits in the cache of size Z.
We observe that the four rhombuses can be processed in the order Rl1,1, Rl1,2,

Rl2,1, Rl2,2 or the order Rl1,1, Rl2,1, Rl1,2, Rl2,2. Note that in the algorithm outlined
above we use the first ordering. In both cases, Z load operations are needed on
the first and third rhombuses and Z/2 I/O operations on the other two. This is an
average of 3Z/4 I/O operations. Thus, we estimate M(Z/4) by 3Z/(4L) because

2The graph G
(n)
biop

has N = n + 1 leaves where n is the depth of the graph.
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the 3Z/4 I/O operations require a minimum of 3Z/(4L) cache misses, which is
achieved when each line that is retrieved contains relevant data. The recurrence
for M(N) follows.

M(N) ≤
{

3Z/(4L) if N = Z/4
4M(N/2) otherwise

When N is a power of two, M(N) ≤ 4kM(N/2k) where N/2k = Z/4 or 2k = 4N/Z.
Using M(Z/4) = 3Z/(4L), we have M(N) ≤ 12N2/(ZL). The estimate for P (N)
becomes P (N) ≤ 6N2/(ZL).

To see how close this is to optimal, we compute the lower bound on the number
of I/O operations using the results of Theorem 4.3. Since this bound takes into
account both inputs to and outputs from the cache in terms of number of values
(where a value consists of two words), we obtain a lower bound of N2/(4Z) on the
number of input operations in number of words. This translates into N2/(4ZL)
misses when each miss results in retrieving L relevant quantities, an assumption
we make. Thus, the proposed cache-oblivious algorithm is optimal within a factor
of 24. Observe that the cache-aware algorithm proposed in Section 5.1 incurs
2N2/ZL misses on the cache-oblivious model, which is a factor of 3 improvement
over the cache-oblivious algorithm. Below we show that this bound can improved
by subdividing each rhombus into more rhombuses.

For this reason and others as explained shortly, we believe the performance of the
cache-oblivious algorithm will not be as good as that of the algorithm implemented
in this paper. The other major reason is the lack of appropriate register tiling
in cache-oblivious algorithms as this would require the awareness of Level-0 size
(number of registers). For example, if we stop the recursion for the cache-oblivious
algorithm at some stage to enable register tiling by unrolling the code, we may
perform register tiling that cannot be supported by the number of registers available
in the processor. As a result there will be a number of spills resulting in performance
degradation. On the other hand, if the recursion stops at a stage resulting in a
register tiling of smaller size compared to what can be supported by the number
of registers, we still have poor performance. In our experiments, we have observed
that register tiling of the right size (that is blocking for Level-0 memory) is critical
to the overall performance.

Experimental Results. We implemented the cache oblivious algorithm for Bino-
mial computing on the Sun workstation. The performance results are summarized
in Table X. Note that these results correspond to a terminal rhombus (rhombus
when the recursion stops) of size 1. We compiled the code using “-fast” option of
the Sun compiler. For comparison, we also implemented the cache aware version of
our algorithm, discussed in Section 5.1, for the complete rhombus. These results
are summarized in Table XI. Even with full compiler optimization the performance
of the cache oblivious algorithm is quite low. One major reason is the call overheads
of the recursion. We can reduce this by stopping the recursion earlier, that is when
terminal rhombus is of size greater than one.

We conducted an experiment for a problem size of 65536, where we measure the
performance of the cache oblivious algorithm for different terminal rhombus sizes.
We plot these results in Figure 6. Note that for these results the code was compiled
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Table X. Performance of the cache oblivious algorithm with terminal rhombus of size 1 for binomial

option pricing

8192 4.20 96 4.6%
16384 18.39 88 4.2%
32768 67.45 96 4.5%
65536 282.25 91 4.3%

n+1 Execution 
Time (sec) MFLOPS % Peak

Table XI. Performance of the cache aware algorithm for binomial option pricing

8192 0.27 1484 70.6%
16384 1.08 1489 70.9%
32768 4.32 1492 71.1%
65536 17.25 1494 71.2%

n+1 Execution 
Time (sec) MFLOPS % Peak

using the “-fast” option. These results indicate that the performance improves with
increasing size of terminal rhombus.

We observe a maximum performance of 38% of the theoretical peak for terminal
size of 128. Not all of this gain in the performance is due to the reduction of call
overheads of the recursion. As the terminal size increases, the compiler is able
to optimize the terminal rhombus computation by performing deep unrolling of
loops and register tiling. This is obvious when we compare Figure 7 and Figure 8
corresponding to code compiled with “-fast -nodepend” and with no optimization
options respectively. As mentioned earlier, “-nodepend” turns off compiler based
blocking for registers and caches. Looking at these two figures, one can conclude
that the initial performance gain in Figure 6 up to terminal size of 8 is mainly due
to the reduction in call overheads of the recursion. The performance gain beyond
terminal rhombus of size 8 is due to the compiler optimization of the terminal
rhombus computation. In summary, the question what is a good terminal rhombus
size for the recursion to stop cannot be fully answered by ignoring the underlying
processor architecture. This can limit the performance gain of a true cache oblivious
algorithm.

A Cache-Oblivious Algorithm for the Trinomial Model. We cannot use the ap-
proach outlined for binomial computation to derive the cache oblivious algorithm
for trinomial computation. Observe that the number of leaves in a trinomial pyra-
mid is not a power of 2 and is given by N = 2n + 1; and there is no complete
rhombus as in the case of binomial computation that contains the trinomial pyra-
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Fig. 6. Performance of the cache oblivious algorithm for various terminal rhombus sizes for

n = 65536. These results correspond to code compiled using “-fast” compiler option
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Fig. 7. Performance of the cache oblivious algorithm for various terminal rhombus sizes for
n = 65536. These results correspond to code compiled using “-fast -nodepend” compiler option
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Fig. 8. Performance of the cache oblivious algorithm for various terminal rhombus sizes for
n = 65536. These results correspond to code compiled using no compiler optimization option

mid of N leaves. However, we can partition the parallelogram of size, n × 2n + 1,
containing the trinomial pyramid of N leaves into two rhombuses of size n×n each
with one edge of nodes shared by both rhombuses. For the sake of keeping our im-
plementation simple, we can restrict n to be a power of 2; and thus transform the
trinomial computation into a processing of two rhombuses of sizes that are a power
of two. We can recursively partition these rhombuses as in the case of binomial
computation to derive a cache oblivious algorithm for trinomial computation. We
now outline the recursion for trinomial computation for one of these rhombuses.
We start the recursion by partitioning the rhombus of size n into four rhombuses,
R1
i,j of size n/2 each, for 1 ≤ i, j ≤ 2. We continue the recursion until we reach a

rhombus of size 1. Note that the first call to the recursive algorithm is with l = 0,
and the last call with l = log2 n− 1.

Analysis. For the trinomial case let T (N) be the number of cache misses on
a trinomial pyramid with N leaves. Observe that T (N) is also the estimate for
the number of cache misses in processing one of the two initial rhombuses of size
n = (N − 1)/2.

We now obtain an approximate bound to T (N) when the cache has size Z.
Clearly, T (N) ≤ 4T (N/2). At some point in the recursion, l, we reach a stage
where we partition the rhombus of size Z/3 into four rhombuses R1

i,j of size Z/6
each, for 1 ≤ i, j ≤ 2. Observe that data required to process a rhombus of size Z/6
fits in the cache of size Z.

We observe that the four rhombuses can be processed in the order Rl1,1, Rl1,2,
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Algorithm 7: Recursive processRhombus(Rli,j ,
n
2l )

l← l + 11

if n
2l < 1 then2

for i = 1 to 2 do3

for j = 1 to 2 do4

processRhombus(Rli,j ,
n
2l )5

end6

end7

else8

Compute option price for single node using trinomial computation9

(Equations 4-6)
end10

Rl2,1, Rl2,2 or the order Rl1,1, Rl2,1, Rl1,2, Rl2,2. Note that in the algorithm outlined
above we use the first ordering. For this ordering, 3Z/2 load operations are needed
on the first and third rhombuses and Z/2 load operations on the other two. This
is an average of Z load operations. Thus, we estimate T (Z/6) by Z/L because the
Z load operations require a minimum of Z/L cache misses, which is achieved when
each line that is retrieved contains relevant data. The recurrence for T (N) follows.

T (N) ≤
{
Z/L if N = Z/6
4T (N/2) otherwise

The solution to this recurrence is T (N) ≤ 36N2/(ZL), which is the number of
cache misses for trinomial computation.

To see how close this is to optimal, we compute the lower bound on the number
of I/O operations using the results of Theorem 4.5. Since this bound takes into
account both inputs to and outputs from the cache in terms of number of values
(where a value consists of two words), we obtain a lower bound of N2/(Z) on the
number of input operations in number of words. This translates into N2/(ZL)
misses when each miss results in retrieving L relevant quantities, an assumption we
make. Thus, the proposed cache-oblivious algorithm is optimal within a factor of
36. Observe that cache-aware algorithm proposed in Section 5.2 incurs 1.5N2/ZL
misses (horizontal ordering) on the cache-oblivious model, which is a factor of 24
improvement over the cache-oblivious algorithm.

Experimental Results. We implemented the cache oblivious algorithm for Trino-
mial computing on the Sun workstation. The performance results are summarized
in Table XII. Note that these results correspond to a terminal rhombus of size 1.
We compiled the code using the “-fast” option of the Sun compiler. For compar-
ison, we also implemented the cache aware version of our algorithm for trinomial
computing, discussed in Section 5.2, for the complete parallelogram. These results
are summarized in Table XIII. Similar to binomial computing, cache oblivious
algorithm for trinomial computing performance is quite low. We also conducted
experiments to see the impact of terminal rhombus size and the compiler optimiza-
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Table XII. Performance of the cache oblivious algorithm with terminal rhombus of size 1 for

trinomial option pricing

8191 2.92 92 4.4%
16383 11.67 92 4.4%
32767 46.76 92 4.4%
65535 185.29 93 4.4%

Execution 
Time (sec) MFLOPS % Peak2n+1

Table XIII. Performance of the cache aware algorithm for trinomial option pricing

8191 0.20 1371 65.3%
16383 0.78 1371 65.3%
32767 3.13 1372 65.4%
65535 12.51 1373 65.4%

2n+1 Execution 
Time (sec) MFLOPS % Peak

tion on the performance of cache oblivious algorithm, see Figure 9 to Figure 11.
These results indicate that the performance improves with increasing size of the
terminal rhombus. We observe the maximum performance of 45% of the theoreti-
cal peak for terminal size of 128. As explained in the case of binomial computing,
not all of this gain in the performance is due to the reduction of call overheads of
the recursion. The performance gain beyond terminal rhombus of size 8 is due to
compiler optimization of terminal rhombus computation.

Improving Cache-Oblivious Algorithms. It is possible to improve the miss com-
plexity of cache oblivious algorithms and make it closer to the one of cache-aware
algorithms. We explain this for the binomial model. We subdivide a rhombus into
16 = 4× 4 rhombuses of equal size. The reason this helps to decrease the average
number of misses is that the fraction of the rhombuses that need half of the maxi-
mum I/Os increases. As we increase the number of rhombuses into which a rhombus
is subdivided, the fraction of the rhombuses that need half of the maximum I/Os
approaches 1. In this case, the cache-aware and cache-oblivious algorithms can give
the same performance. However, when the rhombuses are small, the control over
the order with which vertices are pebbled falls into the hands of the compiler. If
the compiler is not good at data ordering, the overall performance of the algorithm
will suffer, as our experimental results show.
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Fig. 9. Performance of the cache oblivious algorithm for various terminal rhombus sizes for

n = 65536. These results correspond to code compiled using “-fast” compiler option
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Fig. 10. Performance of the cache oblivious algorithm for various terminal rhombus sizes for
n = 65536. These results correspond to code compiled using “-fast -nodepend” compiler option
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Fig. 11. Performance of the cache oblivious algorithm for various terminal rhombus sizes for

n = 65536. These results correspond to code compiled using no compiler optimization option

8. CONCLUSIONS

We have studied the cache-efficient implementation of an important computational
problem, namely, options pricing using binomial and trinomial algorithms. We have
modeled them as a pebbling problem on two graphs, the binomial and trinomial
pyramid graphs. We have exploited an existing framework for the study of memory
hierarchies to derive lower bounds on the amount of memory traffic that is needed
to pebble these graphs. This has required deriving new bounds on the S-span of
these graphs.

We have also given cache-aware memory blocking algorithms to implement the
option pricing computation for general memory hierarchies in which cache sizes
vary by level. These blocking algorithms give memory traffic which is within a
constant factor of optimal. When they are specialized to the four cache levels of
the UltraSparc IIIi processor, we show that the performance improved by a factor
of up to 5 and the code operated at about 70% of the peak performance. It is
possible to improve the performance further by algorithmic prefetching [Agarwal
et al. 1994b] and avoiding zeroes computations [Higham 2002]. We also suspect
that it is possible to partition the nodes of binomial and trinomial trees, where
K− qj+1

i ≥ cj+1
i in one partition, and K− qj+1

i < cj+1
i in the other partition. This

can help us in avoiding the use of MAX function inside the kernel.
We have also proposed cache-oblivious versions of our partitioning algorithm

and implemented them on the Sun workstation. The performance of cache oblivi-
ous algorithm is a factor of 16 lower compared to the cache aware algorithm. We
demonstrated that it is possible to improve the performance of the cache oblivi-
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ous algorithm significantly if we relax the constraint on the algorithm being truly
oblivious. In particular, we showed that if we determine the terminal size by ex-
perimenting on the target hardware, it is possible to get a performance of a factor
of eight. However, even with this improvement the cache oblivious algorithm is a
factor of two away from the cache aware algorithm.

This exercise in algorithm-specific memory blocking has applications to a broader
class of options pricing models.
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