
RAPID APPROXIMATE SILHOUETTE RENDERING OF IMPLICITSURFACESDavid J. Bremer and John F. HughesDepartment of Computer SieneBox 1910Brown UniversityProvidene, RI 02912fdjb,jfhg�s.brown.eduABSTRACTWe desribe a method for rapidly produing a non-photorealisti rendering of an impliit surfae. Therendering inludes silhouettes and some shading nearsilhouettes to help indiate urvature. The methodidenti�es silhouettes probabilistially, but we inludestrategies to make it likely that we �nd all silhouetteurves, espeially in multiple-frame sequenes. Themethod is approximate, in the sense that the silhou-ette urves may su�er some position error; the de-gree of approximation is determined in part by anadjustable parameter to a urve-traing method, al-lowing a tradeo� of auray against speed.1. SILHOUETTE RENDERINGInspired by non-photorealisti rendering (NPR) teh-niques [9, 10, 3, 14, 11, 13, 7℄, espeially intera-tive NPR for rapid display of omplex polyhedral ob-jets [7℄, we applied an alternative style of renderingto impliit surfaes.Our basi approah onentrates omputationalresoures on drawing the surfae's silhouette quiklyand aurately from a given viewpoint, with hiddenlines removed. Additionally, a little urvature infor-mation is displayed near the silhouette and on theinterior of the rendering. Example results of the al-gorithm, showing o� the available features, are shownin Figure 1.While standard rendering tehniques require thatat least the entire surfae, if not a whole 3D volume,be traversed to make a rendering, our silhouette edge-drawing approah needs only to trae the silhouetteurve or urves, allowing the rendering to take plaemuh faster, and/or to be done more arefully than,say, a rough polygonization. With this algorithm,good rendering an often our at interative or near-interative rates.This new approah makes good use of omputa-tional resoures. Although we draw only a few lineson the sreen to represent a whole surfae, we are
Figure 1: Several models rendered with our non-photorealisti renderer. (a) A bunny, in the modeler. (b)The bunny rendered without the modeling aids. () Aduk. (d) A \vase."



Figure 2: The e�ets of failing to removing oluded sil-houettes on our bunny model.giving the eye the visual ues whih seem most im-portant to it in pereiving shape. These ues are theposition and size of eah part of the objet relative toothers, as well as a bit of urvature information nearthe silhouettes and aross the whole surfae. Thesilhouette lines provide a way to distinguish the sur-fae from the bakground and to show a little of thesurfae's shape, with relatively little omputationale�ort. In addition, oluded portions of silhouetteedges are ulled, beause olusion is among the mostimportant ues our visual system gets regarding theposition of parts of the surfae relative to one an-other. It seems that everyone realizes from an earlyage that if one part of an objet is in front of another,the loser part oludes the farther [6, 5℄, so we feltit absolutely neessary to ull out oluded parts ofthe silhouette. See Figure 2. In addition, we showa little information about the surfae urvature nearthe silhouette and on the interior of the rendering. Itdoes give a little shape from shading, whih is �lledin slowly instead of immediately.For small models, our algorithm's rendering speedis omparable to that of a oarse polygonizer or pointrenderer, suh as the one shown by Stander and Hart[12℄. For large models the algorithm should proveto be asymptotially faster, although no longer real-time. For similar reasons, our algorithmwould also beasymptotially faster than a volume renderer, whihmust traverse a whole 3D volume, or at least thewhole surfae, before produing an image. Beauseof the asymptoti di�erene in rendering time, fu-ture researh might fous on better methods of fairlyfast non-interative rendering of omplex impliit sur-faes.

2. PREVIOUS WORKAs mentioned to earlier, our work was primarily in-spired by reent work in non-photorealisti render-ing (NPR). NPR in general desribes any method ofdrawing a simple abstration of a omplex model inorder to highlight important details, or to add extrainformation or feeling [13℄. There are at least two bigbene�ts to rendering this way. The �rst is the per-eptual gain{being able to get more information orfeeling from an image or series of images. The otheris related to eÆieny{we an sometimes save ompu-tational expense by omputing and rendering only aselet portion of a model whih is felt to be the mostimportant. Sine impliit surfaes are expensive torender at all, we foused on using NPR to make thealgorithm fast. Future work in the other area mightinlude shading the whole surfae in an expressiveway, suh as with a pen-and-ink style, and providinga visual way to identify usps, singularities, or otherinteresting parts of the model.Our work was diretly inspired by Markosian etal. [7℄ who produe real-time silhouette-renderings ofa polygonal model. After seeing that work, we triedto adapt the idea of rendering only outlines to theproblem of impliit surfae rendering.But that work was not the �rst to produe linedrawings of surfaes. An early line drawing applia-tion was developed by Sott Roth [8℄. It draws justobjet outlines, but does so with a ray-traing algo-rithm. Similarly, it was developed to give a speedimprovement over regular ray-traing, whih it ob-tains beause it is not required to evaluate lightingequations. Unlike the other work, it was designedto operate on CSG models onstruted from a fewimpliitly de�ned primitive shapes (ubes, spheres,ones, and ylinders).Dobkin et al. [4℄ have developed an algorithm thatwill trae impliit sets of funtions from Rn to Rk;if we take our impliit funtion f from R3 to R, itsgradient rf , and the view diretion v, we an reatea new funtiong : R3 !R2 : x 7! (f(x);rf(x) � v);The inverse image of (0; 0) under g is exatly the sil-houette set that we ompute here. The primary dif-ferenes in our approahes are that (a) we do olu-sion testing and some shading of the surfae, whihis not possible with the results of the Dobkin et al.algorithm, and (b) we work with the funtion f , andassume that both it and its �rst two derivatives areavailable, whereas Dobkin et al. work with a �xed-resolution pieewise-linear approximation. In the lan-guage of that paper, we taken an \in�nitesimal" ap-proah and they take a \loal" approah. Nonethe-less, their ideas ould easily be adapted for the \tra-ing" portion of this work; we ould then use our meth-ods for the olusion testing and the shading portions.



As a side note, there is a rendering style alledontour line drawing whih bears a super�ial resem-blane to ours. This method slies planes throughthe impliit surfae and draws the urves formed bythe intersetion [2℄. The big di�erene between thatmethod and ours is that it uses urves aross thewhole surfae, in order to show the surfae shape,whereas ours draws far fewer urves and does so justto indiate the surfae's outline.3. THE ALGORITHM3.1. OverviewWe need algorithms to �nd the silhouette edges andinformation for shading, to test the edges for olu-sion, and to draw the edges and shading informa-tion. However, if while examining the model the userpauses for a moment, the algorithm need not wastetime reomputing silhouettes.Figure 3 shows the proess shematially. Thepseudoode is as follows:For eah frameIf the amera moved or model hangedFind new silh. edges and shading infoTest edge setions for olusionDraw the edges and shading strokesElseLook for missed edges and shading infoDraw all edges and shading strokes3.2. Notation and assumptionsWe assume that the surfae model, S, that we arerendering is the zero-set of a twie ontinuously dif-ferentiable funtion f on R3. To make the explana-tion simpler, suppose that the solid bounded by thesurfae is the region in whih f < 0, whih ausesgradients to point away from the surfae rather thaninward.In order to make the algorithm work with a widevariety of model representations, it treats the impliitfuntion de�ning the model as a \blak box" fromwhih it only needs to be able to get, at any point, thefuntion value, the gradient, and the Hessian (matrixof seond derivatives) of the funtion.We further assume that the virtual amera is or-thographi with view diretion v, that all points onthe �lm plane are outside the objet (i.e., f > 0 onthe �lm plane), and that the surfae S lies entirelywithin some known region of spae (a sphere of ra-dius 20 about the origin in our partiular implemen-tation).We denote points and vetors by boldfae letters;the point x has oordinates x1; x2 and x3.
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Figure 3: Rays from the �lm plane are traed along theview diretion until they hit the surfae. Then we trae inthe diretion of the view-plane projetion of the gradientto try to �nd a silhouette. One one is found, we traealong it.We also assume, to make ray-surfae intersetioneasier, that there is a onstant K > 0 suh that atevery point x, the gradient of f ,rf(x) = ( �f�x1 (x); �f�x2 (x); �f�x3 (x))has magnitude bounded by K. Finally, we denote theHessian of f , the matrix of seond partial derivatives,by Hf , so thatHf(x) = 264 �2f�x1�x1 (x) �2f�x1�x2 (x) �2f�x1�x3 (x)�2f�x2�x1 (x) �2f�x2�x2 (x) �2f�x2�x3 (x)�2f�x3�x1 (x) �2f�x3�x2 (x) �2f�x3�x3 (x) 375 :3.3. Silhouette FindingSilhouette �nding is a three-step proess:1. Loate a point on the surfae through ray-surfaeintersetion2. Trae along the surfae to a point on a silhou-ette3. Trae out the silhouette3.3.1. Ray-surfae intersetionWe apply a modi�ation of Kalra and Barr's [2℄ im-pliitization algorithm to do ray-surfae intersetion:the idea is that for funtions with bounded gradients,we an searh for ray-surfae intersetions by steppingalong a ray and be guaranteed to miss no intersetion:if, while searhing for an intersetion along the rayp+ tv, we are at loation x, then we an take a stepof size f(x)=K to loation x0 = x+(f(x)=K)v and beon�dent that f(x0) � 0. We searh along rays fromthe eye until the funtion value is nearly zero, andall the resulting point a surfae point. If the searhproeeds far enough, our assumption that the surfae
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Figure 4: When we reah a point p of the surfae, we�nd a tangent vetor whose sreen projetion is in thesame diretion as that of the gradient (that tangent ve-tor's alled w here) and move in that diretion to �nd asilhouette.
View rays

Interior of surface

Silhouette Point

Surface Normal (bold)Figure 5: When a view ray hits the interior of the surfaethe surfae normal (shown in bold) points bak towardsthe eye. When the view ray grazes the silhouette of thesurfae, the view ray and the surfae normal are orthog-onal.lies within a bounded region of spae lets us termi-nate the searh. In this ase, the silhouette-�ndingproess does not ontinue with silhouette-point �nd-ing, but rather with ray-surfae intersetion using adi�erent ray.3.3.2. Silhouette point �ndingWhen we �nd a ray-surfae intersetion, we try touse it to loate a silhouette by walking along the sur-fae in the diretion of the sreen projetion of thegradient at eah point (see Figure 4).We take the ray-surfae intersetion p, omputethe funtion gradient at p, and use this to �nd atangent vetor in the plane spanned by v and rf ;i.e., we let:1F (p) = rf(p)� (v �rf(p))krf(p)k21The division by the square of the gradient is designed tomake the vetor �eld independentof the sale of f : if we replaef with �f , the vetor �eld is unhanged.

Existing silhouette edge

View ray

Path to silhouette pointFigure 6: A new silhouette point, shown in grey, shouldbe tested to see if it lies on a silhouette edge that wasalready traed out, to avoid reomputing the position ofa silhouette edge.The vetor �eld F is tangent to the surfae and liesin the plane spanned by v andrf(x). We trae alongthis vetor �eld until the dot produt of v and rfhanges sign, whih indiates that we have passed asilhouette. A silhouette point is a point of the surfaewhere the tangent plane ontains the view diretion;it may be obsured by some other part of the surfae,but we all it a silhouette point nonetheless. In themathematial literature, it's sometimes alled a \foldpoint." See Figure 5.So far, we have just desribed the vetor �eld tobe integrated, not the method of integration. SeeSetion 4 for a desription of the integration method.Often, after a few silhouettes have been traedout, the newly found point will lie on one of the sil-houettes already traed out. So before proeeding, wetest to see if this is just suh a point. See Figure 6.Silhouettes are represented as 3D polylines. Wedo a proximity test between the found point and allthe silhouette points whih may be near it. (Thesepoints are stored in a hash table based on loationin three-spae.) All the points in the polyline areapproximately � units apart, so if the found point iswithin � units of any found point, it is disarded, andthe silhouette �nding proess starts over with a newray-intersetion.3.3.3. Silhouette traingA urve h : R ! R3 lies on the silhouette of thesurfae S viewed along v if� h(t) 2 S for every t, and� The tangent plane to the level surfae at h(t)ontains v for every t.These two onditions an be rephrased asf(h(t)) = 0vtrf(h(t)) = 0:



Rather than try to solve for h(t) analytially, weinstead use this impliit desription to determine thetangent vetor of h, from whih we an determine hby numerial integration.Di�erentiating eah equation with respet to t,applying the hain rule, and using w to denote h0(t),we get rf(h(t)) � h0(t) = 0vtHf(h(t))h0(t) = 0;i.e., rf(h(t))w = 0vtHf(h(t))w = 0:Thus the tangent vetor to a silhouette urve mustbe orthogonal both to the gradient at its basepoint,and to the produt of the Hessian at the basepointwith the view diretion. This makes it proportionalto the ross produt of these:w / rf(h(t)) � vtHf(h(t)):We an therefore trae along a silhouette by omput-ing w = rf(p)� vtHf(p)and �nding an integral urve for this vetor �eld. Ofourse, at loations where w = 0 the traing proessstagnates. This happens, for example, at usps likethe one shown in Figure 7. Our silhouette-traingalgorithm starts from a silhouette point, found previ-ously, and traes out the silhouette by taking a seriesof steps of size � until the traing proess stagnatesor returns to the starting point; if it stagnates, wereturn to the starting point and trae in the other di-retion. Setion 4 disusses the details of the traingsheme.In order to avoid stepping past the starting point,after eah step we �nd the distane between the newpoint and the starting point. If the distane is lessthan �, traing stops and the 3D polyline is losed.3.4. Olusion testingWe test the verties of the silhouette for olusionby �rst heking every nth (4th in our implementa-tion) vertex for olusion, and then, for those betweenwhih olusion status hanges, testing the interven-ing verties as well. To hek olusion of a singlevertex of a silhouette polyline, we start at the vertex,move bak towards the �lm plane from it, and do aray-surfae intersetion test bak into the sene. Ifthe ray intersets the surfae at a plae muh loserto the �lm plane than our vertex, we delare the ver-tex invisible; otherwise it's visible.Note that beause of numerial issues, the ray maynot interset the surfae exatly at the silhouette ver-tex (whih may, indeed, not atually lie exatly on

Cusp

SilhouetteFigure 7: A usp ours at the end of a silhouette. A slight\hook" is onventionally drawn at the usp to indiate itsshape.the surfae), so the \muh loser" test is important.Unfortunately, if the true silhouette is just barely ob-sured by some nearer piee of surfae, and the sil-houette vertex still happens to seem to be visible, wedraw still the silhouette.3.5. Rendering3.5.1. Silhouette edgesThe silhouette edges ould be simply drawn as poly-lines, as would be done in a basi implementation.But, to onvey extra information about the surfae'sshape near the silhouette, we alter the drawing stylebased on the loal urvature. At a point p of thesilhouette, the Hessian an be used to determine theurvature of the surfae in the plane de�ned by theview and the normal to the silhouette. To be morepreise, if we onsider the plane through p spannedby the gradient and the view diretion, its interse-tion with S is a urve. The gradient to S is normalto this urve, and the rate of hange of this normal inthe view diretion is proportional to the urvature ofthe urve. But the rate of hange of the normal as wemove the basepoint in some diretion u through thepoint p is simply utHf(p); to ompute its ompo-nent in the view diretion, we take the inner produtwith the view vetor. We an therefore ompute theurvature in the view diretion as vtHf(p)v. Unfor-tunately, this omputation depends on the saled f ;we normalize it by dividing by the magnitude of thegradient of f . Hene we ompute�(p) = vtHf(p)vkrf(p)kfor points on the silhouette, and use it to help us drawshading near the silhouettes to indiate urvature.So we draw not just the silhouette but several par-allel opies of it, with the inter-opy spaing propor-tional to 1=�(p). Thus tightly-urved setions getlosely-spaed urves, and areas of shallow urvatureget widely-spaed ones. See Figure 8.



Figure 8: The silhouette drawing style varies with thesurfae urvature. The tip of the bunny's left arm is drawnwith tightly spaed lines, whereas the lines de�ning itstorso are widely spaed.We ould also experiment with stroke styles as didMarkosian et al. [7℄.3.5.2. Interior shadingInterior shading strokes are drawn using a very simplelighting model { we assume that the light in the seneis arriving from behind the virtual amera and thatthe surfae is di�use, so that the illumination is pro-portional to the dot-produt of the view diretion andthe (unit) surfae normal. At interior points, when aray strikes the surfae, we immediately ompute thegradient at the intersetion point so that we an startsearhing for a silhouette. We use this omputed gra-dient to determine two additional things:� the diretion v�rf that is tangent to the urveof onstant illumination (isophote), and� the lightness s of the surfae ( v�rfkrfk ) at the in-tersetion point.We then pik a olor jsjbg + (1 � jsj)db, where bg isthe bakground olor (a neutral gray) and db is a darkblue, and draw a short stroke in this olor, tangentto the isophote.These \free" shading lines aumulate as rays areshot at the surfae in searh of silhouette edges, andhelp onvey the interior shape of the surfae. SeeFigure 9. Figure 9: Several images of the same model, with pro-gressively more strokes �lled in. Note the light strokeson plaes perpendiular to the view diretion, suh as thebunny's nose, and dark strokes near silhouette edges.



4. EFFICIENCY CONSIDERATIONS4.1. Approximate traingIn both silhouette �nding and silhouette traing, weneed to \walk along" the impliit surfae, guided bya vetor �eld. In eah ase the general algorithm weuse is Euler integration: p is replaed by p+ �F (p),where F is the vetor �eld and � is some small num-ber. This approah is notoriously unstable; using itto walk along the irumferene of a irle (i.e., alongthe vetor �eld F (x; y) = (�y; x)) leads to the sortof spiral shown in Figure 10(a). But if in addition toknowing that we want to be guided by a vetor �eld,we have some other onstraint, we an use this to helpstabilize the proess. For example, in silhouette �nd-ing, we know that we not only want to move along thesurfae in the diretion determined by the gradientand view diretion but also want to remain on the sur-fae. By adding a \penalty" term to the vetor �eld{ a term that's zero on the surfae, but drives us bakto the surfae when we're o� it { we an ensure thatthe integral urves don't wander too far. In the aseof the tangent vetor �eld to the irle, we an use thevetor �eld G(x; y) = K � (x2 + y2 � 1) � (�x;�y) asa \orretor" �eld; when we add this to F , the inte-gral urves, even with Euler integration, now lie loseto the irle rather than following a diverging spiral(see Figure 10(b)). This idea is losely related to theonstraint-satisfation method in Barzel and Barr's\Dynami Constraints" work [1℄. The onstant Kdetermines the degree of penalty for falling o� theirle: if K is small, the urve will not stay lose; ifK is made too large, however, the urve an osillateaross the irle.In the ase of silhouette �nding, we know that wewant to remain on the surfae as we searh for a sil-houette. Our �rst implementation took small stepsand then, at the end of eah step, did a ray-surfaeintersetion to \fall bak" onto the surfae. Our re-vised version instead uses the stabilization method:instead of using the vetor �eldF (x) = rf(x) � (v �rf(x))krf(x)k2de�ned on the surfae, we de�ne (on all of R3) thevetor �eldF (x) = rf(x) � (v �rf(x)) � f(x)rf(x)krf(x)k2 :The additional term { �f(x)rf(x)krf(x)k2 { is a �eld thatpoints towards the surfae at all points of spae. Henewhen Euler integration takes our urve o� the sur-fae, the additional term tries to oax it bak ontothe surfae. Just as in the ase of the spiraling irle,the orretion is imperfet: the \stabilized" path stilldoes not lie exatly on the surfae. But it does notdiverge from it either, and the expensive ray-surfae

Figure 10: (a) When the tangent �eld to a family of irlesis integrated with Euler integration, the result is a grow-ing spiral. (b) When we add a penalty term for distanefrom the starting irle, the result is a non-diverging irle(albeit slightly displaed from the starting point's irle).intersetion is eliminated. By the way, this is just aspeialized type of preditor-orretor integrator; thenovelty is in its appliation to �nding silhouettes forisosurfaes.For the ase of silhouette traking, our initial or-retor takes the predited loation and does a ray-surfae intersetion (moving in the negative gradi-ent diretion) to fall bak to the surfae, and thena silhouette-�nding operation to fall bak to the sil-houette. In the urrent implementation, these twosteps use the same algorithms that initially are usedto �nd the surfae and then a silhouette point. Withthis implementation, on reahing a usp the orretorno longer works orretly, whih is why traing stopsat usps.We have sine implemented a orretor like theone desribed for silhouette �nding. The pitureshere, however, use the original method, sine we havenot thoroughly tested the new orretor. For thisnew orretor, we have two additional onstraints: wewant to �nd integral urves of the vetor �eldG(p) = rf(p)� vtHf(p)on the surfae, but Euler integration will wander o�the surfae and o� the silhouette urve. Again, wean add a orretion of the form �f(x)rf(x)krf(x)k2 to keepthe urve on the surfae. We an also add a orretionto keep the urve running along the silhouette: just



as adding �frf tends to drive f to zero, we an add�grg, where g(p) = v � rf(p) to drive g to zero,i.e., to drive us onto a silhouette. This expressionsimpli�es to �(v � rf(p))vtHf(p):Fortunately,rf andHf are already omputed in get-ting the basi vetor �eld to walk along.In summary, we �nd an integral urve of1krf(p)k2 (rf(p) � (v �rf(p))� f(p)rf(p)�K � (v � rf(p))vtHf(p))and it will not only follow the silhouette, but if it(beause of Euler steps) wanders from the silhouette,will be driven bak towards it.In our initial tests, setting K to 1 has led to someosillatory behavior; K = 0:5 seems to work well,however.For this new traer, the behavior at usps is moreomplex than before: the silhouette urve goes frombeing visible to being invisible by briey heading di-retly away from the viewer. In general, this seemsto have worked �ne, and silhouette traing now endswhen the traer returns to its starting point. Butwhat if, near a usp, the traer overshoots? Figure 11shows that the silhouette-traing �eld, just beyondthe usp, has a lokwise-spiral projetion onto thesurfae; when the orretor �eld is added, we will�nd that any overshoot into the region beyond theusp will get swept bak lokwise up to the silhou-ette edge, or will stall out on the line immediatelybelow the usp, where the (unorreted) �eld is or-thogonal to the surfae.As an alternative to Euler integration, we oulduse Runge-Kutta integration. Runge-Kutta integra-tion requires more omputation for eah step, but di-verges muh more slowly from the ideal urve thanEuler integration, allowing bigger steps to be taken.But both methods still diverge, so regardless of whihwe use, we would still want to take advantage of thespeial orretion information available to us, whihlets us pull the urve diretly bak toward the surfaeor urve on whih it should lie. Future work mightinlude testing to see if, and how muh, the speedgained from Runge-Kutta's bigger steps o�sets theost of extra omputation.4.2. Choosing good rays to shootOur algorithm begins by shooting rays from the �lmplane along the view diretion (orthogonal to the �lmplane in our implementation) into the sene, hopingto �nd silhouettes. The silhouette-�nding algorithman easily get stuk in \valleys" in the surfae, sosome rays produe nothing of interest. On the otherhand, a ray that falls near a silhouette will rapidly

Figure 11: A prototypial usp in the graph of y =x3+xz, as seen from (5; 0;�1) looking at (0; 0; 0); the(un-orreted) silhouette-traing �eld is indiated bythe dot-and-line ions: the dot is the basepoint ofthe vetor, the line shows the diretion. Along thesilhouette edges, the �eld is evidently tangent to thesilhouette. In the lower half of the �gure, beyond thesilhouette, the �eld has a sort of sprial form, so thattraing it from points below the usp should lead to alokwise irular path bak to a loation above theusp (although suh urves may well stagnate if theyhit the line diretly below the usp, where the �eld isnormal to the surfae).lead to produtive results. Beause we are trying torender at interative speeds, we have some on�denethat inter-frame di�erenes in the image are small, sosilhouettes in a frame are likely to be near their loa-tions in the previous frame. Thus former silhouettepoints are good andidates for ray-starting-points inthe urrent frame. If we displae these points slightly\inward" along the surfae normal, then surfae (oramera) translations are less likely to ause them tomiss the surfae when they're re-shot. We therefore,in hoosing rays to shoot in eah frame, preferentiallyselet starting points that lie on silhouettes from pre-vious frames; we also use some randomly hosen rays,in hopes of �nding new silhouettes that may appearfar from any previous silhouette.5. TIMINGInitial timing tests for an exeution that involves fre-quent amera motion suggest that the bulk (60%) ofthe algorithm's time is spent determining silhouetteurves. Of this, half (30%) is spent shooting rays,many of whih miss the surfae (although this de-pends on the sreen-area oupied by the surfae), aquarter (15%) on silhouette-�nding, and the remain-ing quarter on silhouette traing.Another 30% is spent on olusion testing, virtu-ally all of it in ray-surfae intersetion omputations.The remaining 10% is spent drawing the shapes,doing objet-reation in Java3D, and handling threadsynhronization and other tasks unrelated to the al-gorithm.



By ontrast, during a model-reation session, about80% of the time was spent determining silhouetteurves (70% ray-shooting, 10% silhouette-�nding, 20%silhouette-traing), and about 20% doing olusiontesting. A small amount was spent reating a draw-ing shapes in Java3D.6. LIMITATIONS AND FUTURE WORKThe algorithmdesribed here has some serious limita-tions. We require that f , rf and Hf all be availableat all points of the model that we render. For sampleddata, these might be provided by performing sometriubi interpolation of the samples, although wehave not implemented this. Further, our ray-surfaeintersetion requires the bound on the gradient mag-nitude, although it ould be replaed with some othermethod if no suh bound is available.The olusion testing uses only samples of the sil-houettes, and hene is prone to small errors. If weknew that we had omputed all silhouettes, and pro-jeted them to 2D, we ould apply the methods usedby Markosian et al. [7℄ instead. It may well turn outthat this is more eÆient, beause it would drastiallyredue the number of ray-surfae intersetion tests weneed to perform. Furthermore, it would allow us to do2D region-�ll operations to make the surfae interiora di�erent olor from the bakground, whih wouldpresumably help in indiating the objet's shape.There are two additional ues to the shape thatould probably be shown by using a perspetive am-era: motion parallax and the fat that objets dimin-ish in size with inreasing distane from the viewer.The �rst seems most e�etive in a system like ourswhih views models at interative rates, although theseond may be worth onsidering as well. The ur-rent implementation uses only an orthographi am-era; replaing it with a perspetive amera is a smallhange, but the vetor v, whih is onstant for an or-thographi amera, beomes dependent on the viewedpoint for a perspetive amera, whih would add somemodest omputation.Our system annot render texture maps on thesurfaes, and indeed, sine we sample as few pointson the surfae as we an, we see no way to inludethis.We would also like to push the limits of NPR fur-ther. For example, the rendering near usps, wheresilhouette edges disappear, has a disappointing (tous) appearane, with the \shading urves" fanningout. Hand-drawn usps like the one in Figure 7 presenta far more attrative appearane, and we'd like some-how to opy this. It would be nie to be able to �ndand detet other interesting features, suh as sharpedges and singularities. In addition, we might exper-iment with a slower version of the algorithm whihwould draw shading aross the whole surfae, perhapsin a pen-and-ink style.

The tradeo� between step size and speed is onlypartly suessful: if we inrease the step size toomuh, either we spend exessive time in the expliitorretors (re-interset surfae, re-�nd silhouette) orthe impliit orretors an fail beause the assump-tion that the point is not far from the surfae, so thatgradient fores an bring it bak on, fails.As mentioned earlier, it would be good to tryother methods of integrating the silhouette urve, suhas with Runge-Kutta integration, to see if we anmake a gain in eÆieny.Our use of Java3D is unsatisfatory: it seems fool-ish to reate urves in 3-spae so that a 3D rendereran redraw them for us in 2D. But with the opti-mizations in Java3D, it appears (at least on our Sunworkstations) to be faster to do this than to drawdiretly in 2D.7. FINAL NOTESThe Java lasses implementing this work will be madeavailable through the homepage of the authors, atwww.s.brown.edu/people/jfh/is/is.html, whihalso ontains instrutions for using the appliation.The appliation does, however, use Java3D, requiringthat users download this library from Sun and installit on their loal mahines.8. ACKNOWLEDGMENTSWe thank Je� White and Dan Gould for their help,espeially with Java programming issues. Also wethank our sponsors: NSF Graphis and VisualizationCenter, Advaned Network and Servies, Autodesk,Alias/Wavefront,Mirosoft, National Tele-ImmersionInitiative, Sun Mirosystems, and TACO.9. REFERENCES[1℄ Ronen Barzel and Alan H. Barr. A modelingsystem based on dynami onstraints. In JohnDill, editor, Computer Graphis (SIGGRAPH'88 Proeedings), volume 22, pages 179{188, Au-gust 1988.[2℄ Jules Bloomenthal, editor. Introdution to Im-pliit Surfaes. Morgan Kau�man Publishers,In., 1997.[3℄ Cassidy J. Curtis, Sean E. Anderson, Joshua E.Seims, Kurt W. Fleisher, and David H. Salesin.Computer-generated waterolor. In TurnerWhitted, editor, SIGGRAPH 97 ConfereneProeedings, Annual Conferene Series, pages421{430. ACM SIGGRAPH, Addison Wesley,August 1997. ISBN 0-89791-896-7.[4℄ David P. Dobkin, Silvio V. F. Levy, William P.Thurston, and Allan R. Wilks. Contour traingby pieewise linear approximation. ACM Trans-ations on Graphis, 9(4):389{423, 1990.
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