
To appear in Proceedings of NPAR2000

Harold: A World Made of Drawings

Jonathan M. Cohen and John F. Hughes and Robert C. Zeleznik�

Department of Computer Science
Box 1910 Brown University, Providence, RI 02912

Abstract

The problem of interactively creating 3D scenes from 2D input is a
compelling one, and recent progress has been exciting. We present
our system,Harold, which combines ideas from existing techniques
and introduces new concepts to make an interactive system for cre-
ating 3D worlds. The interface paradigm in Harold isdrawing: all
objects are created simply by drawing them with a 2D input de-
vice. Most of the 3D objects in Harold are collections of planar
strokes that are reoriented in a view-dependent way as the cam-
era moves through the world. Virtual worlds created in Harold are
rendered with a stroke-based system so that a world will maintain
a hand-drawn appearance as the user navigates through it. Harold
is not suitable for representing certain classes of 3D objects, espe-
cially geometrically regular or extremely asymmetric objects. How-
ever, Harold supports a large enough class of objects that a user can
rapidly create expressive and visually rich 3D worlds.

CR Categories and Subject Descriptors:I.3.2 [Graphics Sys-
tems]: Stand-alone Systems; I.3.4 [Graphics]: Paint Systems, Util-
ities, Picture Description Languages; I.3.5 [Computational Geom-
etry and Object Modeling]: Curve, Surface, and Solid Object Rep-
resentations; I.3.6 [Computer Graphics]: Metholdolgy and Tech-
niques

Additional Key Words: Stroke-based rendering, gestural inter-
faces, billboards, scene description

1 Introduction

In the children’s bookHarold and the Purple Crayon[11], a small
boy, Harold, creates a world by drawing it with his purple crayon.
He explores and expands this world by walking into and through it,
drawing all the time. In essence, this is the ultimate virtual environ-
ment, allowing users both to experience and to create a virtual world
around them. An ideal VR system would be capable of this much
expressiveness and interactivity, but this problem is, at present, in-
tractable. We therefore state a more restricted form of this problem:
Given a scene drawn in 2D from a single point of view, we would
like to reconstruct the scene interactively from novel viewpoints. In
other words, we would like to be able to draw a scene, move around
it, and have everything just “look right.”

Previous research has approached this problem in two primary

�fjmc,jfh,bczg@cs.brown.edu

ways, which we categorize asgeometricand image-based. In the
geometric approach, the system attempts to create a geometric de-
scription of the 3D scene from the user’s 2D input. This is sim-
ilar to many problems in computer vision, and is essentially the
inverse of traditional computer graphics – given a rendering (or of-
ten a drawing), the system tries to recreate a geometric description
of the scene. New renderings can then be obtained from arbitrary
viewpoints. The Sketch [19] and Teddy [10] systems have demon-
strated the feasibility of this approach for interactively creating 3D
objects from 2D gestures.

A limitation of Sketch and Teddy, however, is that the inferred ge-
ometry is often incorrect, and these errors become more and more
apparent as the viewpoint changes significantly from that from
which the object was initially created. This reflects a fundamental
drawback of purely geometric approaches– not all 2D drawings can
actually be generated from 3D models. Rademacher [15] discusses
how this problem arises when animators attempt to create static 3D
models of cartoon characters, and proposes using dynamic view-
dependent geometry to address it.

Image-based approaches avoid creating a geometric description of
the scene, but instead redisplay the original input image, modified
to reflect new camera parameters. The system described in [18] lets
the user draw on the inside of a sphere, thus allowing an immersive
experience as long as the camera’s position remains fixed. In Tour
Into the Picture [6], the user begins with a 2D image, which may
be either a photograph or hand-drawn, and then specifies geometric
constraints such as the vanishing point and horizon line. The user
can then view the scene from novel camera locations within cer-
tain constraints (the user cannot, for example, turn around and look
behind herself).

Our approach attempts to find a middle ground. Our system, Harold,
like Sketch and Teddy, creates a 3D model of the environment.
However, our world is populated by drawings, not 3D objects, and
thus is similar to image-based methods, particularly [18]. The pri-
mary geometric primitive in our system is abillboard; these are
commonly used in interactive systems to render complex yet unim-
portant objects with low overhead. A billboard is typically a plane
with an image texture-mapped onto it that rotates about some point
or axis to face the viewer as much as possible. Our billboards con-
tain collections of planar strokes rather than textures. When the user
draws a stroke over a billboard, we simply project the stroke onto
the billboard and store it; then, to display the billboard, we re-render
each stroke, rotated appropriately (see Figure 1). Thus, we avoid the
problem of reconstructing what the backside of a tree looks like –
the tree simply has no back. A consequence of this choice is that
Harold, unlike Sketch and Teddy, works with a very small set of
inferences about the user’s strokes: for the most part, strokes are
simply projected onto a surface and nothing more.

As noted by Zeleznik et al. [19] and Igarashi et al. [10], it is im-
portant that views of the scene be rendered in a non-photorealistic
style, in order better to convey the imprecise and hand-drawn na-
ture of the underlying geometric description. We take this notion
even further and allow the user to draw objects using a variety of
stroke styles. With the exception of distance cueing, we render the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
NPAR 2000 Annecy France
Copyright ACM 2000 1-58113-277-8/00/6... $5.00

83

To appear in Proceedings of NPAR2000

(a) (b)

Figure 1 Creating a billboard. (a) The trunk of the tree was drawn
as a stroke starting at the base. The leaves were then added to the
billboard. (b) That same billboard, seen from a different view; the
billboard on which the stroke was drawn rotates so as always to face
the viewer as much as possible.

(a) (b)

Figure 2 The hammock, which is abridgeanchored to the two tree
billboards, was created from the viewpoint in (a); (b) shows the ob-
jects from a new viewpoint.

strokes exactly as they were drawn. Objects in Harold maintain the
distinct stylistic appearance and subtleties imparted by the user, and
our worlds thus maintain their intended style and character as the
viewpoint changes.

The primary drawback of our approach is that the relationships be-
tween objects change as the viewpoint changes. For example, imag-
ine a fenced-in area containing farm animals. If the fences were all
billboards, they would rotate through one another as the viewpoint
changes, unwittingly freeing the enclosed livestock. We thus need
some way of specifying fixed relationships among objects in our
world. For this purpose, we use abridge billboard, which is a col-
lection of planar strokes that is anchored to points on two billboards
(see Figure 2). Thus, we can string a fence between separate fence
posts, or a hammock between two trees. Harold also has a primitive
terrain-sketching facility, with which the user can sketch a height-
field terrain by drawing the silhouettes of hills or other features.

The entire Harold system is an amalgamation of simple components
– there are no algorithmic subtleties, nor any complex constraint-
maintenance mechanisms. Our contribution is thus an approach to
3D scene reconstruction that combines features of other approaches
as well as novel ideas, and integrates them with a particular set of
interface choices to create an interactive system.

2 Related work

Our system has a similar aesthetic to several 2D paint programs. We
like the easy-to-use and appealing visual interface of Kid Pix [5],
which is a paint program designed for children. In Kid Pix, all op-
erations are easy to find and have immediately observable conse-
quences. Because this type of interface places a low cognitive load

on the user, it encouragesexperimentation and exploration. Our sys-
tem is similiar to the AltaMira and Quantel Paintbox systems ([16]
and [14]), although these systems are not fully 3D, in that they em-
ploy a similar notion of creating scenes by layering images on top
of one another.

Interactively constructing 3D scenes from 2D input is an active re-
search area. The Sketch and Teddy systems ([19] and [10]), as well
as our previous work in sketching 3D curves [2], allow the user to
create 3D objects via simple suggestive gestures. In Teddy, for ex-
ample, the user draws the silhouette of an object, and the system
creates a plausible 3D shape with that silhouette. Previous work by
Tolba et al. [18] is very similar in spirit and technique to Harold. In
their system, user’s strokes are projected onto a sphere centered at
the camera. We have in fact incorporated this technique into Harold
to let the user to draw objects in the sky. Tour Into the Picture [6]
allows the user to “enter” a 2D image by warping the image to sim-
ulate new viewing parameters.

We use the stroke-based rendering system described in [13], which
is related to the skeletal strokes technique described in [8, 7]. The
ground in Harold is rendered using the shader described by Gooch
et al. [4], which provides shape information while preserving a
brightly colored hand-drawn appearance.

3 The user’s view of the system

We now describe how the system appears to the user. The initial
view of the world shows a “ground,” which is a large planar region
of the xz-plane, and a “sky,” which is the inside of an enormous
sphere.

The interaction metaphor in Harold isdrawing. With the exception
of clicking on toolbar icons to change color, stroke style, stroke
width, and drawing mode, all operations are invoked either by click-
ing on an object or by drawing a stroke. There are three buttons: the
drawing button, the camera button, and the eraser button.1 Figure
5 summarizes the gestures, key-mappings, modes, and their mean-
ings.

The user places her cursor at some point of the screen; this point
corresponds to a point of the world, either on the ground or in the
sky. (Henceforth, we merely say that she places her cursor “on a
point in the world,” glossing over the correspondence induced by
tracing a ray from the viewpoint through the point on the film plane
and into the world.) She now begins to draw by dragging the cursor
with the drawing button depressed. The style of the resulting stroke
depends on the current color, the current stroke width, and which of
three rendering styles is selected from the menu.

STROKES ON THE SKY. Suppose that her starting point was in
the sky. The strokes are then interpreted as “drawing on the sky” and
the result is a stroke on the sky, visible whenever she looks in that
direction. As mentioned above, this is an implementation of [18].

STROKES ON THE GROUND. Strokes that begin on the ground
are interpreted in one of three ways, depending on the drawing
mode currently selected on the toolbar: drawing on the ground,
drawing billboards, and drawing terrain.

Drawing on the ground.In drawing-on-the-ground mode, a stroke
that starts on the ground is treated as laying down marks on the
ground itself. This is useful for creating things like train tracks,
sidewalks, etc. If the user’s stroke crosses over a silhouette of the
terrain, the projection of the stroke onto the ground terrain will be
discontinuous. We make the projected stroke continuous by bridg-

1Our implementation uses left button for drawing, right button for cam-
era controls, and shift-left button for erasing.

284

To appear in Proceedings of NPAR2000

(a) (b)

Figure 3 Ground strokes. (a) A ground stroke crossing the silhou-
ette of the hill on the left. (b) The same stroke seen from a different
view, showing how the system has filled in the “gap” with a segment.

ing any gaps with curves that look from above like straight line
segments (see Figure 3). Since our terrain is a heightfield, for every
x andz coordinate, there is a uniquey coordinate. We can thus fill
in all gaps with a line segment on thexz-plane, and then compute
the height at each point along the line segment to create a 3D stroke
that lies on the ground.

Drawing billboards. In billboard-drawing mode, a stroke that
starts on the ground creates a newbillboard, anchored at the start-
ing point of the stroke. The billboard’s plane is perpendicular to
the ground, and as perpendicular as possible to the eye-to-stroke-
start-point vector. Thus the billboard plane’s normal vector, when
the billboard is created, is

n = y � (y � (eye� base)),

whereeyeis the camera location,baseis the location of the base of
the billboard andy is the vertical unit vector in the world.

After each stroke is added to a billboard, a bounding rectangle for
the strokes on that billboard is created, slightly enlarged, and dis-
played in a semi-transparent light gray. Any subsequent stroke that
starts in this highlighted area is added to this billboard, regardless of
the current drawing mode. This is important in creating billboards
having several strokes that do not actually touch.

The interpretation of strokes has one small subtlety: the final mean-
ing of a stroke is determined at the end of the stroke, when the
mouse is released. If the mouse-up occursoutsideof the highlighted
area, and over adifferentbillboard, then the stroke is interpreted as
defining abridge billboardbetween these two billboards, or simply
a “bridge.”

Drawing bridge billboards. A bridge is created, as just described,
by a stroke that starts on one billboard (we’ll call the start pointS)
and ends on a stroke in another billboard (we’ll call the end point
E). Both S andE are taken to be pointson their respective bill-
boards, not in the world; when the billboards turn to face the cam-
era, the world locations ofSandE change as well. When a bridge
is created, the system determines the plane that contains the current
world-space positions ofE, S, and they vector. At creation time,
this bridge billboard is highlighted, and subsequent strokes drawn
on it are recorded just like those on any other billboard.

When the camera is moved, the world-space locations ofE and
S may change. When this happens, the bridge billboard is scaled
in its horizontal direction and sheared along the vertical direction
to maintain the correspondence of points of the billboard with the
pointsE andS(see Section 4.3). This helps to maintain the apparent
“connections” between strokes in the bridge billboard and strokes
in the billboards at either end.

Drawing terrain. In terrain-drawing mode, a stroke that starts and

(a) (b)

Figure 4 Editing terrain. (a) The user draws a stroke starting on the
ground that indicates the shape of a hill; (b) The hill is created by
warping the ground to try to match the stroke.

ends on the ground creates a bump in an attempt to make the stroke
a silhouette of the newly deformed ground (see Figure 4). All ob-
jects in the world are then lifted so that they remain coincident with
the ground.

OTHER GESTURES. A few other gestures can be made with the
drawing button. A single click anywhere in the scene un-highlights
the highlighted billboard. A single click on a billboard stroke high-
lights the billboard that contains that stroke. Colors can be drag-
and-dropped from the color palette onto the sky, the ground, or any
stroke, to change their colors accordingly.

ERASER GESTURES.Clicking on a stroke with the eraser but-
ton removes it. Scribbling on a billboard with the eraser button de-
pressed removes the entire billboard.

CAMERA CONTROL. We wanted a driving-style interface for
controlling the camera location in Harold. We rejected World-In-
Hand controls because we wanted to give the user a sense of the size
of the world around her. We wanted a technique that would blend
aesthetically with the stroke drawing nature of Harold. Igarashi’s
technique [9] was appropriate because of its path-drawing interface;
however, we adapted this technique so that the user could explicitly
specify a point in the scene at which the camera would look, and
we set the camera always to be two units above the ground (so that
one unit is approximately equal to one meter).

To move the camera, the user draws a stroke on the ground with
the camera button depressed. This path is displayed as a red line,
and the gaps in the stroke that the user can’t see are filled in as
described above. The user then clicks on a point on the world. The
camera moves along the drawn path at a constant speed (5 meters
per second) and ends up looking at the point where the user clicked.
A click on the sky while the camera is traveling along a path cancels
the current path.

To swivel and tilt the camera, the user clicks on the sky with the
camera button and “drags” the sky side-to-side to swivel, or up and
down to tilt. We constrain the camera only to tilt 30 degrees up or
down from the horizontal plane.

We also provide Doom-style camera controls [17] via the numeric
keypad, so the user can optionally fly through the world. This par-
ticular choice of controls breaks the drawing metaphor, but is a sim-
ple way to give the user more freedom of movement in the virtual
world.

385

To appear in Proceedings of NPAR2000

Button/Gesture Button/GestureMeaning

Draw on
the sky

Select stroke color

Delete stroke

Select stroke
style (ink brush,

marker, or
watercolor)

Meaning

Specify
camera path for

motion

Drag color
onto stroke

(or other object)

Select stroke
width (small,

medium, large)

Gestures with Drawing Button

Billboard mode Terrain mode Ground mode

Create bridge Create bridge Create bridge

De-select billboard De-select billboardDe-select billboard

Extend billboard with
new stroke

Extend billboard with
new stroke

Extend billboard with
new stroke

Create billboard Create hill Draw on ground

Create billboard Ignored
Draw on ground:

ignore parts of stroke
on sky

Create billboard Create hill
Draw on ground:

ignore parts of stroke
on sky

Gesture

Mode
choice

Draw on
the sky

Draw on
the sky

Side to side: rotate
Up and down: tilt

Delete billboard
C

am
er

a
B

ut
to

n
E

ra
se

r
B

ut
to

n

 W
id

ge
ts

(w

it
h

D
ra

w
in

g
B

ut
to

n)

Figure 5 The interface components: red arcs are strokes, red dots are clicks.

486

To appear in Proceedings of NPAR2000

4 Implementation details

4.1 Storing collections of strokes

All strokes are stored with an associated color, style, and width. The
width can be in either pixels or world-space units. Strokes on bill-
board and bridges are stored in world-space width, while strokes in
the sky and on the ground are stored in pixel width. If the width is in
world-space units, we first compute the corresponding width in pix-
els that an object would have at that distance from the camera and
then render the stroke. Thus strokes change their widths to indicate
distance from the camera. We clamp all pixel widths so strokes are
at least three pixels wide.

Since our toolbar indicates stroke widths by circles of different
pixel radii, one issue that arises when storing strokes with world-
space width is what does it mean to select a particular stroke width.
We decided that selecting a stroke width in pixels should indicate
the width at which a particular stroke would be rendered if it were at
the same distance from the camera as the filmplane. Thus, when the
user has selected a particular stroke width, strokes drawn with that
width may have different pixel widths depending on their distances
from the camera.

The collection of strokes associated with a billboard or a bridge
is represented as a list of polylines in the coordinate space of the
billboard, which is a copy of<2. The coordinates are then mapped
into the world via the transformations described in the following
two sections.

4.2 Billboard tranformations

Whenever the camera moves, each billboard must transform itself
to face the camera. While a number of possible transformations
would achieve this affect, we chose a relatively simple transforma-
tion in which each billboard rotates around a single point fixed at
the base of the billboard. To minimize the artifacts that occur when
rotating a billboard, we determine the point of rotation by finding
where the billboard’s strokes touch the ground. This rotation point
is updated every time a stroke is added to or removed from the bill-
board.

Since some billboards have more than one point where a stroke
touches the ground and others have none, our algorithm for choos-
ing a rotation point searches the collection of stroke polylines on
the billboard for all points with a locally lowesty-value. We next
find all such minima that are within a small distance of the ground
(we use 0.5 meters), and of these determineL andRas the leftmost
and rightmost (i.e., the points with the highest and lowestx-value in
the coordinate space of the billboard). We choose the midpoint ofL
andR for the center of rotation. When no strokes have points near
the ground, we simply choose as the center of rotation the lowest
point over all strokes on the billboard.

Each billboard is represented internally as a copy of<2 together
with a basepointb in <3; for any viewpointv, we build a rigid
transformation that maps the origin of<2 to b and maps<2 to a
plane throughb that containsy and the vector (v�b)� y. If we use
coordinates [x,y, 1]t for points of<2 and coordinates [x,y,z, 1]t for
points of<3, then our transformation is represented by the 4� 3
matrix

M =

2
64

 0 bx

0 1 by

� 0 bz

0 0 1

3
75

where

 = (v� b)x=
p

(v� b)2
x + (v� b)2

z

� = �(v� b)z=
p

(v� b)2
x + (v� b)2

z,

which maps the origin tob, the unity-vector in<2 to the unity-
vector in<3, and the unitx-vector to the horizontal unit vector in
<3 that is orthogonal tov� b.

4.3 Bridge transformations

A bridge is created with a pair of pointsSandE, each on a separate
billboard. LetŜ and Ê denote the world-space locations of those
points at the time the billboard is created. Letq denote the vector
Ê � Ŝ andm = [qX, 0,qz, 0] denote its projection to thexz plane.
Then we build a map from<2 to <3 defined by the transformation

N =

2
64

� 0 Ŝx

0 1 Ŝy

� 0 Ŝz

0 0 1

3
75

where
� = qx=jjmjj and� = qz=jjmjj,

which sends the origin0 to Ŝ, the unity-vector of<2 to the unit
y-vector of<3, and the unitx-vector in<2 to the unit vector in the
directionm. The preimage ofE under this transformation is some
pointeof<2. Since the preimage ofSis the origin and the preimage
of E is e, the preimage ofq = S� E is e� 0; thusN(e� 0) = q.

To store a stroke made on a bridge billboard, we project each ver-
tex onto the bridge’s plane to get a point in<3. This points is then
transformed byN�1 and recorded in<2; when the bridge is to be
redisplayed from some other view in which the world-space loca-
tions ofE andSare nowĒ andS̄, we build a new transformation̄N
that maps the origin tōS, they-axis of<2 to they-axis of<3, and
the pointe to the pointĒ (or equivalently, maps the vectore� 0 to
the vector ¯q = S̄� Ē. Lettingm̄ = [q̄x, 0,q̄z, 0]t be the projection of
the vector ¯q to thexz-plane, the matrix for this transformation is

N̄ =

2
64

�̄ 0 S̄x

0 1 S̄y

�̄ 0 S̄z

0 0 1

3
75 �

2
4 1 0 0

q̄y

qyjjm̄jj
1 0

0 0 1

3
5 �

2
4

jjm̄jj
jjmjj 0 0
0 1 0
0 0 1

3
5

where

�̄ = qx=jjmjj and�̄ = qz=jjmjj.

Reading right to left, the first matrix scales the domain inx so that
after being transformed, the vertical line that containse will map to
the vertical line containinḡE. The second matrix is a shear such that
the vertical line containing the origin is unchanged and the vertical
line containinge is raised so thate maps toĒ. The third matrix is
simply a rigid transformation like the one built forN above.

4.4 Rendering strokes

As described above, each stroke is defined by a sequence of points
(a polyline) and a pixel width that is either stored or computed. This
sequence of points is then rendered as a stroke using the method of
Northrup and Markosian [13]. The three stroke styles we have im-
plemented provide a fair range of expressiveness while maintaining
interactive frame rates. Examples of these stroke types are shown
in Figure 6.

For the marker style, we use a stroke with constant width and no
mitering at the endpoints. For the ink style, we use a stroke with
mitered endpoints and a width that tapers to 0. Since the width is
tapered over the length of the stroke, the stroke gets wider near
its beginning as its length increases. In our interactive system, this

587

To appear in Proceedings of NPAR2000

gives the effect of ink “bleeding” and spreading outward as the user
continues to draw a stroke.

For watercolor strokes, the stroke is drawn with increasing trans-
parency along its length. We linearly fade out the transparency to
0. 5 along the first 20 vertices of the stroke, and draw all subsequent
vertices with 0. 5 tranparency. This implementation captures only a
tiny fraction of true watercolor behavior (as modeled by Curtis et
al. [3]), but is efficient enough for rendering in our real-time system.

Strokes are rendered by first building triangle strips, and then pass-
ing them to the rendering pipeline using OpenGL [1]. Since strokes
are view-dependent,we cannot just cache them in display lists; they
must be rebuilt for each frame. However, the user typically main-
tains a fixed camera position while drawing an object. To get a
higher sampling rate for the input device in this case and improve
the interactivity of the system, we we can take advantage of display
lists and cache the triangle strips that have already been built.

4.5 Terrain

Terrain-editing strokes must start and end on the ground. Call the
starting and ending pointsSandE. Just as in the bridge-definition
rules in sections 4.3, these two points, together with they-vector,
determine a plane in<3, that we call theprojection plane. The
points of the terrain-editing stroke are projected onto this plane (this
projection, which is a curve in<3, is called thesilhouette curve); the
shadow of the resulting curve (as cast by a sun directly overhead)
is a path on the ground (we call this theshadow). Points near the
shadow have their elevation altered by a rule: each pointP near the
shadow computes its new height (y-value) as a convex combination

(1�w(d)) � Py + w(d) � h

whered is the distance fromP to the projection plane,h is they-
value of the silhouette curve over the nearest point on the projection
plane toP, andw(d) is a weighting function given by

w(d) = max

�
0, 1�

�
d
5

�2
�

.

This gives a parabolic cross-section of width 10 for a curve drawn
over level terrain. Other choices forw would yield hills with differ-
ent shapes that might be more intuitive, but this particular choice
gives reasonable results in most cases.

Note that if the silhouette curve bends back on itself (i.e. it defines
a silhouette that cannot be modeled using a heightfield), then the
variation of height along the shadow will be discontinuous. The
resulting terrain then may have unexpected features.

5 Limitations and discussion

Figures 7 and 8 show two scenes created using Harold. Both scenes
took under 15 minutes to draw. Figures 9 and 10 show how Harold
can be used for conceptual prototyping of outdoor scenes. Figure
11 shows a simple moon scene.

The major problem that arises in trying to reconstruct a 3D scene
from 2D input is trying to determine what an object looks like from
a new point of view. One can think of billboards as providing a
crude solution to this problem – we approximate the appearance of
an object from a new viewpoint as its appearance from the initial
viewpoint. Thus billboards work well for objects that look approx-
imately the same from all directions, e.g., trees, flowers, telephone
poles, and even roughly drawn characters. When this assumption
of approximate radial symmetry does not hold, as in the case of a
house, say, billboards look odd and visually disturbing.

A different approach may have more success in cases like this. The
advantage of a system like Teddy, for example, is that for certain
types of objects, Teddy can produce fairly accurate approximations
of the objects’ appearances from novel viewpoints. Another stategy
is to constrain the camera so that the user views objects only from
viewpoints from which the system can plausibly reconstruct an ob-
ject’s appearance. This is the approach taken in Tolba, Dorsey, and
McMillan’s system [18], and one we have incorporated to a certain
extent in Harold. This is why in Harold the camera is constrained to
stay at a constant height over the ground (with the exception of the
optional flying controls); we have made the system’s task slightly
easier since we don’t have to reconstuct the appearances of objects
from above or below.

Another drawback of billboards is that they do not maintain a fixed
relationship with one another as the camera moves. For example,
when two large billboards are close together, they may intersect
each other as the viewer moves and the billboards rotate. This can
produce surprising visual effects. Our algorithm for choosing the
center of rotation partially addresses this problem, as does the use
of bridges, but there are some cases that neither approach handles
particularly well.

Also, the interface in Harold is more obviously modal than systems
like Sketch or Teddy. It is not clear whether this is a drawback or
not. The notion that modes are “suggestive” rather than rigid may be
somewhat awkward to some users as well: one can be in billboard
mode and still perform operations that are not related to billboards,
such as drawing on the sky.

6 Future work

An obvious direction for future work is to incorporate more tech-
niques from other systems such as Sketch or Teddy, or our 3D curve
system. It is not clear how to do this in many cases, and it is clearly a
nontrivial task. However, such a system could potentially be a very
powerful modeling tool for creating visually rich 3D environments.

Although we have three types of brushes, it is clear that a richer
mechanism for creating drawings would be useful. All of the fea-
tures of ordinary paint programs could conceivably be incorporated,
although certain issues arise in the context of our system that do not
arise in 2D paint programs. For example, flood-filling a collection
of strokes on a billboard is not as simple as flood-filling a region
of a 2D image because there may be gaps between strokes that are
not visible if the billboard is sufficiently far away. A naive flood fill
would then unexpectedly flow outside of the intended area. These
are interesting problems to investigate.

Other directions we are exploring include extending the drawing
metaphor to allow the user to “draw” animations, such as a river
that appears to be flowing or rain that appears to be falling. It is
conceivable that somehow we could take this even further and allow
the user to “draw” simple behaviors, thereby creating interactive 3D
environments.

Finally, there are many possible extensions to the rendering sys-
tem, such as adding automatic level-of-detail for strokes that are far
away, improvements to the overall efficiency of the system, and in-
corporating other non-photoreaslistic rendering styles such as those
described in [12].

7 Acknowledgements

Thanks to the artists and art students who used Harold and gave
us feedback, especially Michael Legrand and Noah Raford. Thanks
also to Lee Markosian and J.D. Northrup for providing the stroke-

688

To appear in Proceedings of NPAR2000

based rendering system. Finally, thanks to the entire graphics group
for their support. This work is supported in part by the NSF STC for
Computer Graphics and Scientific Visualization, Adobe, Advanced
Network and Services, Alias/Wavefront, Department of Energy,
IBM, Intel, Microsoft, National Tele-Immersion Initiative, Sun Mi-
crosystems, and TACO.

References

[1] “OpenGL Architecture Review Board”.OpenGL Reference
Manual, 2nd Edition. Addison-Wesley Developer’s Press,
1996.

[2] Jonathan M. Cohen, Lee Markosian, Robert C. Zeleznik,
John F. Hughes, and Ronen Barzel. An interface for sketching
3d curves. In1999 Symposium on Interactive 3D Graphics,
pages 17–21. ACM SIGGRAPH, April 1999.

[3] Cassidy J. Curtis, Sean E. Anderson, Joshua E. Seims, Kurt W.
Fleischer, and David H. Salesin. Computer-generated water-
color. InSIGGRAPH 97 Conference Proceedings,pages 421–
430. ACM SIGGRAPH, August 1997.

[4] Amy Gooch, Bruce Gooch, Peter Shirley, and Elaine Cohen.
A non-photorealistic lighting model for automatic technical
illustration. In Michael Cohen, editor,SIGGRAPH 98 Con-
ference Proceedings, pages 447–452.ACM SIGGRAPH, July
1998.

[5] Craig Hickman. Kid pix: The early years.
http://pixelpoppin.com/kidpix/KPHistory/.

[6] Youichi Horry, Ken ichi Anjyo, and Kiyoshi Arai. Tour into
the picture: Using a spidery mesh interface to make animation
from a single image. InSIGGRAPH 97 Conference Proceed-
ings, pages 225–232. ACM SIGGRAPH, August 1997.

[7] Siu Chi Hsu and Irene H. Lee. Drawing and animation using
skeletal strokes. InSIGGRAPH 94 Conference Proceedings,
pages 109–118. ACM SIGGRAPH, July 1994.

[8] Siu Chi Hsu, Irene H. Lee, and N. E. Wisema. Skeletal
strokes. InProceedings of UIST 93, pages 197–206. ACM
SIGCHI, November 1993.

[9] Takeo Igarashi, Reiko Kadobayahi, Kenji Mase, and Hiehiko
Tanaka. Path drawing for 3d walkthrough. InProceedings of
UIST 98. ACM SIGCHI, November 1998.

[10] Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka.
Teddy: A sketching interface for 3d freeform design. InSIG-
GRAPH 99 Conference Proceedings, pages 409–416. ACM
SIGGRAPH, August 1999.

[11] Crockett Johnson.Harold and the Purple Crayon. Harper-
Collins Juvenile Books, 1977.

[12] Michael A. Kowalski, Lee Markosian, J.D. Northrup,
Lubomir Bourdev, Ronen Barzel, Loring S. Holden, and
John F. Hughes. Art-based rendering of fur, grass, and trees.
In SIGGRAPH 99 Conference Proceedings, pages 433–438.
ACM SIGGRAPH, August 1999.

[13] J. D. Northrup and Lee Markosian. Artistic silhouettes: A
hybrid approach. InNon-photorealistic Animation and Ren-
dering. ACM SIGGRAPH, June 2000.

[14] Quantel. Quantel paint box. http://www.quantel.com.

[15] Paul Rademacher. View-dependent geometry. InSIG-
GRAPH 99 Conference Proceedings, pages 439–446. ACM
SIGGRAPH, August 1999.

[16] Alvy Ray Smith. Varieties of digital painting.
ftp://ftp.alvyray.com/PstScrpt/8Paint.ps, 1995.

[17] Id Software. Doom. Computer game, 1993.

[18] Osama Tolba, Julie Dorsey, and Leonard McMillan. Sketch-
ing with projective 2d strokes. InProceedings of UIST 99.
ACM SIGCHI, November 1999.

[19] Robert C. Zeleznik, Kenneth P. Herndon, and John F. Hughes.
SKETCH: An interface for sketching 3D scenes. InSIG-
GRAPH 96 Conference Proceedings, pages 163–170. ACM
SIGGRAPH, August 1996.

789

To appear in Proceedings of NPAR2000

Figure 6 The top strokes are marker style, the middle strokes are
ink style, and the bottom strokes are watercolor style.

Figure 7 This scene was created in Harold. The mountains are
painted on the sky, the fences are bridges strung between billboards,
and the hut in the lower center is a billboard.

Figure 8 This scene was created by an art student after using Harold
for approximately 1 hour.

Figure 9 Here Harold was used to create an initial conceptualsketch
of an outdoor scene. The scene was created by an architectural stu-
dent within an hour of first using Harold.

Figure 10 The same scene from a different viewpoint.

Figure 11 A moon scene created in Harold. The bright colors and
different stroke styles enable Harold to capture the liveliness of a
child’s drawing.

890

