
@ @ Computer Graphics, Volume 25, Number 4, July 1991

Sculpting: An Interactive Volumetric Modeling Technique*
Tinsley A. Galyean

The Media Laboratory
Massachusetts Institute of Technology

Cambridge, MA 02139

John F. Hughes
Department of Computer Science

Box 1910

Brown University
Providence, RI 02906

ABSTRACT

We present a new interactive modeling technique based on the
notion of sculpting a solid material. A sculpting tool is controlled
by a 3D input device and the material is represented by voxel data;
the tool acts by modifying the values in the voxel array, much
as a “paint” program’s “paintbrush” modifies bitmap values. The
voxel data is converted to a polygonal surface using a “marching-
cubes” algorithm; since the modifications to the voxel data are
local, we accelerate this computation by an incremental algorithm
and accelerate the display by using a special data structure for
determining which polygons must be redrawn in a particular screen
region. We provide a variety of tools: one that cuts away material,
one that adds material, a “sandpaper” tool, a “heat gun,” etc. The
technique provides an intuitive direct interaction, as if the user were
working with clay or wax. The models created are free-form and
may have complex topology; however, they are not precise, so the
technique is appropriate for modeling a boulder or a tooth but not
for modeling a crankshaft.

CR Categories: 1.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling; Curve, surface, solid, and object rep-
resentations; 1.3.3 [Computer Graphics]: Pictureflmage Generation;
Display algorithms; 1.3.6 [Computer Graphics]: Methodologies and
Techniques; Interaction techniques.

Additional Keywords: Sculpting, volumetric data, 3D interac-
tion, antialiasing, free-form modeling.

1 lNTRODUCTION

We present a new modeling technique for computer graphics based
on the notion of sculpting a solid material with a tool. This technique
is derived from traditional 2D paint systems, from Blinn’s blobby
objects [1], and from the soft objects of Wyvill et al. [17]. The term
“sculpting” has been used by others: Naylor [9] uses it to describe
a polyhedral CSG system that is capable of interactive performance
when implemented on a Pixel Machine; Coquillart [3] uses it to
describe her interface to free-form deformations [12], that edit the
geometry of an object but not its topology; Pentland et al. [10]
use it to describe the altering of shapes by modal forces. In related
work, Williams 3D paint system [15] lets the user edit the z-depths

*This work was supported in part by grants from IBM, NCR,
and Sun Microsystems.

Permission to copy without fee all or par[of this material is granted
provided tha! the copies are not madeur distributed for direct
commercial advantage, the ACM copyright notice md the title of the
puhlicatimr and its date appear, and notice is given that copying N by
permission of the Association for Computing Machinery. To cnpy
otherwise, or m republish, requires a fee andlor specific permission.

{:)1991 ACM-()-X979 1-436-8/91/007/0267 $fst175

of points on an object that is a union of two topological disks, using
color as a proxy for height. Bloomenthal et al. [2] describe an object
by forming a geometric skeleton, associating a potential function
with it, and drawing isosurfaces of the potential function; editing
the skeleton then modifies the surface. We prefer to avoid the fixed
structure of these last four systems and the potential proliferation of
polygons of the first, and aim instead for a system that gives the user
control of both the geometry and topology of an object and at the
same time provides an extremely intuitive interface. Our sculpting
may appear similar to work of Van Hook on milling machines [6],
but his system only removes material from an object (i.e., no additive
tools are allowed), and retains an image of the object but not the
structure of the object itself. The resulting object cannot be viewed
from any direction other than the one in which it was constructed.

Our fundamental notion is to describe the shape of a piece of
clay by its charucreristic function, whose value is 1.0 at any point
in space where there is clay and 0.0 elsewhere. 1 Modifying the
shape of the clay is therefore equivalent to modifying this function.
The same idea applies in a traditional 2D paint system: we think
of the canvas as the cartesian plane and assign values to the pixels
of the canvas; certain values indicate the presence of ink and others
indicate its absence. Painting is done in such systems by moving a
brush across the canvas, and data associated with the brush edits the
data in the pixmap; for example, moving the tip of a pen across the
canvas changes the vahtes of all pixels underneath it to the current
color. Our system modifies the values of volumetric data by moving
a 3D tool through space, in exact analogy to the brush. Our standard
tool is the opposite of the pen in a paint system, however, in that we
start with a block of material and remove it bit-by-bit, and hence we
refer to the process as sculpring. Just as traditional paint systems
offer many ways to apply and remove paint, we provide several
different tools with which to edit the volumetric data, including
ones that add material, smooth a surface, or melt away material as
a heat gun melts styrofoam. Many users are familiar with paint
programs, and therefore readily accept this variety of tools.

The models created by our technique are free-form and often
lack tine detail, but they can have complex topology. They are
nor precise geometric models of the sort traditionally generated by
CAD systems. However the technique opens the door to modeling
that would otherwise be difficult; it is also well-suited to a free-form
design process, in which the user starts with no particular goal, and
just plays with the material in an intuitive fashion.

While the underlying idea of our technique is simple and attrac-
tive, making it work in practice is not trivial, Paint systems have
the advantage that they work by modifying the data in a framebuffer
or an offscreen copy of the screen canvas; this memory is typically
easy to read and write, and the image can be transferred to the screen

1We represent volumetric functions by giving their values at the
vertices of a rectangular lattice in 3-space, and call this t’oxel dafa,
or a \,o,rrrrapfor short.

267

EE
.

s1661APu$l -

SIGGRAPH ’91 Las Veqas, 28 JuIv-2 August 1991

extremely quickly with most current hardware. This is partly be-
cause we always look at a 2D painting from the same point of view.
By contrast, we may wish to view volumetric data from any angle.
Also, since we actually want to see the boundary between the mate-
rial and the empty space, this boundary must be computed by some
thresholding algorithm. The computation of an isosurface from the
volumetric data is O(rt3), using the marching-cubes algorithm [7],
for an n x n x n data array. Clearly, for interactivity, we must
improve the algorithm. Fortunate y, sculpting the data modifies it
only locally, so one need not recompute an entire isosurface. Of
course, the isosurface for such data may contain many polygons,
and even if we recompute only the local data and replace some
polygons with others, we must find a way to redisplay only the local
area or the process becomes polygon bound. Even with only local
updates, over 509” of the time is spent rendering polygons on an
HP835 Turbo SRX.

Simply sampling the characteristic function of a solid will lead
to aliasing, We avoid this by using a low-pass filtered version of
the characteristic function. This means that certain samples may be
neither 1.0 nor 0.0, but rather some intermediate value, indicating
transition from material to empty space. To avoid the introduction
of aliases, the values written by the tool must also be band-limited,
as discussed in Section 3.1.

Before giving a detailed explanation of the technique and the
associated algorithms, we make two important remarks:

1.

2.

The success of the program is greatly enhanced by the use of
3D interaction devices. We use the Polhemus lsotrack device,
and have begun to experiment with the Ascension ‘Bird’ and
a 3D force-feedback joystick with good results [8].

User response indicates that this method of modeling has sub-
stantial initial appeal and is extremely easy to learn. -Although
we have not performed any perceptual stuches on the system,
we have found that many users of the system say one of two
things: “Can I come back and use this again later?” or, fmm
the more experienced users, “This is what I ~hought that 3D
modeling would be like when I first started learning about
computers.”

The remainder of this paper describes the modeling technique at
two levels: the user’s view of the system and the internal imple-
mentation. We include throughout ideas for future work. While the
system is a full-fledged modeling system, we view it as comparable
to early painting programs like MacPainC the future work is what
will make it more like the painting programs of today.

2 THE USER’S VIEW

In calIing our modeling technique “sculpting,” we hope to connote
a very free-form interaction; a sculptor can carve away bits of
material, stick on new pieces of clay, change the topology of a
sculpture, etc. (A sculptor using physical clay can also squeeze or
flex the clay; our system does not yet provide this functionality.)

To present this free-fosm modeling technique, we provide the
user with a cubical “lump of clay” (called the objecr) and a small
tool. The tool, displayed as a sphere or cube, is directly controlled
by a 3D interaction device such as the Polhemus Isotrack. In a
separate window, the user has a traditional user interface, consisting
of menus for file management and buttons for selecting how the tool
shotdd act on the object and for resetting the system. Interaction
with this part of the interface is done with a mouse and keyboard. A
typical session begins with the default (a cube of clay) or with the
selection of a previous sculpture, and continues as the user holds the
Polhemus device and sculpts away material. When the user wishes
to change the effect of the tool, she uses the mouse to select a new
tool type (see Figure 1).

268

2.1 Types of Tools

The tool, in its simplest form, is analogous to the eraser pmvided
in many paint programs: wherever the tool moves, it cuts away the
object. In 3D terms, the tool acts like a milling head or a muter, but
unlike these, the tool leaves no chips. We call this a routing tool or
subtractive tool.

The analogy between the subtractive tool and a paint program’s
eraser is of considerable value. Most users are familiar with 2D
paint programs, and are used to the notion that the mouse can have
different effects. This makes it simple to give the user a variety of
sculpting tools and to invent new types of tools. Here are the tools
we have implemented:

Additive Tool or Toorhpas/e Tube. This tool leaves a trail of
material wherever it moves, much like a tube of toothpaste that is
squeezed as it is moved.

Heat Gun. This tool “melts away” material much as a heat gun
melts styrofoam. If held in one place for a while, it removes all
the material, like the muting tool; if moved quickly pasta region, it
melts the material there slightly.

Sandpaper. This “smoothing” tool alters the object by wearing
away the ridges and filling the valleys. (This is analogous to the
low-pass filter brushes available in some sophisticated 2D paint
systems.)

Other possible tools include a filleting tool, to smooth the joins
between adjacent surfaces, and geometric construction tools, which
would allow the user to create a cylindrical tube between two points,
or create a torus with a certain center and radii, much the way that
painting programs allow one to draw straight lines and circles. We
also envision adding tools for deforming the object as a clay model,
squeezing or bending it, as described in [13].

We have also implemented a primitive color tool, which assigns
a chosen RGB color triple to each vertex of the data array that
lies within the current tool region. We currently apply a low-pass
filter to these assigned color values to create a smoother appearance.
There is much more work to be done in this area.

2.2 Interaction

2.2.1 Low and high resolution modes

To make a good sculpture the user must be allowed to view it
from different perspectives and work on the back as well as the front.
Furthermore, it is often desirable to rough out the coarse shape of
a sculpture first, and work on finer detail afterwards. Making this
coarse sculpting efficient requires a larger tool for the initial shaping.
Thus we provide both low-resolution (Iow-res) and high-resolution
(hi-res) modes. In Iow-res mode, we provide full control of the view
and all tool functions, but with coarse tools. In hi-res mode, view
control is unavailable, but much greater resolution is provided.

In Iow-res mode, the object is displayed by applying the marching
cubes algorithm to a subsample of the data that represents the object.
In hi-res mode we use a 30 x 30 x 30 voxel array; in low-res mode
the array is 10 x 10 x 10. The visual effect is that the Iow-res view
of an object is very coarse and shows only its general fomt. Of
course, subsampling is not ideal because of the aliasing implicit in
the process: small details may disappear completely. The correct
approach is to filter the large voxel array into the smaller array; we
will do this in the future, but have not found it to be a significant
problem in the current implementation.

In low-s-es mode, the 10 x 10 x 10 array might give rise to an
object with as many as 5000 polygons (five polygons from each
cube in the array). This would be extremely unusual, and 500
polygons is more likely. On the HP835 Turbo SRX, 5000 polygons
can be displayed with a refresh rate of 7 per second, allowing the
user to rotate the view of the low-res representation of the object in
real time.

The conversion from low-res to hi-res mode requires a substan-
tial computation, since the full marching-cubes algorithm must be

@a Computer Graphics, Volume 25, Number 4, July 1991

Figure I : The interface to the system

executed and the hashgrid data structure (see Section 3.3) must be
recreated; furthermore, all the polygons created in the hi-res model
(perhaps several hundred thousand) must be displayed. This con-
version causes a slight delay; we are attempting to reduce this, but
have not yet found a method to do so. The length of this delay is the
prime determinant of the high-res data array size of 30 x 30 x 30.

2.2.2 3D control of the tool
We use the Polhemus lsotrack device to control the position

of the sculpting tool. This device provides a constant stream of
samples indicating the zyz-position of a pen-shaped pointer; it also
provides data describing the orientation of the pointer, which we do
not currently use.

There are two problems with using the Polhemus. The data
stream is somewhat noisy (this seems not to be as significant a
problem with the Ascension ‘Bird’). and the natural mapping of
the physical space of the Polhemus pointer to the screen space
representation of the tool makes the pointer an absolute device
instead of a relative one. We have addressed these as follows:

To smooth the Polhemus data, we use a limited predictive track-
ing process: we use previous samples to predict (by linear inter-
polation) where we expect the tool to be at the next sample time.
We then average the actual sample with the predicted value, as-
signing a weight of 7 to the actual sample and a weight of 1 to
the predicted value. To prevent overshoot, we limit the distance of
the predicted position from the previous position; if the predicted
position is more than a certain distance from the previous position,
the difference vector is truncated. This provides a compromise be-
tween the lag of a moving average and the overshoot of predictive
tracking.

Using a simple linear transformation to map the coordinates pro-
vided by the Polhemus to the modeling coordinates is adequate but
not particularly satisfactory. Our initial mapping made the region
in front of the monitor (about a 2’ x 2’ x 2’ cube) correspond to the
region occupied by the object (the sculpring space). This gives good
large-scale control, but sculpting fine details is difficult because of
the noise in the Polhemus. We therefore introduce a relative mode,
that lets the user move the Polhemus much as one moves a cursor
a long distance by repeatedly lifting and replacing a mouse on a
mouse pad. (Instead of “lifting,” the user presses a button.) The
2’ cube is then mapped to a small portion of the sculpting space,
giving fine control.

Controlling the tool position is not easy. Even though the Pol-
hemus pointer is held in a well-defined region, it is often difficult

Figure 2: The poor man’s force feedback unit

to correlate the position of the pointer in space with the position of
the tool on the screen. To assist in this, we draw a box around the
object being sculpted and do front-face culling on the box, so that
no matter what the orientation of the sculpture, three walls behind
it form a “stage.” We then show the tool position by drawing three
crosshairs; the intersections of the crosshairs with the stage walls
help the user determine the tool’s position.

We have also begun to experiment with a force-feedback joystick
to help the user position the tool. The joystick generates a small
force as the tool approaches the surface, allowing us to “feel” that
we are close to it. Using the joystick also helps relieve the user from
holding up the Polhemus pointer. We have also implemented a ‘poor
man’s force-feedback Polhemus,” which alleviates this problem
by providing a certain resistance to motion (although there is no
real feedback involved) (see Figure 2). The device consists of a
Polhemus suspended in a cube by eight elastic cords attached to the
comers of the cube.

2.3 Sample Sculptures
Figure 3-Figure 9 show the kinds of sculptures possible with this
system; Figure 8 was made using a dial box as input device instead
of the Polhemus, which accounts for the orthogonal appearance of
the object.

2.4 The Object as a Voxmap
As we have said,the nhjecr is described by a data array, which we call
a voxmap in analogy with the 2D notions of bitmaps and pixmaps.
(Recall that we think of the values in the array as giving values at the
vertices of the lattice, not the centers of cubes in the lattice.) Because
the object’s characteristic function is discontinuous at its boundary,
it has an infinite frequency spectrum, and hence sampling it yields
aliases. We therefore store the values of the low-pass-jlrcred (or
hand-limited) characteristic function of the object, which may be
between 0 and I. They are analogous to the grey pixels drawn near
a sloping line to reduce the jaggies (41.’

We use the values in the voxmap to determine the values of the
band-limited characteristic function at intermediate points. To do
this precisely, we would have to apply a perfect reconstruction filter:
instead, we simply interpolate the values linearly. which amounts
to reconstructing with a triangle filter.

‘We actually use 8-bit integers to represent the function: 0 and
255 correspond to 0.0 and I .O. respectively.

269

: SIGGRAPH ‘91 Las Vegas, 28 July-2 August 1991

Figure 3: Low-res model of a tree: 1138 polygons Figure 6: Teapot, chiseled from stone: 9244 polygons

Figure 7: Teapot, after application of sanding tool: 8374 polygons

Figure 5: The thinker: only 2118 polygons! Figure 8: Sculpture made with dial box control

Figure 9: A fish smoothed out using sandpaper: 5066 polygons. The eye (a specular black sphere) was added after the sculpture was
completed.

We make an initial image of the object described by the voxmap
using a slight modification of the standard “marching-cubes” algo-
rithm: Following the work in [161, we generate all the intersections
of the isosurface with the edge of each cube, and if there are more
than three we find the center of mass of these points, and then join
each point to this center. (An improved algorithm, like the one in
[161, might help performance somewhat, particularly as the mod-
els become more complex.) Our space is composed of an array
of cubes; the voxmap gives the value of the band-limited charac-
teristic function at the comers of the cubes. For each such cube,
we use the values at the comers to estimate the intersection of the
isosurface at level 0.5 with the cube’s edges. These vertices are
then connected to fill in a collection of polygons that approximate
the intersection of the isosurface at level 0.5 with the interior of the
cube (see Figure IO).

We use the gradient technique of [7] to estimate the normal to the
isosurface at each polygon vertex, thus allowing smooth shading
computations.

Figure IO: Determining an isosurface within a cube in the lattice.
The vertices marked “+” values above the threshold, those marked
“-” have values below.

3 IMPLEMENTATION DETAILS

3.1 The Tool as a Voxmap
The sculpting tool is also represented by a voxmap. One might
suppose that the subtractive tool, for example, would be represented

271

SIGGRAPH ’91 Las Vegas, 28 July-2 August 1991

surface

Figure 11: With a 0/1 tool, the surface of the object jumps as the

tool approaches. This figure shows the analogous behavior in 2D:

the gray square is the tool and the solid black line is the isocurve.

by a voxmap filled with 0s, and that the act of cutting away material
would consist of copying data values from the tool voxmap to
the object voxmap. This is, however, only approximately correct.
Values in the tool voxmap m-e combined with those in the object
map; the combination roles are described in Section 3.2.1. But the
actual values in the tool voxmap are not as simple as they might
seem.

If values of O are copied directly from the tool voxmap to the
object voxmap, the results are jumpy. As the tool moves towards
the object, nothing happens for a while; then, when it is sufficiently
close, the object voxmap values change all at once, and the surface
of the object moves rapidly. This is a consequence of the low
sampling rate used to represent the characteristic function of the
object (see Figure 11 for the analogous behavior in a 2D system).

We compensate for this with two tricks based on the notion of
antialiased brushes [14]. First, we create a voxmap for the tool
that is sampled at a higher rate than is the object (four times as
many samples in each direction). The tool voxmap, for a spherical
subtractive tool, is filled with 0s on the inside of a sphere, and Is
elsewhere, i.e., with the characteristic function of the sphere. We
then remove most of the high-frequency components of this voxmap
by filtering it twice with a 2 x 2 x 2 box filter [5]: Second, we
apply the tool to the object voxmap by determining its sub-voxel
location and then selecting particular values from the tool voxmap
to combine with the object voxel values. The details are presented
in the following section.

3.2 Tool-Object Interaction

The central loop of the program is essentially

1. Poll repeatedly until the tool has an effect.4

2. Modify values in the object voxmap.

3. Recompute isosurface.

4. Redisplay isosurface and tool.

5. Return to step 1.

We will describe these steps in ordec step 2 in the following
subsection, and steps 3 and 4 in Section 3.3.

3,2.1 Applying the tool to the object voxmap
Points in the voxmap are identified by three indices, so that a

typical voxel value is referenced as v[i][j][k], where each of i,
j, and k is an integer between O and 29. We can think of any
point in the object region as having ijk-coordinates: a point whose
coordinates are (i, j, k) = (1.5,2, 2) is on the line segment between
the points represented by the voxels v[1][2][2] and v[2][2][2]. We
compute the ijk-coordinates of the tool’s location, and then round

30ur choice of this filter size and number of iterations was
determined by experimentation.

qFor most tools, this means “until the tool has moved.” ‘e

melting tool, however, has an effect at every instant.

272

sh

ttt--Y-
Figure 12: The 2D paintbrush location is determined to a finer
resolution than that of the canvas. Values that correspond to pixel
centers are actually used in applying the brush to the canvas.

each coordinate to the neamt 1/4. We then imagine the tool’s
voxmap as superimposed on the object voxmap at that position;
l/64th of the tool’s voxel locations correspond exactly to the object
voxel locations, and it is this subsample of the tool’s voxmap that is
combined with the object voxmap. Figure 12 shows the analogous
situation in 2D.

How are object voxel values and tool voxel values combined?
We use the rnin operator on each voxel:

OBJECT - min(OBJECT, TOOL);

this prevents the 1s in the tool’s voxmap from depositing material
in empty space.

The additive tool is created by filtering a sphere full of 1s (with
0s outside), and applied by using the max operator. lMo other tools
use this tool data as well. The “heat gun” is applied by the rule

OBJECT t max(O, OBJECT – TOOL),

and the “building tool,” which gradually pastes new material on in
the same way that the heat gun removes it, is applied by the rule

OBJECT + min(1, OBJECT + TOOL).

The “sandpaper” tool is anomalous, in that it has no associated
data. It is applied as follows: each voxmap value within the tool’s
extent is replaced by a weighted average of its current value and
those of its six adjacent voxels. The central voxel is given a weight
between 4 and 24, and the adjacent voxels are given weight 1. The
user then adjusts the rate of “sanding” by varying the weight of the
central voxel.

The tool voxel data and the object voxel data armys must both
have the same axes in this model. We would like to add other
tools in the future, and allow the tool orientation to be controlled
by the orientation of the Polhemus pointeu however, this requires
resampling the tool voxel data to get a rotated sample, and at present
this is not feasible at a reasonable refresh rate.

3.3 Regenerating the Isosurface

When the tool voxmap is applied to the object voxmap, the object
data is modified only in a small region. Thus we need not recompute
the entire level 0.5 isosurface — only cestain polygons change,
namely those that arose from cubes the values of whose vertices
have been modified. Since we know exactly which vertices these
are, we can readily compute the new polygons to be displayed. We
call this the incremental marching-cubes algorithm.

To redisplay the isosurface, we wish to dkplay the newly com-
puted polygons and remove the polygons formerly associated with
the modified regions. The removal of these defunct polygons might

@ @ Computer Graphics, Volume 25, Number 4, July 1991

screen

T< T=

,;* -+4Q
update

Figure 13: When the square tool cuts away material, polygons that
were formerly obscured may be revealed, as shown in the right hand
case.

expose certain other polygons. These obscured polygons are no
longer in the z-buffer, having been overwritten by the now-defunct
polygons, so we must redisplay the formerly obscured polygons too
(see Figure 13 for a 2D slice of this situation). To facilitate this, we
use a data stmcture we call a ha.shgrid.

The hashgnd makes it easy to determine which cubes in the
object voxel army contribute polygons to a specific screen region.
We divide the screen into a grid of squares, which we call cc//s, and
associate a bucket (implemented as a linked list) to each. Whenever
a cube that contributes polygons has a screen projection overlapping
a cell, that cube is added to the cell’s bucket. Once this array of
cells, the hashgrid. has been computed, it is easy to determine which
cubes’ polygons must be redrawn to update a region of the screen.

To make the hashgnd efticient, we make two requirements: (I) a
hashgnd cell must be at least as large as the projection of any cube
to the screen: (2) a hashgrid cell must be at least as large as the
largest screen extent of [he projection of the tool from any point in
the sculpting space. Since our tools are always at least as large as a
single cube. it suffices to satisfy the second condition.

We compute the bounding rectangle of this maximum-size tool
projection analytically. This is possible because the tool is con-
strained to lie in the sculpting space and the camera’s field of view
is fixed. We also compute the bounding rectangle for the projection
of the entire sculpting-space cube. The larger dimension of the first
rectangle is what we choose for the size of each cell edge in the
hashgrid; the larger dimension of the second rectangle, divided by
this cell edge length, determines the size of the array of cells.

We initialize the hashgrid during the marching-cubes algorithm.
Each cube in the voxmap is examined to see whether it contributes
polygons to the object: if so, it is flagged (the confribwion flag
of the cube is set), we determine which cells the cube’s projection
overlaps, and add the cube to the bucket for each such cell.

To determine which cells a cube hits, we project the eight ver-
tices of the cube. and note which cells these projected vertices lie
in (because of the tirst requirement on the size of grid cells, the
projected vetiices can lie in at most four different cells). Then, if
the projected vertices lie in exactly three cells, we add a fourth cell
to the list. as shown in Figure 14. which indicates why we must
do this: it is possible for the screen extent of a cube’s projection
to intersect a cell in which no projected vertex lies. This L-.shupF
~JnwmJ/ywill arise again when we discuss the effect of tool motion.

The obvious way to project the vertices of a cube to the screen
is 10 take the coordinates of each vertex, multiply them by the
current (4 x 4) transfommtion matrix. and then project to screen
space via the perspective projection transformation. Both of these
operations we linear functions. except for the homogeneous division
in the perspective transformation. We use this linearity as follows:
We project the comers of the entire object voxmap to homogeneous
coordinates (just before the perspective divide),and use the resulting
coordinates to infer the locations of each small cube’s comers in this
space via linear interpolation. We then perform the homogeneous
division; this interpolated computation of the projected vertices
reduces the per-cube computation of associated hashgrid cells from
128 multiplies. 96 additions. and 16 divisions (the cost of the two

Figure 14: A projected cube may intersect four grid cells even
though the projected vertices lie in only three cells. Because of this,
we always add the cube to the bucket of the fourth cell.

matrix multiplies and the perspective divide of the naive approach)
to just 9 multiplies, 30 additions, and 16 divisions.

To update the hashgrid when the tool is moved, each cube in the
voxmap whose vertices have been modified by the tool is examined.
If the cube’s contribution flag is not set but the cube now contributes
polygons, the flag is set and the cube is added to the hashgrid data
structure. If the cube’s contribution flag is set but the cube no longer
contributes polygons, the flag is cleared and the cube is removed
from the hashgnd.

The display is updated by determining which cells in the hashgrid
might have been affected by the tool. By the second condition on
hashgrid cell size, the screen projection of the tool intersects at most
four cells. As btfore, in the event of an L-shape anomaly, the fourth
cell is added to the list of affected cells. This cell list is merged with
the list of cells associated with the previous tool position (these two
lists often overlap, especially when the tool is being moved slowly).
The screen area and z-buffer area associated with these cells are
cleared. Then, for each cube in the bucket of each grid cell on
the list, the polygons are regenerated and drawn. (We regenerate
the polygons to save the prohibitively large space required to store
them).

When we alter our view of the object, the hashgrid must be
recomputed. Rather than recompute it from scratch, we use the old
hashgnd to compute the new one. By examining only those cubes
that appear in some bucket in the old hashgrid, we avoid performing
marching-cubes computations on those parts of the object voxmap
that will not contribute polygons. The process for creating the
new hashgnd is therefore: (1) for each cell of the old hashgrid,
look at the cubes in its bucket; (2) for each such cube, check a
flag (the ulreudy-processed flag); if it is not set, set it, perform the
marching-cubes algorithm on that cube, and inserl the cube into the
new hashgrid; (3) once the whole old hashgrid has been processed,
clear the already-processed flags on all cubes. Using the already-
processed flag is necessary because a single cube is likely to be in
the buckets of more than one hashgrid cell (but no more than four).

4 FUTURE WORK

We have many plans for future work in extending this modeling
paradigm. We are in the process of improving the color editing in the
system, and look forward to adding patterning or even solid textures
like those described in [1I]. We would like to develop a voxmap
with so many cubes that the screen projection of a typical cube is
about the size of a screen pixel. This actually simplifies some of

273

El:
..

!ls614rn!l -

SIGGRAPH ’91 Las Vegas, 28 July-2 August 1991

the algorithms (polygon rendering in the display device is no longer
needed, for example); unfortunately, the memory requirements are
still prohibitive. We are eager to experiment further with force
feedback, as we feel that this will provide an extremely intuitive
user interface. We want to add tools that have orientation, so that
we can use the full range of data from the Polhemus device. We
want to add various high-level operations on the sculpture such
as scaling, translation, cutting, copying, and pasting regions of
the sculpture, reflecting and rotating portions of the sculpture; in
general, we would like to make available as many as possible of
the other operations available in traditional paint programs. We
would like to add hierarchy to the system, so that in regions where
more detail is needed, we could locally increase the resolution of
the voxel lattice. Finally, we want to gain experience with a wide
selection of users so that we know better how to make sculpting a
natural inclusion in the standard repertoire of modeling techniques.
This should include further study of the user interface and its ease of
use; our current experience involves no rigorous perceptual studies,
and we feel that these may considerably enhance the interface.

5 ACKNOWLEDGMENTS

Much of this work was done by the first author as his Master’s
project under the direction of the second author. We appreciate the
support of the Brown Computer Graphics Group, in particular Bob
Zeleznik and Dan Robbins, and of the MIT Media Lab, especially
the Computer Graphics and Animation Group.The firstauthor
thanks Shen Galyean for her support and encouragement.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

J.F. Blinn. A generalization of algebraic surface drawing.
ACM TOG, 1(3):235–256, 1982.

J. Bloomenthal and B. Wyvill. Interactive techniques for im-
plicit modeling. Compurer Graphics, 24(2) :109-1 16, March
1990.

S. Coquillart. Extended free-form deformation: A sculpt-
ing tool for 3d geometric modeling. Computer Graphics,
24(4): 187-196, August 1990.

J. Foley, A. van Dam, S. Feiner, and J. Hughes. Computer
Graphics: Principles and Practice. Addison-Wesley, second
edition, 1990.

P.S. Heckbert. Filtering by repeated integration. Computer
Graphics, 20(4):3 15–321, August 1986.

T. Van Hook. Real-time shaded nc milling display. Compurer
Graphics, 20(4): 15-20, August 1986.

W.E. Lorenson and H.E. Cline. Marching cubes: A high reso-
lution 3d surface construction algorithm. Compurer Graphics,
2 1(4): 163–169, July 1987.

M. Minsky, M. Ouh-young, O. Steele, and F. Brooks. Feel-
ing and seeing: Issues in force display. Computer Graphics,
24(2):235-243, March 1990.

B. F. Naylor. Sculpti An interactive solid modeling tool. In
Proceedings of Graphics Inte#ace ’90, pages 138–148, May
1990.

A. Pentland, 1. Essa, M. Friendmann, B. Horowitz, and
S. Sclamff. The thingworld modeling system: Virtual sculpt-
ing by modal forces. Computer Graphics, 24(2): 143–1 46,
March 1990.

K. Perlin. An image synthesizer, Computer Graphics,
19(3):287-296, July 1985.

T.W. Sederberg and S.R. Parry. Free-form deformation of

[13]

[14]

[15]

[16]

[17]

D. Teszopoulos and K. Fleischer. Modeling inelastic deforma-
tion: Vkcoelasticity, plasticity, fracture. Compu~er Graphics,
22(4):269-278, August 1988.

T. Whhted. Anti-aliased line drawing using brush extrusion.
Compurer Graphics, 17(3):151–156, July 1983.

L. WNiams. 3d paint. Computer Graphics, 24(2):225–233,
March 1990.

B. Wyvill and D. Jevans. Table driven polygonization. In
SIGGRAPH ’90 Course Notes, Modeling and Animation with
Implicit Surfaces, pages 7/ 1–7/6, August 1990.

B. Wyvill, C. McPheeters, and G. Wyvill. Data structure for
soft objects. The Visual Computer, 2(4), 1986.

solid geometric models. Compufer Graphics, 20(4):151– 160,
August 1986.

274

