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Abstract
Fme-form defommtion (FFD) is a powerful modeting tool, but

contmtling the shape of an object under complex deformations is
often ~cult. ‘fhe interface to FFD in most conventional syetems
simply mpments the unddying mathematics directly, ur3ent&-
acdbe deformations by manipulating control points. lhe difEculty
in controlling shape precisely is largely due to the control pcdnte
being extmneous to the objec~ the deformed object does not follow
the control pointn exactly. In addition, the number of &gmes of
freedom pre@entedto the user cm be ovenvhelming. We present a
method that allows a uacr to control a fme-form deformation of an
object by manipulating the object dhectly, leading to better contmd
of the deformation and a more intuitive interface.

CR Categories: 1.3.5 [Computer Oraphics]: Computa-
tional Oeometry and Object Modeling - Curve, Surface,
Solid, and Object Repn%entatiomx1.3.6 [ComputerOraph-
ics]: Methodology andlkchniques - InteractionTechniques.

Additional Keywords: Direct manipulation, free-form de-

formations.

1 Introduction
Oeometric modeling of complex objects is a difficult task.
Sophisticated techniques for shaping and creating complex
objects are generally awkward and tedious to use [8]. Free-
formdeformation[15] fallaintothia category. It is apowerfid
modeling technique that enables the deformation of objects
by deformingthe space aroundthem, butusing this technique
is sometimes difficult. The deformations aredeiined by para-
metric functions (3D splines) whose values are determined
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by the location of control points. Describing a free-formde-
formation (FFD) in conventional modeling systems is done
by manipulatingthese controlpoints, aninterfacethatreflects
the underlying mathematics of the modeling method. ‘Iltis
type of interface can be contbsing because the control point
movement merely hints at the type of deformationthe objecl
will be subjected to. ‘I%efollowing examples will help to
clarify this.

Although the movement of the control points gives an
indication of the teaulting deformation, some shapes am not
intuitive to form. As a firstexample, to create a bulge with a
flat top one may think to align the control points to a plane,
as shown in Figure 1s. However, it is actually necessq to
position the control points as shown in Figure lb to create
the flat top. As a second example, F@res 6 and 7 show
the prongs of a ring modeled with he-form deformations.
Precise placement of the prongs is needed to ensurethatthey
do not penetratethe gem stone.

Complex deformation operations ot?en require a large
number of control points resulting in semen clutter. They
also tend to get buriedwithin the model being deformed. As
a result, it is virtually impossible to seieu or manipulatethe
control points efficiently.

Thus we can see four problems in manipulatingdefor-
mations via control points.

1.

2.

3.

4.

Exac4shape isdifficultto achieve.

Exact placement of objecl points is difficult to achieve.

Users unfamiliarwith splines do not understandthe pur-
pose of the control points and the results of theirmove-
ment.

The control points become difficult to manipulatewhen
occluded by-the object being deformed, o; when there
ate so many they clutterthe screen.

One way to improve the usability of this technique is to
move controlpoints in groups, andthen apply linearandnon-
linear transformationsto them, similar to the group control
point manipulationpresentedin [51forspline surfaces. While
helping the user move many control points at one time, this
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(a)

(b)

Figure 1: An FFD in the plane. me dashed line shows the
original shape, and the solid line shows the shape after the
deformation. (a) shows the result of a flat line of control
points. (b) shows the control point configurationto create a
flat top.

does nothing to alleviate the shape andplacement problems.
It is unclear which control points should be moved andhow
transformationswill affect the object. The limited usefulness
of this approach for spline surfaces was noted by [14]; the
3D volume of control points for FFDs (in contmat to the 2D
mesh of control points for spline surfaces) exacerbates the
difficulties of deciding how an aggregate move should be
performed,

Another approachto an easier and more intuitive inter-
face is the Extended Free-Form Deformation (EFFD) tech-
nique of [6]. WMI EFFDs, the user configures the initial
lattice of control points to the approximate shape of the in-
tended deformation, instead of stming with the FFD’s par-
allelepipedsof control points. EFFDa am quite ellxlive for
creating impressions, reliefs, and other fairly simple defor-
mations that might otherwise be difficult to achieve with
FFDa. However, the user must know the general shape of
the deformationbefore startingto model, andthe interfaceis
atitl a direct representationof the underlying mathematics.

Both FFDs and EFFDs are based on the notion of de-
forming the un&rlying space in which an object lies. ~s
has the advantage that it can be applied to any parametric
or polygomd model, and is therefore not restricted to any
class of objects. On the other hand, the control lattice used
to manipulate the underlying space is not directly related to
the objet%being deformed. ‘l%exefore,a control point that
happens to be close to the surface of the objecl (which is,
afteratl, the focus of the user’s attention)may be farfromthe
object surface after the deformation. Thus, these methods
may surprisea user who doea not understandthe distinction
between the object andthe space in which it lies.

In this paper, we develop a direct manipulation tech-
nique which makes formation and placement of deforma-
tions easier. The essential idea is that the user selects (with
some sort of pointer) a point on an object and then moves
the pointer to a location where that object point should be.

Our technique computes the neasaary alterationto the con-
trol points of the FFD spline that will induce this change.
This alterationis generally underdeterm=, we use a least
squan%approachto select a particularalteration.

me rest of the paperis structuredin 4 sections. Section
2 describes FFDs, and introduces B-spline FFDs. Section 3
describes adirectmanipuhtioninterface to B-splineFFDs, in
which the user describes actions, and these actions are con-
verted into control point displacements that will effect the
actions. Section 4 discusses relatedwork in directmanipula-
tion interfaces,possible applicationsanddirections for future
research. Section 5 aurnmari~ the results of the paper.

2 Free-Form Deformation

The FFD method deforms an object by first assigning to
each of its points within the deformation lattice a set of lo-
cal coordinates The local coordinate system is defined by
a parallelepiped-shaped lattice of control points with axes
defined by the orthogonal vectors s, t,and u, as shown in
Figure 2. All object points within this parallelepipedsare ss-
signed locat cocudinateathrough a mapping applied to their
z yz-cxxwdinateg;we describe this mapping later.

Once the control points aremoved, the new location of
an object point is then determined by a weighted SUMof the
control points. me weights are functions of the load coor-
dinates originally assigned to the point. Hence, a positional
change of thecontrolpoints changes the location of the object
point.

-&t u

8

Figure 2: A lattice of control points. The s, t, and u vectors
define the local coordinate system

In our implementation, the deformation function is a
trivariateB-spline tensor product. We w the B-spline baais
instead of the Bematein polynomials used by Sede@ and
Parry because of the local control properties of B-spiines.
Local control is desirable for both wxthetic value and for
efficient computation with large control point lattices. We
also preferB-splines for its guaranteedcontinuity when any
of its control points are moved, in contrastto, for example,
B&ier splines.
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In summary, then, the deformed position, q, of any
arbitrarypoint with local coordinates, (s, t, u), is given by

o

qi,j,k(g~ ~, ‘) = E
Pi+i,j+~,~+~B/( 9) B~(t)B~(U)

/,m, n=–3

(1)
where Pi,j, ~is the ith, jth, ktkcontrolpoint inthes, t, andu
direction, respectively, and the ES am the B-spline blending
timctions.

In our implementation of PPD we allow both direct
manipulation of the object and manipulation of the control
points. A drawbackof using B-splines is thatthe image of the
B-spline doea not fill the convex hull of the control lattice, if
the controllattice is evenly spaced andall controlpoints have
multiplicity one. We compensate for this by giving the outer
control points of the lattice a multiplicity of three, which
ensures that the image of the B-spline is the convex hull of
the control latth.’ Phantomcontrol points could be used as
well; constmhting their positions guarantees C2 continuity
along the borders. See [3] for more details.

Before the deformation is applied, object points must
that be assigned local (s, t, u) coordinates, as already men-
tioned. When the control lattice is in its initiat position, it
defines aninjective map fromits domainto theconvex hull of
the lattice. Thus each point w within this hull is q(so, b, UO)
for some m, b, w in the parameterspace of the B-spline.
‘l%enumbers so, b, w are the local coordinates we assign.
lb compute them, we must invert the B-spline map. We first
determine the spline segment ~i,j,k that COlltShlS the object
point. Then we compute So, to, and w by explicitly solving
the cubic equations ~l,j,k (SO, i!o, UO) = W.s Note that the
local coordinates need only be computed once for a given
lattice, and not for each deformationcalculation.

3 Direct Manipulation
In this section, we describe an interaction technique that con-
verts a user action of the form “move this point of the object
to there” and finds control point positions that will effecl this
action. We first describe the method in the case where the
user wants to move a single selected object point to a new
position, or turgetpoint. Wethenbuilduponthis techniqueto
describe how multiple selected points can be moved simul-
taneously. Although we demonstrate this method with the
B-spline FFD, it can be used in conjunction with any other
spline basis.

‘If control points sm not displayed at all, then ●ll the control points in
tfIS lattice CM k of multiplicity one, srtd ths rssion dsformcd cm be rcpre-
sctttcdby tftc brxcfsr of ths B-splintinmgs.‘lkiasintplifks tfts &formation
s+mtion, snd ths Mtsr portion of section 3.I cur bc diamisscd.

s~mml -t findingisneeded only for the outer two scsmcnts due to

the tripling of control points at tk borders. Othcrwk, (SO, to, W) can be
found by the position of the object point in relation to the segments that
contain it directty, M WMdone in the original PFD paper [ 15].

3.1 Single point constraint

Aa the user moves a target point our goal is to contigutv
the control points such that the deformed location of the se-
lected point matches the target point location. TMs problem
is underdeterrnined; there are many control-point configu-
rations that will yield the same deformed location for the
selected point. One obvious, but not very usefid, solution is
to simply translate all the control points by the target point’s
translation. Another solution is to choose the nearest control
point and translate it until the target point reaches the desired
location. A more natural solution is one that move, the con-
trol points the least (in the least-squarea sense). The blending
functions of Equation(1) assign weights to the control points
for a given target point. ‘Ilw closer the control point is to the
targetpointthegreatertheweight,or influam, thecontrol
pointhas. By using a least squareasolution, ‘controlpoints
aremoved such thatthe resultingsurface reachesits intended
destination while the el%ct of the deformation smoothly ta-
pers off. This effect provides predictable and physically
intuitive behavior. We begin with some tinear atgebra.

Recall from Equation (1) that the deformed object point
location, q, is a linear fimction of 64 control points, P, which
can bevnittenin matrix formasq =BP, where Bisasingle
row matrix of the blending functions, and P is an 64 x 3
array whose rows are control point coordinates. (Henceforth
we write coordinates of all points as row vectors.) A new
location for the point q, q.,W, is then q..W = B(P + AP),
or

Aq = BAP (2)

where AP is the change in position of the control points and
Aq is the change in position of the object point. We me given
Aq (the difference between the target point and the selected
point), and wish to fmd a value of AP satisfying Equation 2.
To do this we use the pseudoinverse (often referredto as the
generalized inverse) B+ of B.

Digression on Paeudoinverses Oiven a system of tinear
equations y = Bx, the pseudoinverse B+ is a maaix when
w = B+ y is the best solution, in the least squares sense,
to the system of equations, (i.e., for which IlBb – yl I is
minimkdand I[xoll isassmall aspoasible [12]). Thepaeu-
doinverse is computed by fimtrepresentingthem x n matrix
Bintheform B= CD, where Cismx kand Diskxn, so
thatall three matrices B, C,and Dhave rank k.l%e general
formula for the pseudoinverse B+ of B is then given by

B+ ==CT(CCT)-l (DTD)-l DT (3)

This formulacan be used forboth underdete3minedand
over-determinedsystems of equations. When the problemis
under-determined,as with the single targetpoint constrm“nt,
only (DTD)- ‘DT is needed to compute the paeudoinverae,
and B = D. 14cewise, the paeudoinveme for the over-
determined case is computed by CT(CCT)-l. (DDT)-*
reduces to 1/llD 112,and the paeudoinveme of the single-row
matrix B can now be found by the equation
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1 ~TB+=—
IIJM2

(4)

(end of digression).
Once the pseudoinverse of B is determined, the change

in position of the control points baaed on the movement of
the targetpoint can be expressed as

AP = B+Aq (5)

Because thepseudoinveraegives a least-squaressolution, the
change in control point positions is mhimkd.

This solution, however, applies only when all control
points me allowed to move independently. Recall from SeG
tion 2 that in our implementation the control points on the
outer bcmlerhave a multiplicity of three, and thereforemust
be coincident. ‘lb formulate the pseudoinverse equation to
reflect this constraint, a matrimS, which selects the proper
control point position is added to Equation (2), so that the
deformed object point location is deiined by

Aq = BSAP (6)

Thematrix S is the identity m- if all control points are
allowed to move freely. Control points that must be coin-
cident with one another have the one in their row shifted
to the column that corresponds to the control point it must
fotlow. For example, in the one-dimensional bordercase, if
P = [p-2p-lpopl]T, where p-zand p-1 ammquimdtobe
coincident with PO(i.e., POhaa a multiplicity of three), then

[1
0010

s=
0010
0010
0001

The equation for the pseudoinveme (BS)+ is

(BS)+ = (DS)T(DSSTDT)-l (7)

Foretliciency, S can be compmwed to a vector, and B+
need be computed only once for a given targetpoint.

3.2 Multiple target point constraints

l%esametechniqueis usedto moveseveralselectedpoints
to newtargetssimultaneously.Precisecontrol over shaping
objectsbecomes easier. Whenthemultiple selected points are
independent(i.e., when they shareno controlpoints), solving
forcontrolpoint position is a straightforwardextensionof the
single targetpoint method.

Whenselected points aminfluencedby the same control
point, the system of equations must be designed so thateach
control point only appearsonce in the arrayP. ‘he number
of columns of B is the number of distinct control points
aflkcdng the selected points. The number of rows of B will
be the numberof targetpoints. In a one-dimensional analog
of this situation, if we want to move two selected points that

180

sharethreecontrol points, thenthedimensionof B is 2 x 5
and P would list 5 control points. The blending functions
in B are arrangedin accordance to the listing of the control
points. In this example, the equation becomes

[Pol

LP4J

whexe q. is kcted by control points O-3 and ql is affected

by controlpoints 1-4, and b; are the blending functions used
to compute the location of the ith selected point.

Once again, the pseudoinverse of B is calculatedusing
Equation3 andthe new controlpoint locations aredetermined
by Equation 5. Figures 3 to 5 show how multiple constraints
can quickly effect a change in the shape of an object.

As more target points are added, the problem can be-
come overdetermined. Forexample, if a usertriesto createa
wavy surface with more undulations than is possible to gen-
erate with the given B-spline, then the pseudoinverse can-
not provide a complete solution. ‘l’he pseudoinverse has,
however, the property of providing the solution with the
least squared error, which is the best solution considering
the given constraints. Futiermore, the failure to move the
selected points to the target points can be quantiti, huge
errorssuggest to the user the need to use a B-spline with a
finer mesh.

4 Discussion
4.1 Other direct manipulation techniques

Directmanipulation has long been used as a 3D modeling
technique forpolygonal meshes [13]. However, we find that
coupling the free-formdeformationtechniquewith M ma-
nipulation is a richermodeling tool with several advantages
over polygonat and purely spline-baaed modeling methods.
FFDs work independently of the underlyingdatastructureof
the object being deformed, and henca can be applied to any
parametricorpolygonal model. An implication of this is that
FFDs are %solution” independent. Complex objects can be
modeled in real-time by rendering them in low resolution,
which can laterbe renderedathigh resolution using the same
deformationdescription. Though a procedurallanguage may
provide similar capabilities for a polygonat modeler, some
restrictionsapply. For example, vertices moved by the user
in one level of mesh refinement must have a corresponding,
coincident vetiex in every otherlevel of m6nement [1].

Since the FFD technique &forms the spaa within it,
another advantage is that the same description can be used
for several objects. The deformation is dependent on the
relative position of the control points. ‘Ilw control pointa
undergo rigid transformationsand scaling without at%cting
the general shape of the deformation, which is useful when
applying the same deformationdefinition to objects of dMer-
ent aim. If more than one object lies within the deformation
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space, the deformationcan be applied to all objects, preserv-
ing automatically theirrelative position and spacing.

Recent developments have been made in the direct ma-
nipulation of B-splinea. Forsey and Bartels allow direct ma-
nipulation of hierarchical B-spline surfaces [9], but only at
the B-spline joints, severely limiting the possible shapea that
can be formed. The method was extended by Bartels and
Beatty to manipulate spline cmves at arbitrary points [2].
Their method is based on the Householder transformation,
which computes a weighting function that relates positional
changes in the target point to positional changes in the con-
trol points. In [10], Fowler and Bartels have extended the
technique to include the manipulation of the first and second
derivatives of the function at an arbitrary point as well.

Recently, [16] independently developed a system for
direct manipulation of B-spline surfaces, based on their dif-
ferential manipulation technique. This technique uses the Ja-
cobian to “suggest” the direction of movement, and through
least square projection uses the inverse of the Jacobian to

solve for the position of the control points. Though this
method for direct manipulation is similar to the method pre-
sented in this paper, it is applied only to B-spline surfaces. In
contrast, the method described in this paper merely requires
that the substrate in which the model lives (namely 3-space)
be the image of a 3D spIine; this is a property of the substrate
and not of the model, and hence lets the technique apply to
all polygonal models as well. Also, since our FFD technique
is an “indirect” method of modeling, lattices of diffenmt size
and resolution can be used on the same object to create a
multitude of different curvatures.

4.2 Application

In addition to modeling static models, the direu manipula-
tion technique can automate some forms of animated defor-
mations. For instance, the technique can be used to simulate
“Play-Doh@b physics:’ where objects deform when they are
pressed against other objects, but without the complexities of
simulating momentum transfer and non-rigid behavior. TM
level of simulation is usethl to animators who want full object
motion control, while still desiring automatic deformation in
response to interpenetration or object collisions. In addition,
this technique could be used to construct the finat deforma-
tion lattices for Animated Free-Form Deformations (AFFD)
[7]. In general, direct manipulation could W easily incorpo-
rated into EFFD (which AFFD is based upon) as a means for
interactive shape control.

4.3 Future Research

Though the general technique for dhect manipulation of free-
form deformations has been implemented, further research
is needed to provide a complete and robust user interface.
Intuitive and easy to use techniques for moving aggregates

6~ay.~h iB~ ~giB@~ tr~mti of Tonka Corporation. It is a soft

modeling compound similar to clay.

of object points are needed. Some widgets we have devel-
oped am based on the idea of using a magnet or suction cup
to move several points at a time [11]. It would be desirable
for users (especially naive users) not to deal with control
points at all. The proper metaphors for controlling the reso-
lution of the lattice of control points and the spacing between
the points must therefore be developed. Other aids, such as
highlighting the area affected by the deformation can con-
vey information that was previously conveyed by displaying
control points. In general, a comprehensive metaphor needs
to be developed to fully hide the details of the FFD technique
and make the interface as transparent as possible. Creating
a metaphor that is both believable and general enough to
encompass all operations is a difficult task and will require
tkher study [4]. We envision an environment where users
will be able to sculpt objects using a Dataglove-tike input
device. The finger tips, digits, and palm of the hand will be
tracked to offset selected points in a matleable object, with

smooth valleys and hills attained by the FFD operation. Dif-
ferent elasticities can be assigned to the object by varying the
resolution of the control-point lattice. Perhaps a metaphor
of molten metal or glass may be appropriate, where a blow
torch and cold air am used to heat and cool the object to
give it different molding properties. By making modeling as
natural as poaaibIe, or by imitating the ways it is done in the
real world, a greater number of users can be reached and an
increase in expressiveness in modeling attained.

WM the technique described in this paper, there are oc-
casions when the user can create over-mwtrained situations,
and although the resulting solution has the minimum error it
may not be what the user expects. A more gracious solution
needs to be found, perhaps one that reconfigures the lattice of
control points automatically, without disturbing the previous
deformations.

5 Conclusion
With direct manipulation, using FFDs for modeling complex
objects becomes more intuitive. Better control over the shape
and placement of the deformation is gained. By eliminating
the need to display control points (and its associated control
lattice) the interface is more transparent, allowing the user to
concentrate on his or her work. WM the proper metaphor,
users no longer need to understand splint%in order to use this
powerful modeling tool. By adding greater control over how
an object is shaped, new modeling paradigms and environ-
ments can be explored.
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Figure 3: An example  of multiple constraints.  The red and
white object  is a deformation  tool  which projects  all points
which lie within it against the red plane.

Figure 5: The results  of the deformation at a higher resolu-
tion.

Figure 4: The deformation  is created  by positioning the con-
trol points  according to the displacement  of several  of the
vertices  of the green object.

Figure  6: A ring with prongs  shaped  by free-form  defonna-
tion.
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Figure 7: A close-up of the prongs  in the ring. Figure 9: An intermediate  stage  of the gargoyle  bust.

Figure 8: An elongated  sphere is used  as the foundation  for
a gargoyle  bust. The resolution  of the deformation  lattice  is
20x20x20.

Figure  10: The resulting  gargoyle  bust. The entire model,
except  for the eyes, was modeled  using the f&e-form  defor-
mation  modeling technique  with direct  manipulation.
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