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Abstract

Single view sketch-based modelers like SKETCH and Teddy can be powerful tools, but sometimes their inferences
are inadequate: in Teddy, for example, if one draws an animal shape, the centerline of the tail will always lie in
a plane rather than being curved in 3D. In these cases, multiple-view sketching seems like a reasonable solution:
a single sketch gets viewed from a new direction, in which further sketching modifies the shape in a way that’s
consistent with the original sketch. This paper describes a testbed implementation of such a multi-view sketching
approach, based on epipolar lines, which is used for multi-view editing of the “backbone” lines for generalized
cylinders. The method works well on many objects—particularly those where precise geometry is not important,
but general shape and form must be richer than those with planar symmetry— but is difficult to use in other
cases; some difficulties may be related to implementation choices, but we believe that the main problems are tied
to the underlying approach, which while mathematically sound proves to be cognitively difficult. We analyze the
limitations, and suggest approaches for future work in multi-view sketch-based modeling.
Key words: Sketch-based interfaces, shape modeling.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Modeling packages

1. Introduction

The sketching of 3D shape is becoming a well-studied area,
as evidenced by the existence of the present workshop. For
smooth shapes, some of the most promising work starts from
a sketch of the silhouette of a shape and guesses the 3D ge-
ometry through one algorithmic process or another. For lin-
ear forms — curves in 3-space — one starts with a projec-
tion of the form into some plane and tries to infer 3D shape.
All methods must address the fundamental fact that multiple
shapes may have identical projections, so no single solution
will be right every time. Because a second view of an object
very often resolves the ambiguities introduced by projection,
it seems as if a second sketch, from a different perspective,
might be a useful tool.

We’ve built a simple multi-view sketching system to test
this idea. Our system is designed to support the construction
of curves (“backbones”) along which generalized cylinders
are extruded. The user draws the backbone from one point of
view, redraws it from another, and the constraints of epipolar

geometry are used to find the curve matching both sketches
as closely as possible.

The method works well for certain simple forms, but is
difficult to use in more complex cases. The problems are
partly algorithmic — our simple method for matching points
on the two sketches cannot handle difficult cases — but we
also believe that the technique itself is fundamentally diffi-
cult to work with, in part because of the unexpected appear-
ance of intermediate views. We discuss the successes and
failures of the method, and ideas for future work.

2. Related work

Epipolar geometry has been used to reconstruct scenes
in which one can determine point correspondences be-
tween multiple views (typically photographs); much of the
work in image-based rendering starts from this point of
view [MB95, Che95].

Many authors have discussed the issue of inferring shape
from 2D marks drawn by a user; approaches vary from
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Figure 1: Given an object point P, two pinhole cameras with
the optical centers C1 and C2, and two image planes, we can
define an epipolar plane (C1,C2,P), two epipoles E1 and E2
(the points of intersection of the line (C1,C2) with the image
planes) and two epipolar lines (shown in orange).

gesture-based systems like Sketch [ZHH96], in which 3D
information is part of the gesture’s interpretation, to ad hoc
inflation algorithms like the “elliptical cross-sections over
the chordal axis” of Teddy [IMT99], to constraint-based in-
ference engines in which patterns in the marks (such as par-
allel lines or perpendicular lines) are used as constraints on
the 3D reconstruction process, to systems in which external
information like “shadows” can be used to resolve some am-
biguities in a shape [CMZ∗99].

Describing generalized cylinders by a shape that varies
along a backbone curve is by now a standard topic in
computer-aided design, well-covered in any textbook; the
only (slight) novelty in our formulation is the use of Bishop’s
framing of a curve [Bis75].

3. Multi-view 3D curve sketching with epipolar
constraints

We now describe our simple multi-view editing system, and
the typical user-interaction with the system, but we begin
with a quick review of the relevant epipolar geometry.

3.1. Epipolar geometry

Consider two images of the same object taken by two differ-
ent pinhole cameras with centers at C1 and C2 . For each
point P on the object, there is an epipolar plane passing
through the centers C1, C2 and P (see figure 1).

The lines formed by the intersection of this plane with
two image planes are called epipolar lines. Each epipolar
line is a projection of the ray connecting the object point
with the other camera position onto the current image plane.
Intuitively, one can think of an epipolar line as a line along
which we can move the projection point in the second image
while preserving its projection on the first image.

We can determine the 3D position of a point P by sketch-
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Figure 2: Sketching a 3D curve using epipolar constraints: a
user draws a red line on the left image plane to create a black
3D curve; then she can modify the shape of the black curve
by drawing its green projection from a different point of view
(on the right image plane). The green curve is projected onto
epipolar lines (that are shown in orange and intersect at the
epipole E2). As a result, a blue 3D curve is created. The pro-
jection of this final blue 3D curve onto the left image plane
remained unchanged because of the epipolar constraints.

ing it from two points of view. Only by making the restric-
tion that the second “sketch” of the point P lies on the epipo-
lar line defined by the first camera position can we guar-
antee that the resulting 3D position of P will be consistent
with both views. This idea forms the basis for our multi-view
sketching system.

3.2. Multi-view sketching: the user perspective

These simple observations about epipolar geometry above
lead us to an interface for 3D curve sketching, where a user
is given epipolar lines as a guide for modifying the curve
from a different point of view (see figure 2). We added this
interface to our previous system [KHR02] for drawing free-
form animals, and found it to be particularly useful for cre-
ating a variety of animal tails and other objects whose shape
can be represented by generalized cylinders.

A user typically carries out the following steps (see fig-
ure 3):

1. The user rotates the virtual camera with the right mouse
button and draws a curve (by dragging the mouse) from
any point of view. The user stroke is projected on the
plane passing through the world origin and perpendicu-
lar to the look vector of the virtual camera.

2. When the user starts rotating the virtual camera to find
another view from which to redraw the curve, the system
displays the segments of epipolar lines — yellow seg-
ments passing through each point of the curve — that
serve as a sketching guide.

3. As the user redraws the curve from a new point of view,
the new stroke gets projected on the epipolar lines.
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Figure 3: (a) A user draws a curve on the image plane. (b)
When the virtual camera is rotated, epipolar lines appear
as yellow segments at each point of the stroke. (c) The user
redraws the selected curve from a new point of view by in-
puting a new green stroke. (d) A new stroke is projected on
the epipolar lines and the coordinates of the points of the
original curve are updated to satisfy new constraints. (e)
The resulting curve from a different angle - notice that new
epipolar lines are calculated for each point of the new curve.

4. Once the redraw operation is complete and the user ro-
tates the virtual camera again, the epipolar lines are up-
dated — they become projections of the rays connecting
the previous eye point with the stroke points onto the cur-
rent image plane. We only keep track of the most recent
previous camera position, so the modification of the curve
in the current view will only be consistent with the curve
projection in the view last used for sketching. The user
repeats steps 3 and 4 till a satisfactory result is achieved.

In addition to redrawing, the user can perform the follow-
ing operations:

• Select and move individual points or segments of the
curve along the epipolar lines.

• Select a stroke and translate it along the epipolar lines.

• Place the curves in a hierarchy by attaching them to one
another (useful if the user wants to create a wireframe
chair, for example).

• “Shear” the stroke by dragging just one of the points. A
stroke with the end points A and B can be modified by
dragging any intermediate point C along the correspond-
ing epipolar line. The end points A and B will remain fixed
and positions of all the points in between will be calcu-
lated as the intersections of the plane defined by (A, B, C)
and the corresponding epipolar lines.

In practice, we found the “redraw” operation to be the most
useful and intuitive.

For each segment of the newly redrawn stroke we need to
decide which epipolar line to project it to, because normally
it would intersect more than one epipolar line. The algorithm
we are currently using is the following:

1. Consider the first segment of the stroke and check
whether it intersects the epipolar line corresponding to
the first point of the old stroke. If it does not, check inter-
section with the epipolar line corresponding to the second
point of the old stroke, then third, etc.

2. Assume that the segment with the index i− 1 was pro-
jected onto epipolar line with the index j. Then, for a
segment with the index i, search for the first epipolar line
it intersects starting with epipolar line indexed j +1.

3. Skip the point if the corresponding segment does not in-
tersect any epipolar lines satisfying the criteria above.

This simple algorithm seems to work moderately well for
curves with relatively low curvature; its drawbacks are dis-
cussed below.

After the desired backbone curve is obtained, a user can
select two planes perpendicular to the curve and draw cross-
section strokes on them; these are then interpolated along
the axis to construct the generalized cylinder. To do that, the
user clicks near some point on the backbone curve, and a
small gray semi-transparent square shows up at this point
perpendicular to the curve segment (figure 4). This is the
“plane” on which the user can draw a cross-section stroke.
The virtual camera (or the curve) can be rotated to adjust the
view in such a way that the “plane” is approximately parallel
to the view plane. It is the most convenient view to draw a
cross-section stroke as there are no distortions as the stroke
gets projected onto the “plane” (as the user draws it).

The second cross-section stroke is drawn in the same man-
ner. The system also allows the user to draw just one cross-
section; in this case its scaled or non-scaled copy is propa-
gated along the curve. In any case, once two cross-sections
are specified, the system needs to interpolate the intermedi-
ate cross-section strokes between them.

3.3. Interpolation between the cross-sections

To interpolate between cross-sections, we need a continu-
ous framing of the curve, i.e., a basis for the plane nor-
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Figure 4: The Bishop framing along the curve. The blue and
green lines are the two vectors of the Bishop frame; the red
lines are in the direction of the tangent vectors. Notice that
the Bishop frame is continuous even at the inflection between
the two bends.

mal to the curve at each point, but one which changes con-
tinuously. The normal and binormal vectors of the Frenet
frame [MP77] [DC76] almost work, but at points where
the curvature is zero, the normal is undefined, and in prac-
tice often “flips” to its negative. The Bishop framing of a
curve [Bis75], however, works fine (see figure 4). It is de-
fined by first picking a single unit vector B1(0) which is
orthogonal to the unit tangent vector T (0) there, and then
extending B1 along the curve by the rule that B′

1(t) is a lin-
ear combination of B1(t) and T (t). The second vector in
the frame of the tangent plane is then simply defined by
B2(t) = T (t) × B1(t). For a polyhedral curve, the vector
B1(t) changes only at vertices; at vertices it is changed by
applying the rotation M that rotates the previous edge direc-
tion into the next edge direction by a rotation about an axis
determined by their cross-product. When the angle between
the two direction vectors is zero, the axis is undefined, but
the rotation amount is zero, so one uses the identity matrix
for M. The sole constraint on this process is that no two se-
quential edge-vectors of the polyhedral curve be in exactly
opposite directions.

With this Bishop framing of the curve, we can interpolate
cross-sections easily: we take the starting and ending cross-
sections and represent each in the coordinate system of the
Bishop frame at the corresponding point; we then interpolate
between the cross-section drawings, and place the interpo-
lated cross-sections at the corresponding points of the curve,

using the Bishop frame as a coordinate system. In our testbed
system, the interiors of cross-section curves are restricted
to be star-shaped with respect to the origin: a ray from the
origin in direction θ must intersect the curve at a single
point whose distance from the origin is called r(θ). We then
interpolate the curves by interpolating between the associ-
ated r-functions. More sophisticated approaches, based on
2D curve morphing ([AMZ99], [SG92]), are possible, but
were not germane to the testing of the epipolar-manipulation
method, so we did not implement them.

3.4. Typical results

Figure 5 shows how our system can be used to model a
shape like that of the wire that trails behind the Luxo lamp
in “Luxo, Jr.”. The curve has a wavy shape in the xy-plane
and a bump in the xz-plane; constructing such a curve in
Teddy or similar systems would be cumbersome. Figure 6
demonstrates the various tails (with different backbones and
cross-sections) that can be created. The mouse and the mon-
key were generated using our previously presented free-form
sketching system [KHR02]. The new interface for sketching
with epipolar constraints fits well in the existing framework.
By default, a ”blob” (a node in the scenegraph containing
a blob-shaped object) is created whenever a user draws a
stroke, but the user can press a key to activate “curve sketch-
ing with epipolar constraints” mode. After the editing of the
curve is complete and cross-sections are inputted, the re-
sulting generalized cylinder becomes a “blob” and can be
selected, transformed, inserted into a hierarchy and merged
with the other blobs as described in the paper [KHR02]. The
system is interactive and the interface allows simple shapes
to be created in a couple of minutes.

3.5. Problems/ limitations

Figure 7 demonstrates the case on which “redraw” opera-
tion fails. Assume that a flat spiral curve was drawn in the
xz-plane and a user wants to add torsion to this flat curve in
y, to create a three-dimensional spiral curve. When a virtual
camera is rotated to any intuitive view for the “redraw” oper-
ation, the epipolar lines obstruct the view of each other and
confuse the user rather than help. When the user attempts
the “redraw” operation, the system does not project a newly
drawn stroke on epipolar lines correctly, because it is not
clear which point matches which epipolar line. A better algo-
rithm for matching two sketches drawn from different points
of view might make the modeling of curves with high curva-
ture easier.

3.6. Simple geometry editing

Suppose that a user wants to draw a simple shape, like the
back and seat of a chair; both the back and seat are rectangu-
lar, and they are at 90 degrees to one another. Figure 8 shows
the process the user employs in the epipolar editing system.
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Figure 5: A generalized cylinder in a shape like that of Luxo,
Jr.’s power cord; the small vertical bump is in a different
plane from the main curvature of the cord.

First the user draws the back and seat, but as she rotates the
view, it becomes clear that the seat, rather than sticking out
towards the user, is actually a parallelogram lying in the first
view-plane. It proves to be difficult to get the seat to be per-
pendicular to the back by re-sketching the sides of the seat.
The only view in which this would be easy is one that looks
along the edge joining the seat and back . . . but in that view,
one cannot properly sketch the new position of the seat! The
user tries to do it by using the “shear” operation: the stroke
corresponding to the seat of the chair is selected and one of
the corners is dragged along the epipolar line in a new view
to shear the seat and make it perpendicular to the back of
the chair. Unfortunately, shearing is not very intuitive and it
is hard to adjust the seat and the back of the chair from just
one attempt.

From situations like this, it becomes clear that although
a pair of views may completely determine the shape of an
object, that determination depends critically on the relative
view directions and the orientation of the object itself; a user
with a casual camera-positioning tool may not be able to de-
termine how these are related and what the eventual conse-
quences of her actions will be.

4. Discussion and future work

Epipolar-based multi-view sketching might prove, in its cur-
rent form, to be a useful tool in a larger collection of meth-
ods, but one would probably not want to build a system
based on this idea alone. On the other hand, there may be

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 6: Examples of the generated generalized cylinders.
(a)-(b) The lizard’s tail is generated from two cross-sections
that are a morph between a circle and a triangle. (c)-(d)
The mouse tail is created from two circular cross-sections.
(e)-(f) This generalized cylinder shows off the interpolation
between flower-shaped and circular cross-sections. (g) The
monkey’s tail has a simple circular cross-section.

ways to improve the method by making cleverer guesses of
the meaning of the sketch in the first view - there’s no partic-
ular reason to infer that this sketch is planar, for instance. In
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Figure 7: (a) Assume that the following flat spiral curve was
drawn in the bottom plane (xz-plane) and a user wants to
add torsion to this flat curve in y. (b) When the virtual cam-
era is rotated to the most intuitive view for “redraw” op-
eration, the system cannot project a newly drawn stroke on
the epipolar lines because it is unclear which point matches
which epipolar line.

this section, we discuss the limitations and possibilities for
future work on this topic.

Despite the “obviousness” of multi-view sketching, it is
surprisingly hard to use in practice. Why is this? The prob-
lem, in cases like the spiral above, is partly due to the
simplicity of our matching-and-reconstruction algorithm. If
it were easier to indicate which points in the new sketch
matched which ones in the old sketch, some of these prob-
lems would be resolved. But it is part of the nature of sketch-
ing that we want to make informal drawings, not spend
time precisely indicating correspondences. Furthermore, for
views that are nearly parallel, the sensitivity of the recon-
struction to small changes in the input can be enormous —
multi-view sketching works best for nearly orthogonal pairs
of views.

As the “chair” example demonstrates, there’s a further
problem: as the user sketches the back and seat of the chair,
she has a clear 3-dimensional idea of what she has drawn.
But as the view is rotated, this notion becomes untenable,
and the world must be readjusted to make the notion valid
again. This cognitive dissonance — between what the user
“knew” that she’d drawn and what she sees as the result —
makes the user’s task one of “fixing the world” rather than

(a) (b)

(c) (d)

(e) (f)

Figure 8: (a) The user has drawn the back of a chair (as
a rectangle) and its seat (as a parallelogram). (b) When
the user views it from a new direction, it is clear that the
back and seat are actually coplanar. (c)-(d) The user tries to
modify the seat in this new view by using a shear operation
to make them actually perpendicular, but (e)-(f) the results,
seen from another view, show that, although the seat and the
back of the chair are not coplanar anymore, they are still not
at 90 degrees to one another.

“saying what she knows.” We suspect that it is this aspect
of the experience that most makes our multi-view sketching
awkward. Of course, the problem mentioned in describing
the chair construction is relevant as well: the particulars of
the relationship between two views may have a large effect
on the result of a multi-view drawing, but these particulars
are difficult for a user to determine, and their effects may not
be at all obvious.

The depth-inference used in our system is the simplest
possible: all strokes are assumed to be in the view plane
until they’re redrawn from a new view. If we used some
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more sophisticated inference like Lipson’s geometric con-
straints [LS97], the rotated view might be less jarring, as it
would be only slightly unexpected rather than totally unex-
pected. Of course, if the user intended to draw a square and
diamond in the same plane, the rotated view would be more
jarring in the latter case. This naturally leads one to consider
the question “Which is more likely?” It may be that a prob-
abilistic formulation of the problem could form the basis for
a fruitful approach. For 3D curve sketching, for instance, it
is conceivable that one could create a reasonable prior on
curves and then ask for a maximum likelihood estimate of
the curve drawn, given that its projection must match the
drawing.

The sensitivity of the curve reconstruction when the views
are near-parallel hints at a more general problem: since it is
difficult to draw the same object from two different views
and have the two drawings be consistent, is there a way to
treat the two drawings as each providing evidence about the
shape rather than absolute constraints?

When we consider a related problem — how to perform
multi-view sketching of blobby models like those supported
by Teddy — we see the issue arise again: if we draw the
shape viewed along the z- and x-axes, the y-extent in both
views must be the same. And yet a human has no problem
in resolving two apparently inconsistent drawings to infer a
3D form, even if the heights of the drawings are slightly dif-
ferent. Once again, a probabilistic formulation may provide
a solution: if one treats the drawings as noisy evidence about
the shape, some sort of maximum likelihood estimate of the
shape (with respect to a prior distribution) may be a good
way to infer the shape. Of course, the correct prior is un-
known, and depends on the class of shapes being sketched:
the shapes of man-made and natural objects evidently have
quite different distributions!
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