RAPID APPROXIMATE SILHOUETTE RENDERING OF IMPLICIT
SURFACES

Dauvid J. Bremer and John F. Hughes

Department of Computer Science
Box 1910
Brown University
Providence, RI 02912
{djb,jfh}@cs.brown.edu

ABSTRACT

We describe a method for rapidly producing a non-
photorealistic rendering of an implicit surface. The
rendering includes silhouettes and some shading near
silhouettes to help indicate curvature. The method
identifies silhouettes probabilistically, but we include
strategies to make it likely that we find all silhouette
curves, especially in multiple-frame sequences. The
method is approximate, in the sense that the silhou-
ette curves may suffer some position error; the de-
gree of approximation is determined in part by an
adjustable parameter to a curve-tracing method, al-
lowing a tradeoff of accuracy against speed.

1. SILHOUETTE RENDERING

Inspired by non-photorealistic rendering (NPR) tech-
niques [9, 10, 3, 14, 11, 13, 7], especially interac-
tive NPR, for rapid display of complex polyhedral ob-
jects [7], we applied an alternative style of rendering
to implicit surfaces.

Our basic approach concentrates computational
resources on drawing the surface’s silhouette quickly
and accurately from a given viewpoint, with hidden
lines removed. Additionally, a little curvature infor-
mation is displayed near the silhouette and on the
interior of the rendering. Example results of the al-
gorithm, showing off the available features, are shown
in Figure 1.

While standard rendering techniques require that
at least the entire surface, if not a whole 3D volume,
be traversed to make a rendering, our silhouette edge-
drawing approach needs only to trace the silhouette
curve or curves, allowing the rendering to take place
much faster, and/or to be done more carefully than,
say, a rough polygonization. With this algorithm,
good rendering can often occur at interactive or near-
interactive rates.

This new approach makes good use of computa-
tional resources. Although we draw only a few lines
on the screen to represent a whole surface, we are

Figure 1: Several models rendered with our non-
photorealistic renderer. (a) A bunny, in the modeler. (b)
The bunny rendered without the modeling aids. (c) A
duck. (d) A “vase.”

Figure 2: The effects of failing to removing occluded sil-
houettes on our bunny model.

giving the eye the visual cues which seem most im-
portant to it in perceiving shape. These cues are the
position and size of each part of the object relative to
others, as well as a bit of curvature information near
the silhouettes and across the whole surface. The
silhouette lines provide a way to distinguish the sur-
face from the background and to show a little of the
surface’s shape, with relatively little computational
effort. In addition, occluded portions of silhouette
edges are culled, because occlusion is among the most
important cues our visual system gets regarding the
position of parts of the surface relative to one an-
other. It seems that everyone realizes from an early
age that if one part of an object is in front of another,
the closer part occludes the farther [6, 5], so we felt
it absolutely necessary to cull out occluded parts of
the silhouette. See Figure 2. In addition, we show
a little information about the surface curvature near
the silhouette and on the interior of the rendering. It
does give a little shape from shading, which is filled
in slowly instead of immediately.

For small models, our algorithm’s rendering speed
is comparable to that of a coarse polygonizer or point
renderer, such as the one shown by Stander and Hart
[12]. For large models the algorithm should prove
to be asymptotically faster, although no longer real-
time. For similar reasons, our algorithm would also be
asymptotically faster than a volume renderer, which
must traverse a whole 3D volume, or at least the
whole surface, before producing an image. Because
of the asymptotic difference in rendering time, fu-
ture research might focus on better methods of fairly
fast non-interactive rendering of complex implicit sur-
faces.

2. PREVIOUS WORK

As mentioned to earlier, our work was primarily in-
spired by recent work in non-photorealistic render-
ing (NPR). NPR in general describes any method of
drawing a simple abstraction of a complex model in
order to highlight important details, or to add extra
information or feeling [13]. There are at least two big
benefits to rendering this way. The first is the per-
ceptual gain—being able to get more information or
feeling from an image or series of images. The other
is related to efficiency—we can sometimes save compu-
tational expense by computing and rendering only a
select portion of a model which is felt to be the most
important. Since implicit surfaces are expensive to
render at all, we focused on using NPR to make the
algorithm fast. Future work in the other area might
include shading the whole surface in an expressive
way, such as with a pen-and-ink style, and providing
a visual way to identify cusps, singularities, or other
interesting parts of the model.

Our work was directly inspired by Markosian et
al. [7] who produce real-time silhouette-renderings of
a polygonal model. After seeing that work, we tried
to adapt the idea of rendering only outlines to the
problem of implicit surface rendering.

But that work was not the first to produce line
drawings of surfaces. An early line drawing applica-
tion was developed by Scott Roth [8]. It draws just
object outlines, but does so with a ray-tracing algo-
rithm. Similarly, it was developed to give a speed
improvement over regular ray-tracing, which it ob-
tains because it is not required to evaluate lighting
equations. Unlike the other work, it was designed
to operate on CSG models constructed from a few
implicitly defined primitive shapes (cubes, spheres,
cones, and cylinders).

Dobkin et al. [4] have developed an algorithm that
will trace implicit sets of functions from R" to R*;
if we take our implicit function f from R3 to R, its
gradient V f, and the view direction v, we can create
a new function

g:R* >R :x = (f(x),VI(x)-v);

The inverse image of (0,0) under g is exactly the sil-
houette set that we compute here. The primary dif-
ferences in our approaches are that (a) we do occlu-
sion testing and some shading of the surface, which
is not possible with the results of the Dobkin et al.
algorithm, and (b) we work with the function f, and
assume that both it and its first two derivatives are
available, whereas Dobkin et al. work with a fixed-
resolution piecewise-linear approximation. In the lan-
guage of that paper, we taken an “infinitesimal” ap-
proach and they take a “local” approach. Nonethe-
less, their ideas could easily be adapted for the “trac-
ing” portion of this work; we could then use our meth-
ods for the occlusion testing and the shading portions.

As a side note, there is a rendering style called
contour line drawing which bears a superficial resem-
blance to ours. This method slices planes through
the implicit surface and draws the curves formed by
the intersection [2]. The big difference between that
method and ours is that it uses curves across the
whole surface, in order to show the surface shape,
whereas ours draws far fewer curves and does so just
to indicate the surface’s outline.

3. THE ALGORITHM

3.1. Overview

We need algorithms to find the silhouette edges and
information for shading, to test the edges for occlu-
sion, and to draw the edges and shading informa-
tion. However, if while examining the model the user
pauses for a moment, the algorithm need not waste
time recomputing silhouettes.

Figure 3 shows the process schematically. The
pseudocode is as follows:

For each frame
If the camera moved or model changed
Find new silh. edges and shading info
Test edge sections for occlusion
Draw the edges and shading strokes
Else
Look for missed edges and shading info

Draw all edges and shading strokes

3.2. Notation and assumptions

We assume that the surface model, S, that we are
rendering is the zero-set of a twice continuously dif-
ferentiable function f on R3. To make the explana-
tion simpler, suppose that the solid bounded by the
surface is the region in which f < 0, which causes
gradients to point away from the surface rather than
inward.

In order to make the algorithm work with a wide
variety of model representations, it treats the implicit
function defining the model as a “black box” from
which it only needs to be able to get, at any point, the
function value, the gradient, and the Hessian (matrix
of second derivatives) of the function.

We further assume that the virtual camera is or-
thographic with view direction v, that all points on
the film plane are outside the object (i.e., f > 0 on
the film plane), and that the surface S lies entirely
within some known region of space (a sphere of ra-
dius 20 about the origin in our particular implemen-
tation).

We denote points and vectors by boldface letters;
the point x has coordinates z, 2 and xs.

Film Plane

Silhouette Finding

Silhouette Tracing

Figure 3: Rays from the film plane are traced along the
view direction until they hit the surface. Then we trace in
the direction of the view-plane projection of the gradient
to try to find a silhouette. Once one is found, we trace
along it.

We also assume, to make ray-surface intersection
easier, that there is a constant K > 0 such that at
every point x, the gradient of f,

V109 = (510 5 (0. 5L)

has magnitude bounded by K. Finally, we denote the
Hessian of f, the matrix of second partial derivatives,
by H f, so that

82 f 82 f 82 f
8x126x1 (X) 8x126x2 (X) 8x126x3 (X)
_ o f 7 f 7 f
Hf(X) - 8x226x1 (X) 8x226x2 (X) 8x226x3 (X)
3 3 3
8@‘3(‘{171 (X) 8@‘3(‘{172 (X) 8@‘3(‘{173 (X)

3.3. Silhouette Finding

Silhouette finding is a three-step process:

1. Locate a point on the surface through ray-surface
intersection

2. Trace along the surface to a point on a silhou-
ette

3. Trace out the silhouette

3.3.1. Ray-surface intersection

We apply a modification of Kalra and Barr’s [2] im-
plicitization algorithm to do ray-surface intersection:
the idea is that for functions with bounded gradients,
we can search for ray-surface intersections by stepping
along a ray and be guaranteed to miss no intersection:
if, while searching for an intersection along the ray
p +tv, we are at location x, then we can take a step
of size f(x)/K to location x’ = x+(f(x)/K)v and be
confident that f(x’) > 0. We search along rays from
the eye until the function value is nearly zero, and
call the resulting point a surface point. If the search
proceeds far enough, our assumption that the surface

Sc?g/projection of Of(p)
/f‘\
|
|
|
|

image plane

Figure 4: When we reach a point p of the surface, we
find a tangent vector whose screen projection is in the
same direction as that of the gradient (that tangent vec-
tor’s called w here) and move in that direction to find a
silhouette.

\\j\
> View rays
/T
4

/

Interior of surface Surface Normal (bold)

Silhouette Point

Figure 5: When a view ray hits the interior of the surface
the surface normal (shown in bold) points back towards
the eye. When the view ray grazes the silhouette of the
surface, the view ray and the surface normal are orthog-
onal.

lies within a bounded region of space lets us termi-
nate the search. In this case, the silhouette-finding
process does not continue with silhouette-point find-
ing, but rather with ray-surface intersection using a
different ray.

3.3.2. Silhouette point finding

When we find a ray-surface intersection, we try to
use it to locate a silhouette by walking along the sur-
face in the direction of the screen projection of the
gradient at each point (see Figure 4).

We take the ray-surface intersection p, compute
the function gradient at p, and use this to find a
tangent vector in the plane spanned by v and Vf;
i.e., we let:'

Vi) x (v x VF(p))
IV£(p)II?

IThe division by the square of the gradient is designed to
make the vector field independent of the scale of f: if we replace
f with af, the vector field is unchanged.

F(p) =

View ray

Path to silhouette point

Existing silhouette edge

Figure 6: A new silhouette point, shown in grey, should
be tested to see if it lies on a silhouette edge that was
already traced out, to avoid recomputing the position of
a silhouette edge.

The vector field F is tangent to the surface and lies
in the plane spanned by v and V f(x). We trace along
this vector field until the dot product of v and Vf
changes sign, which indicates that we have passed a
silhouette. A silhouette point is a point of the surface
where the tangent plane contains the view direction;
it may be obscured by some other part of the surface,
but we call it a silhouette point nonetheless. In the
mathematical literature, it’s sometimes called a “fold
point.” See Figure 5.

So far, we have just described the vector field to
be integrated, not the method of integration. See
Section 4 for a description of the integration method.

Often, after a few silhouettes have been traced
out, the newly found point will lie on one of the sil-
houettes already traced out. So before proceeding, we
test to see if this is just such a point. See Figure 6.

Silhouettes are represented as 3D polylines. We
do a proximity test between the found point and all
the silhouette points which may be near it. (These
points are stored in a hash table based on location
in three-space.) All the points in the polyline are
approximately ¢ units apart, so if the found point is
within € units of any found point, it is discarded, and
the silhouette finding process starts over with a new
ray-intersection.

3.3.3. Silhouette tracing

A curve h : R — R3 lies on the silhouette of the
surface S viewed along v if

e h(t) € S for every ¢, and

e The tangent plane to the level surface at h(?)
contains v for every t.

These two conditions can be rephrased as

fr@) =
vIVI(h() =

Rather than try to solve for A(t) analytically, we
instead use this implicit description to determine the
tangent vector of &, from which we can determine A
by numerical integration.

Differentiating each equation with respect to ¢,
applying the chain rule, and using w to denote A’(t),
we get

VIh(n) - K () =

VIHF(R)K' (1) = 0,
Vihit)w = 0
vIHf(h(t)w = 0.

Thus the tangent vector to a silhouette curve must
be orthogonal both to the gradient at its basepoint,
and to the product of the Hessian at the basepoint
with the view direction. This makes it proportional
to the cross product of these:

w o VI(h(1)) x vV H f(h(1)).

We can therefore trace along a silhouette by comput-
ing

w = V/(p) x V' Hf(p)

and finding an integral curve for this vector field. Of
course, at locations where w = (the tracing process
stagnates. This happens, for example, at cusps like
the one shown in Figure 7. Our silhouette-tracing
algorithm starts from a silhouette point, found previ-
ously, and traces out the silhouette by taking a series
of steps of size € until the tracing process stagnates
or returns to the starting point; if it stagnates, we
return to the starting point and trace in the other di-
rection. Section 4 discusses the details of the tracing
scheme.

In order to avoid stepping past the starting point,
after each step we find the distance between the new
point and the starting point. If the distance is less
than €, tracing stops and the 3D polyline is closed.

3.4. Occlusion testing

We test the vertices of the silhouette for occlusion
by first checking every nth (4th in our implementa-
tion) vertex for occlusion, and then, for those between
which occlusion status changes, testing the interven-
ing vertices as well. To check occlusion of a single
vertex of a silhouette polyline, we start at the vertex,
move back towards the film plane from it, and do a
ray-surface intersection test back into the scene. If
the ray intersects the surface at a place much closer
to the film plane than our vertex, we declare the ver-
tex invisible; otherwise it’s visible.

Note that because of numerical issues, the ray may
not intersect the surface exactly at the silhouette ver-
tex (which may, indeed, not actually lie exactly on

=
/ Cusp
f=
< Silhouette

Figure 7: A cusp occurs at the end of a silhouette. A slight
“hook” is conventionally drawn at the cusp to indicate its
shape.

the surface), so the “much closer” test is important.
Unfortunately, if the true silhouette is just barely ob-
scured by some nearer piece of surface, and the sil-
houette vertex still happens to seem to be visible, we
draw still the silhouette.

3.5. Rendering
3.5.1. Silhouette edges

The silhouette edges could be simply drawn as poly-
lines, as would be done in a basic implementation.
But, to convey extra information about the surface’s
shape near the silhouette, we alter the drawing style
based on the local curvature. At a point p of the
silhouette, the Hessian can be used to determine the
curvature of the surface in the plane defined by the
view and the normal to the silhouette. To be more
precise, if we consider the plane through p spanned
by the gradient and the view direction, its intersec-
tion with S is a curve. The gradient to .S is normal
to this curve, and the rate of change of this normal in
the view direction is proportional to the curvature of
the curve. But the rate of change of the normal as we
move the basepoint in some direction u through the
point p is simply u’H f(p); to compute its compo-
nent in the view direction, we take the inner product
with the view vector. We can therefore compute the
curvature in the view direction as v!H f(p)v. Unfor-
tunately, this computation depends on the scaled f;
we normalize it by dividing by the magnitude of the
gradient of f. Hence we compute

t
w(p) = viHf(p)v
V£ (Pl
for points on the silhouette, and use it to help us draw
shading near the silhouettes to indicate curvature.
So we draw not just the silhouette but several par-
allel copies of it, with the inter-copy spacing propor-
tional to 1/k(p). Thus tightly-curved sections get
closely-spaced curves, and areas of shallow curvature
get widely-spaced ones. See Figure 8.

Figure 8: The silhouette drawing style varies with the
surface curvature. The tip of the bunny’s left arm is drawn
with tightly spaced lines, whereas the lines defining its
torso are widely spaced.

We could also experiment with stroke styles as did
Markosian et al. [7].

3.5.2. Interior shading

Interior shading strokes are drawn using a very simple
lighting model — we assume that the light in the scene
is arriving from behind the virtual camera and that
the surface is diffuse, so that the illumination is pro-
portional to the dot-product of the view direction and
the (unit) surface normal. At interior points, when a
ray strikes the surface, we immediately compute the
gradient at the intersection point so that we can start
searching for a silhouette. We use this computed gra-
dient to determine two additional things:

e the direction v x V f that is tangent to the curve
of constant illumination (isophote), and

e the lightness s of the surface (ﬁ'vvf{) at the in-
tersection point.

We then pick a color [s|bg 4+ (1 — |s|)db, where bg is
the background color (a neutral gray) and db is a dark
blue, and draw a short stroke in this color, tangent
to the isophote.

These “free” shading lines accumulate as rays are
shot at the surface in search of silhouette edges, and
help convey the interior shape of the surface. See
Figure 9.

Figure 9: Several images of the same model, with pro-
gressively more strokes filled in. Note the light strokes
on places perpendicular to the view direction, such as the
bunny’s nose, and dark strokes near silhouette edges.

4. EFFICIENCY CONSIDERATIONS

4.1. Approzimate tracing

In both silhouette finding and silhouette tracing, we
need to “walk along” the implicit surface, guided by
a vector field. In each case the general algorithm we
use is Euler integration: p is replaced by p + €F(p),
where F' is the vector field and ¢ is some small num-
ber. This approach is notoriously unstable; using it
to walk along the circumference of a circle (i.e., along
the vector field F(x,y) = (—y,)) leads to the sort
of spiral shown in Figure 10(a). But if in addition to
knowing that we want to be guided by a vector field,
we have some other constraint, we can use this to help
stabilize the process. For example, in silhouette find-
ing, we know that we not only want to move along the
surface in the direction determined by the gradient
and view direction but also want to remain on the sur-
face. By adding a “penalty” term to the vector field
— a term that’s zero on the surface, but drives us back
to the surface when we’re off it — we can ensure that
the integral curves don’t wander too far. In the case
of the tangent vector field to the circle, we can use the
vector field G(z,y) = K * (2?2 + y? — 1) x (—z, —y) as
a “corrector” field; when we add this to F', the inte-
gral curves, even with Euler integration, now lie close
to the circle rather than following a diverging spiral
(see Figure 10(b)). This idea is closely related to the
constraint-satisfaction method in Barzel and Barr’s
“Dynamic Constraints” work [1]. The constant K
determines the degree of penalty for falling off the
circle: if K is small, the curve will not stay close; if
K is made too large, however, the curve can oscillate
across the circle.

In the case of silhouette finding, we know that we
want to remain on the surface as we search for a sil-
houette. Our first implementation took small steps
and then, at the end of each step, did a ray-surface
intersection to “fall back” onto the surface. Our re-
vised version instead uses the stabilization method:
instead of using the vector field

o = Vi) x (v x Vf(x))
P& = ool

defined on the surface, we define (on all of R3) the
vector field

V) x (v x V() — V)
Fl) = R '

The additional term — W — is a field that

points towards the surface at all points of space. Hence
when Euler integration takes our curve off the sur-
face, the additional term tries to coax it back onto
the surface. Just as in the case of the spiraling circle,
the correction is imperfect: the “stabilized” path still
does not lie exactly on the surface. But it does not
diverge from it either, and the expensive ray-surface

R P .
PR R Y
Ry :::
I A
WL
.
’:’rr Pl
o N
b e
L\ . gt
N\ o
Y VAR
oo P A
A
N
PR, ot NNy
P RN
RN
IR
L TR
VoL
1 o
i
P
1
Y A
RN SR
RS P
A

Figure 10: (a) When the tangent field to a family of circles
is integrated with Euler integration, the result is a grow-
ing spiral. (b) When we add a penalty term for distance
from the starting circle, the result is a non-diverging circle
(albeit slightly displaced from the starting point’s circle).

intersection is eliminated. By the way, this is just a
specialized type of predictor-corrector integrator; the
novelty is in its application to finding silhouettes for
isosurfaces.

For the case of silhouette tracking, our initial cor-
rector takes the predicted location and does a ray-
surface intersection (moving in the negative gradi-
ent direction) to fall back to the surface, and then
a silhouette-finding operation to fall back to the sil-
houette. In the current implementation, these two
steps use the same algorithms that initially are used
to find the surface and then a silhouette point. With
this implementation, on reaching a cusp the corrector
no longer works correctly, which is why tracing stops
at cusps.

We have since implemented a corrector like the
one described for silhouette finding. The pictures
here, however, use the original method, since we have
not thoroughly tested the new corrector. For this
new corrector, we have two additional constraints: we
want to find integral curves of the vector field

G(p) = Vf(p) x v'H f(p)

on the surface, but Euler integration will wander off
the surface and off the silhouette curve. Again, we

can add a correction of the form W to keep

the curve on the surface. We can also add a correction
to keep the curve running along the silhouette: just

as adding — fV f tends to drive f to zero, we can add
—gVyg, where g(p) = v - Vf(p) to drive g to zero,
i.e., to drive us onto a silhouette. This expression
simplifies to

—(v-Vf(p))v'Hf(p).

Fortunately, V f and H f are already computed in get-
ting the basic vector field to walk along.
In summary, we find an integral curve of

(Vip) x (vxVf(p))—f(p)VSip)

—K * (v-Vf(p))V' Hf(p))

o
V£l

and it will not only follow the silhouette, but if it
(because of Euler steps) wanders from the silhouette,
will be driven back towards it.

In our initial tests, setting K to 1 has led to some
oscillatory behavior; K = 0.5 seems to work well,
however.

For this new tracer, the behavior at cusps is more
complex than before: the silhouette curve goes from
being visible to being invisible by briefly heading di-
rectly away from the viewer. In general, this seems
to have worked fine, and silhouette tracing now ends
when the tracer returns to its starting point. But
what if, near a cusp, the tracer overshoots? Figure 11
shows that the silhouette-tracing field, just beyond
the cusp, has a clockwise-spiral projection onto the
surface; when the corrector field is added, we will
find that any overshoot into the region beyond the
cusp will get swept back clockwise up to the silhou-
ette edge, or will stall out on the line immediately
below the cusp, where the (uncorrected) field is or-
thogonal to the surface.

As an alternative to Euler integration, we could
use Runge-Kutta integration. Runge-Kutta integra-
tion requires more computation for each step, but di-
verges much more slowly from the ideal curve than
Euler integration, allowing bigger steps to be taken.
But both methods still diverge, so regardless of which
we use, we would still want to take advantage of the
special correction information available to us, which
lets us pull the curve directly back toward the surface
or curve on which it should lie. Future work might
include testing to see if, and how much, the speed
gained from Runge-Kutta’s bigger steps offsets the
cost of extra computation.

4.2. Choosing good rays to shoot

Our algorithm begins by shooting rays from the film
plane along the view direction (orthogonal to the film
plane in our implementation) into the scene, hoping
to find silhouettes. The silhouette-finding algorithm
can easily get stuck in “valleys” in the surface, so
some rays produce nothing of interest. On the other
hand, a ray that falls near a silhouette will rapidly

S AV
SN T g

Figure 11: A prototypical cusp in the graph of y =
x3+rz, as seen from (5,0, —1) looking at (0,0, 0); the
(un-corrected) silhouette-tracing field is indicated by
the dot-and-line icons: the dot is the basepoint of
the vector, the line shows the direction. Along the
silhouette edges, the field is evidently tangent to the
silhouette. In the lower half of the figure, beyond the
silhouette, the field has a sort of sprial form, so that
tracing it from points below the cusp should lead to a
clockwise circular path back to a location above the
cusp (although such curves may well stagnate if they
hit the line directly below the cusp, where the field is
normal to the surface).

lead to productive results. Because we are trying to
render at interactive speeds, we have some confidence
that inter-frame differences in the image are small, so
silhouettes in a frame are likely to be near their loca-
tions in the previous frame. Thus former silhouette
points are good candidates for ray-starting-points in
the current frame. If we displace these points slightly
“inward” along the surface normal, then surface (or
camera) translations are less likely to cause them to
miss the surface when they’re re-shot. We therefore,
in choosing rays to shoot in each frame, preferentially
select starting points that lie on silhouettes from pre-
vious frames; we also use some randomly chosen rays,
in hopes of finding new silhouettes that may appear
far from any previous silhouette.

5. TIMING

Initial timing tests for an execution that involves fre-
quent camera motion suggest that the bulk (60%) of
the algorithm’s time is spent determining silhouette
curves. Of this, half (30%) is spent shooting rays,
many of which miss the surface (although this de-
pends on the screen-area occupied by the surface), a
quarter (15%) on silhouette-finding, and the remain-
ing quarter on silhouette tracing.

Another 30% is spent on occlusion testing, virtu-
ally all of it in ray-surface intersection computations.

The remaining 10% is spent drawing the shapes,
doing object-creation in JavadD, and handling thread
synchronization and other tasks unrelated to the al-
gorithm.

By contrast, during a model-creation session, about
80% of the time was spent determining silhouette
curves (70% ray-shooting, 10% silhouette-finding, 20%
silhouette-tracing), and about 20% doing occlusion
testing. A small amount was spent creating a draw-
ing shapes in Java3D.

6. LIMITATIONS AND FUTURE WORK

The algorithm described here has some serious limita-
tions. We require that f, Vf and H f all be available
at all points of the model that we render. For sampled
data, these might be provided by performing some
tricubic interpolation of the samples, although we
have not implemented this. Further, our ray-surface
intersection requires the bound on the gradient mag-
nitude, although it could be replaced with some other
method if no such bound is available.

The occlusion testing uses only samples of the sil-
houettes, and hence is prone to small errors. If we
knew that we had computed all silhouettes, and pro-
jected them to 2D, we could apply the methods used
by Markosian et al. [7] instead. It may well turn out
that this is more efficient, because it would drastically
reduce the number of ray-surface intersection tests we
need to perform. Furthermore, it would allow us to do
2D region-fill operations to make the surface interior
a different color from the background, which would
presumably help in indicating the object’s shape.

There are two additional cues to the shape that
could probably be shown by using a perspective cam-
era: motion parallax and the fact that objects dimin-
ish in size with increasing distance from the viewer.
The first seems most effective in a system like ours
which views models at interactive rates, although the
second may be worth considering as well. The cur-
rent implementation uses only an orthographic cam-
era; replacing it with a perspective camera is a small
change, but the vector v, which is constant for an or-
thographic camera, becomes dependent on the viewed
point for a perspective camera, which would add some
modest computation.

Our system cannot render texture maps on the
surfaces, and indeed, since we sample as few points
on the surface as we can, we see no way to include
this.

We would also like to push the limits of NPR, fur-
ther. For example, the rendering near cusps, where
silhouette edges disappear, has a disappointing (to
us) appearance, with the “shading curves” fanning
out. Hand-drawn cusps like the one in Figure 7 present
a far more attractive appearance, and we’d like some-
how to copy this. It would be nice to be able to find
and detect other interesting features, such as sharp
edges and singularities. In addition, we might exper-
iment with a slower version of the algorithm which
would draw shading across the whole surface, perhaps
in a pen-and-ink style.

The tradeoff between step size and speed is only
partly successful: if we increase the step size too
much, either we spend excessive time in the explicit
correctors (re-intersect surface, re-find silhouette) or
the implicit correctors can fail because the assump-
tion that the point is not far from the surface, so that
gradient forces can bring it back on, fails.

As mentioned earlier, it would be good to try
other methods of integrating the silhouette curve, such
as with Runge-Kutta integration, to see if we can
make a gain in efficiency.

Our use of Java3D is unsatisfactory: it seems fool-
ish to create curves in 3-space so that a 3D renderer
can redraw them for us in 2D. But with the opti-
mizations in Java3D, it appears (at least on our Sun
workstations) to be faster to do this than to draw
directly in 2D.

7. FINAL NOTES

The Java classes implementing this work will be made
available through the homepage of the authors, at
wWwwW.cs.brown.edu/people/jfh/is/is.html, which
also contains instructions for using the application.
The application does, however, use Java3D, requiring
that users download this library from Sun and install
it on their local machines.

8. ACKNOWLEDGMENTS

We thank Jeff White and Dan Gould for their help,
especially with Java programming issues. Also we
thank our sponsors: NSF Graphics and Visualization
Center, Advanced Network and Services, Autodesk,
Alias/Wavefront, Microsoft, National Tele-Immersion
Initiative, Sun Microsystems, and TACO.

9. REFERENCES

[1] Ronen Barzel and Alan H. Barr. A modeling
system based on dynamic constraints. In John
Dill, editor, Computer Graphics (SIGGRAPH
88 Proceedings), volume 22, pages 179-188, Au-
gust 1988.

[2] Jules Bloomenthal, editor. Introduction to Im-
plicit Surfaces. Morgan Kauffman Publishers,
Inc., 1997.

[3] Cassidy J. Curtis, Sean E. Anderson, Joshua E.
Seims, Kurt W. Fleischer, and David H. Salesin.
Computer-generated watercolor. In Turner
Whitted, editor, SIGGRAPH 97 Conference
Proceedings, Annual Conference Series, pages
421-430. ACM SIGGRAPH, Addison Wesley,
August 1997. ISBN 0-89791-896-7.

[4] David P. Dobkin, Silvio V. F. Levy, William P.
Thurston, and Allan R. Wilks. Contour tracing
by piecewise linear approximation. ACM Trans-

actions on Graphics, 9(4):389-423, 1990.

[5]
[6]

[10]

[11]

[12]

E. Bruce Goldstein. Sensation and Perception.
Brooks/Cole Publishing Company, 1996.
Victoria Interrante. Perceiving and representing
shape and depth. SIGGRAPH 97 Course Notes
for Principles of Visual Perception and Its Ap-
plications in Computer Graphics, August 1997.
Lee Markosian, Michael A. Kowalski, Samuel J.
Trychin, Lubomir D. Bourdev, Daniel Goldstein,
and John F. Hughes. Real-time nonphotore-
alistic rendering. In Turner Whitted, editor,
SIGGRAPH 97 Conference Proceedings, Annual
Conference Series, pages 415-420. ACM SIG-
GRAPH, Addison Wesley, August 1997. ISBN
0-89791-896-7.

Scott D. Roth. Ray casting for modeling
solids. Computer Graphics and Image Process-
ing, 18(2):109-144, 1982.

Michael P. Salisbury, Sean E. Anderson, Ronen
Barzel, and David H. Salesin. Interactive pen—
and-ink illustration. In Andrew Glassner, ed-
itor, Proceedings of SIGGRAPH 94 (Orlando,
Florida, July 24-29, 1994), Computer Graph-
ics Proceedings, Annual Conference Series, pages
101-108. ACM SIGGRAPH, ACM Press, July
1994. ISBN 0-89791-667-0.

Michael P. Salisbury, Michael T. Wong, John F.
Hughes, and David H. Salesin. Orientable
textures for image-based pen-and-ink illustra-
tion. In Turner Whitted, editor, SIGGRAPH 97
Conference Proceedings, Annual Conference Se-
ries, pages 401-406. ACM SIGGRAPH, Addison
Wesley, August 1997. ISBN 0-89791-896-7.
Mike Salisbury, Corin Anderson, Dani Lischin-
ski, and David H. Salesin. Scale-dependent re-
production of pen-and-ink illustrations. In Holly
Rushmeier, editor, SIGGRAPH 96 Conference
Proceedings, Annual Conference Series, pages
461-468. ACM SIGGRAPH, Addison Wesley,
August 1996. held in New Orleans, Louisiana,
04-09 August 1996.

Barton T. Stander and John C. Hart. Guarantee-
ing the topology of an implicit surface polygani-
zation for interactive modeling. In Turner Whit-
ted, editor, SIGGRAPH 97 Conference Pro-
ceedings, Annual Conference Series, pages 279-
286. ACM SIGGRAPH, Addison Wesley, August
1997. ISBN 0-89791-896-7.

Georges Winkenbach and David H. Salesin.
Computer—generated pen—and-ink illustration.
In Andrew Glassner, editor, Proceedings of SIG-
GRAPH °94 (Orlando, Florida, July 24-29,
1994), Computer Graphics Proceedings, Annual
Conference Series, pages 91-100. ACM SIG-
GRAPH, ACM Press, July 1994. ISBN 0-89791-
667-0.

Georges Winkenbach and David H. Salesin.
Rendering parametric surfaces in pen and ink.

In Holly Rushmeier, editor, SIGGRAPH 96

Conference Proceedings, Annual Conference Se-
ries, pages 469-476. ACM SIGGRAPH, Addi-
son Wesley, August 1996. held in New Orleans,
Louisiana, 04-09 August 1996.

