
RAPID APPROXIMATE SILHOUETTE RENDERING OF IMPLICITSURFACESDavid J. Bremer and John F. HughesDepartment of Computer S
ien
eBox 1910Brown UniversityProviden
e, RI 02912fdjb,jfhg�
s.brown.eduABSTRACTWe des
ribe a method for rapidly produ
ing a non-photorealisti
 rendering of an impli
it surfa
e. Therendering in
ludes silhouettes and some shading nearsilhouettes to help indi
ate
urvature. The methodidenti�es silhouettes probabilisti
ally, but we in
ludestrategies to make it likely that we �nd all silhouette
urves, espe
ially in multiple-frame sequen
es. Themethod is approximate, in the sense that the silhou-ette
urves may su�er some position error; the de-gree of approximation is determined in part by anadjustable parameter to a
urve-tra
ing method, al-lowing a tradeo� of a

ura
y against speed.1. SILHOUETTE RENDERINGInspired by non-photorealisti
 rendering (NPR) te
h-niques [9, 10, 3, 14, 11, 13, 7℄, espe
ially intera
-tive NPR for rapid display of
omplex polyhedral ob-je
ts [7℄, we applied an alternative style of renderingto impli
it surfa
es.Our basi
 approa
h
on
entrates
omputationalresour
es on drawing the surfa
e's silhouette qui
klyand a

urately from a given viewpoint, with hiddenlines removed. Additionally, a little
urvature infor-mation is displayed near the silhouette and on theinterior of the rendering. Example results of the al-gorithm, showing o� the available features, are shownin Figure 1.While standard rendering te
hniques require thatat least the entire surfa
e, if not a whole 3D volume,be traversed to make a rendering, our silhouette edge-drawing approa
h needs only to tra
e the silhouette
urve or
urves, allowing the rendering to take pla
emu
h faster, and/or to be done more
arefully than,say, a rough polygonization. With this algorithm,good rendering
an often o

ur at intera
tive or near-intera
tive rates.This new approa
h makes good use of
omputa-tional resour
es. Although we draw only a few lineson the s
reen to represent a whole surfa
e, we are
Figure 1: Several models rendered with our non-photorealisti
 renderer. (a) A bunny, in the modeler. (b)The bunny rendered without the modeling aids. (
) Adu
k. (d) A \vase."

Figure 2: The e�e
ts of failing to removing o

luded sil-houettes on our bunny model.giving the eye the visual
ues whi
h seem most im-portant to it in per
eiving shape. These
ues are theposition and size of ea
h part of the obje
t relative toothers, as well as a bit of
urvature information nearthe silhouettes and a
ross the whole surfa
e. Thesilhouette lines provide a way to distinguish the sur-fa
e from the ba
kground and to show a little of thesurfa
e's shape, with relatively little
omputationale�ort. In addition, o

luded portions of silhouetteedges are
ulled, be
ause o

lusion is among the mostimportant
ues our visual system gets regarding theposition of parts of the surfa
e relative to one an-other. It seems that everyone realizes from an earlyage that if one part of an obje
t is in front of another,the
loser part o

ludes the farther [6, 5℄, so we feltit absolutely ne
essary to
ull out o

luded parts ofthe silhouette. See Figure 2. In addition, we showa little information about the surfa
e
urvature nearthe silhouette and on the interior of the rendering. Itdoes give a little shape from shading, whi
h is �lledin slowly instead of immediately.For small models, our algorithm's rendering speedis
omparable to that of a
oarse polygonizer or pointrenderer, su
h as the one shown by Stander and Hart[12℄. For large models the algorithm should proveto be asymptoti
ally faster, although no longer real-time. For similar reasons, our algorithmwould also beasymptoti
ally faster than a volume renderer, whi
hmust traverse a whole 3D volume, or at least thewhole surfa
e, before produ
ing an image. Be
auseof the asymptoti
 di�eren
e in rendering time, fu-ture resear
h might fo
us on better methods of fairlyfast non-intera
tive rendering of
omplex impli
it sur-fa
es.

2. PREVIOUS WORKAs mentioned to earlier, our work was primarily in-spired by re
ent work in non-photorealisti
 render-ing (NPR). NPR in general des
ribes any method ofdrawing a simple abstra
tion of a
omplex model inorder to highlight important details, or to add extrainformation or feeling [13℄. There are at least two bigbene�ts to rendering this way. The �rst is the per-
eptual gain{being able to get more information orfeeling from an image or series of images. The otheris related to eÆ
ien
y{we
an sometimes save
ompu-tational expense by
omputing and rendering only asele
t portion of a model whi
h is felt to be the mostimportant. Sin
e impli
it surfa
es are expensive torender at all, we fo
used on using NPR to make thealgorithm fast. Future work in the other area mightin
lude shading the whole surfa
e in an expressiveway, su
h as with a pen-and-ink style, and providinga visual way to identify
usps, singularities, or otherinteresting parts of the model.Our work was dire
tly inspired by Markosian etal. [7℄ who produ
e real-time silhouette-renderings ofa polygonal model. After seeing that work, we triedto adapt the idea of rendering only outlines to theproblem of impli
it surfa
e rendering.But that work was not the �rst to produ
e linedrawings of surfa
es. An early line drawing appli
a-tion was developed by S
ott Roth [8℄. It draws justobje
t outlines, but does so with a ray-tra
ing algo-rithm. Similarly, it was developed to give a speedimprovement over regular ray-tra
ing, whi
h it ob-tains be
ause it is not required to evaluate lightingequations. Unlike the other work, it was designedto operate on CSG models
onstru
ted from a fewimpli
itly de�ned primitive shapes (
ubes, spheres,
ones, and
ylinders).Dobkin et al. [4℄ have developed an algorithm thatwill tra
e impli
it sets of fun
tions from Rn to Rk;if we take our impli
it fun
tion f from R3 to R, itsgradient rf , and the view dire
tion v, we
an
reatea new fun
tiong : R3 !R2 : x 7! (f(x);rf(x) � v);The inverse image of (0; 0) under g is exa
tly the sil-houette set that we
ompute here. The primary dif-feren
es in our approa
hes are that (a) we do o

lu-sion testing and some shading of the surfa
e, whi
his not possible with the results of the Dobkin et al.algorithm, and (b) we work with the fun
tion f , andassume that both it and its �rst two derivatives areavailable, whereas Dobkin et al. work with a �xed-resolution pie
ewise-linear approximation. In the lan-guage of that paper, we taken an \in�nitesimal" ap-proa
h and they take a \lo
al" approa
h. Nonethe-less, their ideas
ould easily be adapted for the \tra
-ing" portion of this work; we
ould then use our meth-ods for the o

lusion testing and the shading portions.

As a side note, there is a rendering style
alled
ontour line drawing whi
h bears a super�
ial resem-blan
e to ours. This method sli
es planes throughthe impli
it surfa
e and draws the
urves formed bythe interse
tion [2℄. The big di�eren
e between thatmethod and ours is that it uses
urves a
ross thewhole surfa
e, in order to show the surfa
e shape,whereas ours draws far fewer
urves and does so justto indi
ate the surfa
e's outline.3. THE ALGORITHM3.1. OverviewWe need algorithms to �nd the silhouette edges andinformation for shading, to test the edges for o

lu-sion, and to draw the edges and shading informa-tion. However, if while examining the model the userpauses for a moment, the algorithm need not wastetime re
omputing silhouettes.Figure 3 shows the pro
ess s
hemati
ally. Thepseudo
ode is as follows:For ea
h frameIf the
amera moved or model
hangedFind new silh. edges and shading infoTest edge se
tions for o

lusionDraw the edges and shading strokesElseLook for missed edges and shading infoDraw all edges and shading strokes3.2. Notation and assumptionsWe assume that the surfa
e model, S, that we arerendering is the zero-set of a twi
e
ontinuously dif-ferentiable fun
tion f on R3. To make the explana-tion simpler, suppose that the solid bounded by thesurfa
e is the region in whi
h f < 0, whi
h
ausesgradients to point away from the surfa
e rather thaninward.In order to make the algorithm work with a widevariety of model representations, it treats the impli
itfun
tion de�ning the model as a \bla
k box" fromwhi
h it only needs to be able to get, at any point, thefun
tion value, the gradient, and the Hessian (matrixof se
ond derivatives) of the fun
tion.We further assume that the virtual
amera is or-thographi
 with view dire
tion v, that all points onthe �lm plane are outside the obje
t (i.e., f > 0 onthe �lm plane), and that the surfa
e S lies entirelywithin some known region of spa
e (a sphere of ra-dius 20 about the origin in our parti
ular implemen-tation).We denote points and ve
tors by boldfa
e letters;the point x has
oordinates x1; x2 and x3.

Silhouette Finding

Silhouette Tracing

Film Plane

Figure 3: Rays from the �lm plane are tra
ed along theview dire
tion until they hit the surfa
e. Then we tra
e inthe dire
tion of the view-plane proje
tion of the gradientto try to �nd a silhouette. On
e one is found, we tra
ealong it.We also assume, to make ray-surfa
e interse
tioneasier, that there is a
onstant K > 0 su
h that atevery point x, the gradient of f ,rf(x) = (�f�x1 (x); �f�x2 (x); �f�x3 (x))has magnitude bounded by K. Finally, we denote theHessian of f , the matrix of se
ond partial derivatives,by Hf , so thatHf(x) = 264 �2f�x1�x1 (x) �2f�x1�x2 (x) �2f�x1�x3 (x)�2f�x2�x1 (x) �2f�x2�x2 (x) �2f�x2�x3 (x)�2f�x3�x1 (x) �2f�x3�x2 (x) �2f�x3�x3 (x) 375 :3.3. Silhouette FindingSilhouette �nding is a three-step pro
ess:1. Lo
ate a point on the surfa
e through ray-surfa
einterse
tion2. Tra
e along the surfa
e to a point on a silhou-ette3. Tra
e out the silhouette3.3.1. Ray-surfa
e interse
tionWe apply a modi�
ation of Kalra and Barr's [2℄ im-pli
itization algorithm to do ray-surfa
e interse
tion:the idea is that for fun
tions with bounded gradients,we
an sear
h for ray-surfa
e interse
tions by steppingalong a ray and be guaranteed to miss no interse
tion:if, while sear
hing for an interse
tion along the rayp+ tv, we are at lo
ation x, then we
an take a stepof size f(x)=K to lo
ation x0 = x+(f(x)=K)v and be
on�dent that f(x0) � 0. We sear
h along rays fromthe eye until the fun
tion value is nearly zero, and
all the resulting point a surfa
e point. If the sear
hpro
eeds far enough, our assumption that the surfa
e

∇

v

w

wp f

image plane

Direction
to move

∇ f(p)Screen projection of

Figure 4: When we rea
h a point p of the surfa
e, we�nd a tangent ve
tor whose s
reen proje
tion is in thesame dire
tion as that of the gradient (that tangent ve
-tor's
alled w here) and move in that dire
tion to �nd asilhouette.
View rays

Interior of surface

Silhouette Point

Surface Normal (bold)Figure 5: When a view ray hits the interior of the surfa
ethe surfa
e normal (shown in bold) points ba
k towardsthe eye. When the view ray grazes the silhouette of thesurfa
e, the view ray and the surfa
e normal are orthog-onal.lies within a bounded region of spa
e lets us termi-nate the sear
h. In this
ase, the silhouette-�ndingpro
ess does not
ontinue with silhouette-point �nd-ing, but rather with ray-surfa
e interse
tion using adi�erent ray.3.3.2. Silhouette point �ndingWhen we �nd a ray-surfa
e interse
tion, we try touse it to lo
ate a silhouette by walking along the sur-fa
e in the dire
tion of the s
reen proje
tion of thegradient at ea
h point (see Figure 4).We take the ray-surfa
e interse
tion p,
omputethe fun
tion gradient at p, and use this to �nd atangent ve
tor in the plane spanned by v and rf ;i.e., we let:1F (p) = rf(p)� (v �rf(p))krf(p)k21The division by the square of the gradient is designed tomake the ve
tor �eld independentof the s
ale of f : if we repla
ef with �f , the ve
tor �eld is un
hanged.

Existing silhouette edge

View ray

Path to silhouette pointFigure 6: A new silhouette point, shown in grey, shouldbe tested to see if it lies on a silhouette edge that wasalready tra
ed out, to avoid re
omputing the position ofa silhouette edge.The ve
tor �eld F is tangent to the surfa
e and liesin the plane spanned by v andrf(x). We tra
e alongthis ve
tor �eld until the dot produ
t of v and rf
hanges sign, whi
h indi
ates that we have passed asilhouette. A silhouette point is a point of the surfa
ewhere the tangent plane
ontains the view dire
tion;it may be obs
ured by some other part of the surfa
e,but we
all it a silhouette point nonetheless. In themathemati
al literature, it's sometimes
alled a \foldpoint." See Figure 5.So far, we have just des
ribed the ve
tor �eld tobe integrated, not the method of integration. SeeSe
tion 4 for a des
ription of the integration method.Often, after a few silhouettes have been tra
edout, the newly found point will lie on one of the sil-houettes already tra
ed out. So before pro
eeding, wetest to see if this is just su
h a point. See Figure 6.Silhouettes are represented as 3D polylines. Wedo a proximity test between the found point and allthe silhouette points whi
h may be near it. (Thesepoints are stored in a hash table based on lo
ationin three-spa
e.) All the points in the polyline areapproximately � units apart, so if the found point iswithin � units of any found point, it is dis
arded, andthe silhouette �nding pro
ess starts over with a newray-interse
tion.3.3.3. Silhouette tra
ingA
urve h : R ! R3 lies on the silhouette of thesurfa
e S viewed along v if� h(t) 2 S for every t, and� The tangent plane to the level surfa
e at h(t)
ontains v for every t.These two
onditions
an be rephrased asf(h(t)) = 0vtrf(h(t)) = 0:

Rather than try to solve for h(t) analyti
ally, weinstead use this impli
it des
ription to determine thetangent ve
tor of h, from whi
h we
an determine hby numeri
al integration.Di�erentiating ea
h equation with respe
t to t,applying the
hain rule, and using w to denote h0(t),we get rf(h(t)) � h0(t) = 0vtHf(h(t))h0(t) = 0;i.e., rf(h(t))w = 0vtHf(h(t))w = 0:Thus the tangent ve
tor to a silhouette
urve mustbe orthogonal both to the gradient at its basepoint,and to the produ
t of the Hessian at the basepointwith the view dire
tion. This makes it proportionalto the
ross produ
t of these:w / rf(h(t)) � vtHf(h(t)):We
an therefore tra
e along a silhouette by
omput-ing w = rf(p)� vtHf(p)and �nding an integral
urve for this ve
tor �eld. Of
ourse, at lo
ations where w = 0 the tra
ing pro
essstagnates. This happens, for example, at
usps likethe one shown in Figure 7. Our silhouette-tra
ingalgorithm starts from a silhouette point, found previ-ously, and tra
es out the silhouette by taking a seriesof steps of size � until the tra
ing pro
ess stagnatesor returns to the starting point; if it stagnates, wereturn to the starting point and tra
e in the other di-re
tion. Se
tion 4 dis
usses the details of the tra
ings
heme.In order to avoid stepping past the starting point,after ea
h step we �nd the distan
e between the newpoint and the starting point. If the distan
e is lessthan �, tra
ing stops and the 3D polyline is
losed.3.4. O

lusion testingWe test the verti
es of the silhouette for o

lusionby �rst
he
king every nth (4th in our implementa-tion) vertex for o

lusion, and then, for those betweenwhi
h o

lusion status
hanges, testing the interven-ing verti
es as well. To
he
k o

lusion of a singlevertex of a silhouette polyline, we start at the vertex,move ba
k towards the �lm plane from it, and do aray-surfa
e interse
tion test ba
k into the s
ene. Ifthe ray interse
ts the surfa
e at a pla
e mu
h
loserto the �lm plane than our vertex, we de
lare the ver-tex invisible; otherwise it's visible.Note that be
ause of numeri
al issues, the ray maynot interse
t the surfa
e exa
tly at the silhouette ver-tex (whi
h may, indeed, not a
tually lie exa
tly on

Cusp

SilhouetteFigure 7: A
usp o

urs at the end of a silhouette. A slight\hook" is
onventionally drawn at the
usp to indi
ate itsshape.the surfa
e), so the \mu
h
loser" test is important.Unfortunately, if the true silhouette is just barely ob-s
ured by some nearer pie
e of surfa
e, and the sil-houette vertex still happens to seem to be visible, wedraw still the silhouette.3.5. Rendering3.5.1. Silhouette edgesThe silhouette edges
ould be simply drawn as poly-lines, as would be done in a basi
 implementation.But, to
onvey extra information about the surfa
e'sshape near the silhouette, we alter the drawing stylebased on the lo
al
urvature. At a point p of thesilhouette, the Hessian
an be used to determine the
urvature of the surfa
e in the plane de�ned by theview and the normal to the silhouette. To be morepre
ise, if we
onsider the plane through p spannedby the gradient and the view dire
tion, its interse
-tion with S is a
urve. The gradient to S is normalto this
urve, and the rate of
hange of this normal inthe view dire
tion is proportional to the
urvature ofthe
urve. But the rate of
hange of the normal as wemove the basepoint in some dire
tion u through thepoint p is simply utHf(p); to
ompute its
ompo-nent in the view dire
tion, we take the inner produ
twith the view ve
tor. We
an therefore
ompute the
urvature in the view dire
tion as vtHf(p)v. Unfor-tunately, this
omputation depends on the s
aled f ;we normalize it by dividing by the magnitude of thegradient of f . Hen
e we
ompute�(p) = vtHf(p)vkrf(p)kfor points on the silhouette, and use it to help us drawshading near the silhouettes to indi
ate
urvature.So we draw not just the silhouette but several par-allel
opies of it, with the inter-
opy spa
ing propor-tional to 1=�(p). Thus tightly-
urved se
tions get
losely-spa
ed
urves, and areas of shallow
urvatureget widely-spa
ed ones. See Figure 8.

Figure 8: The silhouette drawing style varies with thesurfa
e
urvature. The tip of the bunny's left arm is drawnwith tightly spa
ed lines, whereas the lines de�ning itstorso are widely spa
ed.We
ould also experiment with stroke styles as didMarkosian et al. [7℄.3.5.2. Interior shadingInterior shading strokes are drawn using a very simplelighting model { we assume that the light in the s
eneis arriving from behind the virtual
amera and thatthe surfa
e is di�use, so that the illumination is pro-portional to the dot-produ
t of the view dire
tion andthe (unit) surfa
e normal. At interior points, when aray strikes the surfa
e, we immediately
ompute thegradient at the interse
tion point so that we
an startsear
hing for a silhouette. We use this
omputed gra-dient to determine two additional things:� the dire
tion v�rf that is tangent to the
urveof
onstant illumination (isophote), and� the lightness s of the surfa
e (v�rfkrfk) at the in-terse
tion point.We then pi
k a
olor jsjbg + (1 � jsj)db, where bg isthe ba
kground
olor (a neutral gray) and db is a darkblue, and draw a short stroke in this
olor, tangentto the isophote.These \free" shading lines a

umulate as rays areshot at the surfa
e in sear
h of silhouette edges, andhelp
onvey the interior shape of the surfa
e. SeeFigure 9. Figure 9: Several images of the same model, with pro-gressively more strokes �lled in. Note the light strokeson pla
es perpendi
ular to the view dire
tion, su
h as thebunny's nose, and dark strokes near silhouette edges.

4. EFFICIENCY CONSIDERATIONS4.1. Approximate tra
ingIn both silhouette �nding and silhouette tra
ing, weneed to \walk along" the impli
it surfa
e, guided bya ve
tor �eld. In ea
h
ase the general algorithm weuse is Euler integration: p is repla
ed by p+ �F (p),where F is the ve
tor �eld and � is some small num-ber. This approa
h is notoriously unstable; using itto walk along the
ir
umferen
e of a
ir
le (i.e., alongthe ve
tor �eld F (x; y) = (�y; x)) leads to the sortof spiral shown in Figure 10(a). But if in addition toknowing that we want to be guided by a ve
tor �eld,we have some other
onstraint, we
an use this to helpstabilize the pro
ess. For example, in silhouette �nd-ing, we know that we not only want to move along thesurfa
e in the dire
tion determined by the gradientand view dire
tion but also want to remain on the sur-fa
e. By adding a \penalty" term to the ve
tor �eld{ a term that's zero on the surfa
e, but drives us ba
kto the surfa
e when we're o� it { we
an ensure thatthe integral
urves don't wander too far. In the
aseof the tangent ve
tor �eld to the
ir
le, we
an use theve
tor �eld G(x; y) = K � (x2 + y2 � 1) � (�x;�y) asa \
orre
tor" �eld; when we add this to F , the inte-gral
urves, even with Euler integration, now lie
loseto the
ir
le rather than following a diverging spiral(see Figure 10(b)). This idea is
losely related to the
onstraint-satisfa
tion method in Barzel and Barr's\Dynami
 Constraints" work [1℄. The
onstant Kdetermines the degree of penalty for falling o� the
ir
le: if K is small, the
urve will not stay
lose; ifK is made too large, however, the
urve
an os
illatea
ross the
ir
le.In the
ase of silhouette �nding, we know that wewant to remain on the surfa
e as we sear
h for a sil-houette. Our �rst implementation took small stepsand then, at the end of ea
h step, did a ray-surfa
einterse
tion to \fall ba
k" onto the surfa
e. Our re-vised version instead uses the stabilization method:instead of using the ve
tor �eldF (x) = rf(x) � (v �rf(x))krf(x)k2de�ned on the surfa
e, we de�ne (on all of R3) theve
tor �eldF (x) = rf(x) � (v �rf(x)) � f(x)rf(x)krf(x)k2 :The additional term { �f(x)rf(x)krf(x)k2 { is a �eld thatpoints towards the surfa
e at all points of spa
e. Hen
ewhen Euler integration takes our
urve o� the sur-fa
e, the additional term tries to
oax it ba
k ontothe surfa
e. Just as in the
ase of the spiraling
ir
le,the
orre
tion is imperfe
t: the \stabilized" path stilldoes not lie exa
tly on the surfa
e. But it does notdiverge from it either, and the expensive ray-surfa
e

Figure 10: (a) When the tangent �eld to a family of
ir
lesis integrated with Euler integration, the result is a grow-ing spiral. (b) When we add a penalty term for distan
efrom the starting
ir
le, the result is a non-diverging
ir
le(albeit slightly displa
ed from the starting point's
ir
le).interse
tion is eliminated. By the way, this is just aspe
ialized type of predi
tor-
orre
tor integrator; thenovelty is in its appli
ation to �nding silhouettes forisosurfa
es.For the
ase of silhouette tra
king, our initial
or-re
tor takes the predi
ted lo
ation and does a ray-surfa
e interse
tion (moving in the negative gradi-ent dire
tion) to fall ba
k to the surfa
e, and thena silhouette-�nding operation to fall ba
k to the sil-houette. In the
urrent implementation, these twosteps use the same algorithms that initially are usedto �nd the surfa
e and then a silhouette point. Withthis implementation, on rea
hing a
usp the
orre
torno longer works
orre
tly, whi
h is why tra
ing stopsat
usps.We have sin
e implemented a
orre
tor like theone des
ribed for silhouette �nding. The pi
tureshere, however, use the original method, sin
e we havenot thoroughly tested the new
orre
tor. For thisnew
orre
tor, we have two additional
onstraints: wewant to �nd integral
urves of the ve
tor �eldG(p) = rf(p)� vtHf(p)on the surfa
e, but Euler integration will wander o�the surfa
e and o� the silhouette
urve. Again, we
an add a
orre
tion of the form �f(x)rf(x)krf(x)k2 to keepthe
urve on the surfa
e. We
an also add a
orre
tionto keep the
urve running along the silhouette: just

as adding �frf tends to drive f to zero, we
an add�grg, where g(p) = v � rf(p) to drive g to zero,i.e., to drive us onto a silhouette. This expressionsimpli�es to �(v � rf(p))vtHf(p):Fortunately,rf andHf are already
omputed in get-ting the basi
 ve
tor �eld to walk along.In summary, we �nd an integral
urve of1krf(p)k2 (rf(p) � (v �rf(p))� f(p)rf(p)�K � (v � rf(p))vtHf(p))and it will not only follow the silhouette, but if it(be
ause of Euler steps) wanders from the silhouette,will be driven ba
k towards it.In our initial tests, setting K to 1 has led to someos
illatory behavior; K = 0:5 seems to work well,however.For this new tra
er, the behavior at
usps is more
omplex than before: the silhouette
urve goes frombeing visible to being invisible by brie
y heading di-re
tly away from the viewer. In general, this seemsto have worked �ne, and silhouette tra
ing now endswhen the tra
er returns to its starting point. Butwhat if, near a
usp, the tra
er overshoots? Figure 11shows that the silhouette-tra
ing �eld, just beyondthe
usp, has a
lo
kwise-spiral proje
tion onto thesurfa
e; when the
orre
tor �eld is added, we will�nd that any overshoot into the region beyond the
usp will get swept ba
k
lo
kwise up to the silhou-ette edge, or will stall out on the line immediatelybelow the
usp, where the (un
orre
ted) �eld is or-thogonal to the surfa
e.As an alternative to Euler integration, we
oulduse Runge-Kutta integration. Runge-Kutta integra-tion requires more
omputation for ea
h step, but di-verges mu
h more slowly from the ideal
urve thanEuler integration, allowing bigger steps to be taken.But both methods still diverge, so regardless of whi
hwe use, we would still want to take advantage of thespe
ial
orre
tion information available to us, whi
hlets us pull the
urve dire
tly ba
k toward the surfa
eor
urve on whi
h it should lie. Future work mightin
lude testing to see if, and how mu
h, the speedgained from Runge-Kutta's bigger steps o�sets the
ost of extra
omputation.4.2. Choosing good rays to shootOur algorithm begins by shooting rays from the �lmplane along the view dire
tion (orthogonal to the �lmplane in our implementation) into the s
ene, hopingto �nd silhouettes. The silhouette-�nding algorithm
an easily get stu
k in \valleys" in the surfa
e, sosome rays produ
e nothing of interest. On the otherhand, a ray that falls near a silhouette will rapidly

Figure 11: A prototypi
al
usp in the graph of y =x3+xz, as seen from (5; 0;�1) looking at (0; 0; 0); the(un-
orre
ted) silhouette-tra
ing �eld is indi
ated bythe dot-and-line i
ons: the dot is the basepoint ofthe ve
tor, the line shows the dire
tion. Along thesilhouette edges, the �eld is evidently tangent to thesilhouette. In the lower half of the �gure, beyond thesilhouette, the �eld has a sort of sprial form, so thattra
ing it from points below the
usp should lead to a
lo
kwise
ir
ular path ba
k to a lo
ation above the
usp (although su
h
urves may well stagnate if theyhit the line dire
tly below the
usp, where the �eld isnormal to the surfa
e).lead to produ
tive results. Be
ause we are trying torender at intera
tive speeds, we have some
on�den
ethat inter-frame di�eren
es in the image are small, sosilhouettes in a frame are likely to be near their lo
a-tions in the previous frame. Thus former silhouettepoints are good
andidates for ray-starting-points inthe
urrent frame. If we displa
e these points slightly\inward" along the surfa
e normal, then surfa
e (or
amera) translations are less likely to
ause them tomiss the surfa
e when they're re-shot. We therefore,in
hoosing rays to shoot in ea
h frame, preferentiallysele
t starting points that lie on silhouettes from pre-vious frames; we also use some randomly
hosen rays,in hopes of �nding new silhouettes that may appearfar from any previous silhouette.5. TIMINGInitial timing tests for an exe
ution that involves fre-quent
amera motion suggest that the bulk (60%) ofthe algorithm's time is spent determining silhouette
urves. Of this, half (30%) is spent shooting rays,many of whi
h miss the surfa
e (although this de-pends on the s
reen-area o

upied by the surfa
e), aquarter (15%) on silhouette-�nding, and the remain-ing quarter on silhouette tra
ing.Another 30% is spent on o

lusion testing, virtu-ally all of it in ray-surfa
e interse
tion
omputations.The remaining 10% is spent drawing the shapes,doing obje
t-
reation in Java3D, and handling threadsyn
hronization and other tasks unrelated to the al-gorithm.

By
ontrast, during a model-
reation session, about80% of the time was spent determining silhouette
urves (70% ray-shooting, 10% silhouette-�nding, 20%silhouette-tra
ing), and about 20% doing o

lusiontesting. A small amount was spent
reating a draw-ing shapes in Java3D.6. LIMITATIONS AND FUTURE WORKThe algorithmdes
ribed here has some serious limita-tions. We require that f , rf and Hf all be availableat all points of the model that we render. For sampleddata, these might be provided by performing sometri
ubi
 interpolation of the samples, although wehave not implemented this. Further, our ray-surfa
einterse
tion requires the bound on the gradient mag-nitude, although it
ould be repla
ed with some othermethod if no su
h bound is available.The o

lusion testing uses only samples of the sil-houettes, and hen
e is prone to small errors. If weknew that we had
omputed all silhouettes, and pro-je
ted them to 2D, we
ould apply the methods usedby Markosian et al. [7℄ instead. It may well turn outthat this is more eÆ
ient, be
ause it would drasti
allyredu
e the number of ray-surfa
e interse
tion tests weneed to perform. Furthermore, it would allow us to do2D region-�ll operations to make the surfa
e interiora di�erent
olor from the ba
kground, whi
h wouldpresumably help in indi
ating the obje
t's shape.There are two additional
ues to the shape that
ould probably be shown by using a perspe
tive
am-era: motion parallax and the fa
t that obje
ts dimin-ish in size with in
reasing distan
e from the viewer.The �rst seems most e�e
tive in a system like ourswhi
h views models at intera
tive rates, although these
ond may be worth
onsidering as well. The
ur-rent implementation uses only an orthographi

am-era; repla
ing it with a perspe
tive
amera is a small
hange, but the ve
tor v, whi
h is
onstant for an or-thographi

amera, be
omes dependent on the viewedpoint for a perspe
tive
amera, whi
h would add somemodest
omputation.Our system
annot render texture maps on thesurfa
es, and indeed, sin
e we sample as few pointson the surfa
e as we
an, we see no way to in
ludethis.We would also like to push the limits of NPR fur-ther. For example, the rendering near
usps, wheresilhouette edges disappear, has a disappointing (tous) appearan
e, with the \shading
urves" fanningout. Hand-drawn
usps like the one in Figure 7 presenta far more attra
tive appearan
e, and we'd like some-how to
opy this. It would be ni
e to be able to �ndand dete
t other interesting features, su
h as sharpedges and singularities. In addition, we might exper-iment with a slower version of the algorithm whi
hwould draw shading a
ross the whole surfa
e, perhapsin a pen-and-ink style.

The tradeo� between step size and speed is onlypartly su

essful: if we in
rease the step size toomu
h, either we spend ex
essive time in the expli
it
orre
tors (re-interse
t surfa
e, re-�nd silhouette) orthe impli
it
orre
tors
an fail be
ause the assump-tion that the point is not far from the surfa
e, so thatgradient for
es
an bring it ba
k on, fails.As mentioned earlier, it would be good to tryother methods of integrating the silhouette
urve, su
has with Runge-Kutta integration, to see if we
anmake a gain in eÆ
ien
y.Our use of Java3D is unsatisfa
tory: it seems fool-ish to
reate
urves in 3-spa
e so that a 3D renderer
an redraw them for us in 2D. But with the opti-mizations in Java3D, it appears (at least on our Sunworkstations) to be faster to do this than to drawdire
tly in 2D.7. FINAL NOTESThe Java
lasses implementing this work will be madeavailable through the homepage of the authors, atwww.
s.brown.edu/people/jfh/is/is.html, whi
halso
ontains instru
tions for using the appli
ation.The appli
ation does, however, use Java3D, requiringthat users download this library from Sun and installit on their lo
al ma
hines.8. ACKNOWLEDGMENTSWe thank Je� White and Dan Gould for their help,espe
ially with Java programming issues. Also wethank our sponsors: NSF Graphi
s and VisualizationCenter, Advan
ed Network and Servi
es, Autodesk,Alias/Wavefront,Mi
rosoft, National Tele-ImmersionInitiative, Sun Mi
rosystems, and TACO.9. REFERENCES[1℄ Ronen Barzel and Alan H. Barr. A modelingsystem based on dynami

onstraints. In JohnDill, editor, Computer Graphi
s (SIGGRAPH'88 Pro
eedings), volume 22, pages 179{188, Au-gust 1988.[2℄ Jules Bloomenthal, editor. Introdu
tion to Im-pli
it Surfa
es. Morgan Kau�man Publishers,In
., 1997.[3℄ Cassidy J. Curtis, Sean E. Anderson, Joshua E.Seims, Kurt W. Fleis
her, and David H. Salesin.Computer-generated water
olor. In TurnerWhitted, editor, SIGGRAPH 97 Conferen
ePro
eedings, Annual Conferen
e Series, pages421{430. ACM SIGGRAPH, Addison Wesley,August 1997. ISBN 0-89791-896-7.[4℄ David P. Dobkin, Silvio V. F. Levy, William P.Thurston, and Allan R. Wilks. Contour tra
ingby pie
ewise linear approximation. ACM Trans-a
tions on Graphi
s, 9(4):389{423, 1990.

[5℄ E. Bru
e Goldstein. Sensation and Per
eption.Brooks/Cole Publishing Company, 1996.[6℄ Vi
toria Interrante. Per
eiving and representingshape and depth. SIGGRAPH 97 Course Notesfor Prin
iples of Visual Per
eption and Its Ap-pli
ations in Computer Graphi
s, August 1997.[7℄ Lee Markosian, Mi
hael A. Kowalski, Samuel J.Try
hin, Lubomir D. Bourdev, Daniel Goldstein,and John F. Hughes. Real-time nonphotore-alisti
 rendering. In Turner Whitted, editor,SIGGRAPH 97 Conferen
e Pro
eedings, AnnualConferen
e Series, pages 415{420. ACM SIG-GRAPH, Addison Wesley, August 1997. ISBN0-89791-896-7.[8℄ S
ott D. Roth. Ray
asting for modelingsolids. Computer Graphi
s and Image Pro
ess-ing, 18(2):109{144, 1982.[9℄ Mi
hael P. Salisbury, Sean E. Anderson, RonenBarzel, and David H. Salesin. Intera
tive pen{and{ink illustration. In Andrew Glassner, ed-itor, Pro
eedings of SIGGRAPH '94 (Orlando,Florida, July 24{29, 1994), Computer Graph-i
s Pro
eedings, Annual Conferen
e Series, pages101{108. ACM SIGGRAPH, ACM Press, July1994. ISBN 0-89791-667-0.[10℄ Mi
hael P. Salisbury, Mi
hael T. Wong, John F.Hughes, and David H. Salesin. Orientabletextures for image-based pen-and-ink illustra-tion. In Turner Whitted, editor, SIGGRAPH 97Conferen
e Pro
eedings, Annual Conferen
e Se-ries, pages 401{406. ACM SIGGRAPH, AddisonWesley, August 1997. ISBN 0-89791-896-7.[11℄ Mike Salisbury, Corin Anderson, Dani Lis
hin-ski, and David H. Salesin. S
ale-dependent re-produ
tion of pen-and-ink illustrations. In HollyRushmeier, editor, SIGGRAPH 96 Conferen
ePro
eedings, Annual Conferen
e Series, pages461{468. ACM SIGGRAPH, Addison Wesley,August 1996. held in New Orleans, Louisiana,04-09 August 1996.[12℄ Barton T. Stander and John C. Hart. Guarantee-ing the topology of an impli
it surfa
e polygani-zation for intera
tive modeling. In Turner Whit-ted, editor, SIGGRAPH 97 Conferen
e Pro-
eedings, Annual Conferen
e Series, pages 279{286. ACM SIGGRAPH, AddisonWesley, August1997. ISBN 0-89791-896-7.[13℄ Georges Winkenba
h and David H. Salesin.Computer{generated pen{and{ink illustration.In Andrew Glassner, editor, Pro
eedings of SIG-GRAPH '94 (Orlando, Florida, July 24{29,1994), Computer Graphi
s Pro
eedings, AnnualConferen
e Series, pages 91{100. ACM SIG-GRAPH, ACM Press, July 1994. ISBN 0-89791-667-0.[14℄ Georges Winkenba
h and David H. Salesin.Rendering parametri
 surfa
es in pen and ink.In Holly Rushmeier, editor, SIGGRAPH 96

Conferen
e Pro
eedings, Annual Conferen
e Se-ries, pages 469{476. ACM SIGGRAPH, Addi-son Wesley, August 1996. held in New Orleans,Louisiana, 04-09 August 1996.

