
An Interface for Sketching 314 Curves

Jonathan M. Cohen, Lee Markosian, Robert C. Zeleznik, and John F. Hughes* Ronen Barzel t

Brown Universityi PIXAR

Abstract closely matches the one she is used to - namely pencil and
paper.

The ability to specify nonplanar 3D curves is of fundamen-
tal importance in 3D modeling and animation systems. Ef-
fective techniques for specifying such curves using 2D in-
put devices are desirable, but existing methods typically re-
quire the user to edit the curve from several viewpoints. We
present a novel method for specifying 3D curves with 2D in-
put from a single viewpoint. The user first draws the curve
as it appears from the current viewpoint, and then draws its
shadow on the floor plane. The system correlates the curve
with its shadow to compute the curve’s 3D shape. This
method is more “natural” than existing methods in that it
leverages skills that many artists and designers have devel-
oped from work with pencil and paper.

CR Categories: 1.3.6 [Computer Graphics]: Methodology
and Techniques-Interaction Techniques

The technique we present is an extension of the idea used
in [ll, 201 that a point in 3D can be determined from its
image-space projection together with that of its “shadow.”
(The “shadow” is just the vertical projection of the point
onto some horizontal surface.) We apply this idea to a
connected set of 3D points to define a curve. With this
approach, the user sketches a curve directly into a scene
in two strokes: Iirst drawing the curve as it appears from
the current viewpoint, and then sketching its approximate
“shadow.” The effect is to redefine the 3D shape of the curve
while leaving its appearance unchanged. The user can then
refine portions of the curve by over-sketching either its pro-
jected image or that of its shadow. Although this technique
is less precise than existing ones, it lets the user quickly
sketch a reasonably correct shape that may be further re-
fined with more conventional methods.

Keywords: Curve Manipulation, 3D Modeling, Interac-
tive Shadows.

2 PREVIOUS WORK

1 INTRODUCTION

Specifying 3D curves is one of the most important tasks that
a 3D user interface must support. Curves are used in mod-
eling and CAD systems to specify surface patches [2, 11, as
skeletal shapes for implicit surfaces [5], and to define con-
trols for object deformations [18]. Animation systems and
VR applications use curves to specify motion and camera
paths [i’, 14, 121.

Some techniques for editing curves are indirect in that they
require the user to modify parameters, e.g. spline con-
trol points or knot values, that in turn affect the curve’s
shape. Other techniques allow direct manipulation of the
curve itself, such as the overdrawing paradigm described by
Baudel [4] and direct manipulation of spline curves [9, 10,
211. The technique we present falls into this latter category.

Many authors have recognized the importance of specify-
ing curves directly [9, 10, 21, 4, 20, 131. Although sketched
curves are imprecise by nature, sketching allows a user to
quickly create a curve that is close to the desired result,
even if she has little experience with the underlying curve
representation. A novice user can quickly create approxi-
mate curves because little overhead is required to learn the
interface. A trained artist can apply her existing drawing
skills to produce accurate curves because the interface more

Although much work has been done in sketching 2D
curves [4, 13, 3, 171, few systems have addressed the issue of
sketching curves in 3D. One notable exception is the 3-Draw
system [16], which uses Polhemus trackers attached to a sty-
lus to allow a designer to sketch in 3D with arm motions.

l ~mc,lem,bcz$h]Ocs.brown.edu
tronenQpixar.com
tBrown University Site of the NSF Science and Technology

Center for Computer Graphics and Scientific Visualization, Prov-
idence, RI 02912

Commercial 3D modeling systems such as Maya and
3DStudio [l, 21 give the user a variety of techniques for creat-
ing and editing curves. Most of these, however, are indirect
(e.g. the user edits spline control points or intersects two
surfaces). In Maya a user can sketch a curve directly onto
a user-defined plane, or more generally onto a surface. Of
these techniques, only the latter constitutes a direct method
for specifying nonplanar curves. But the user can draw on
a surface only where nothing occludes it. To draw all the
way around a sphere, for example, the user must draw from
multiple camera positions. Thus, there are restrictions on
the types of curves that can be sketched from a single view.

per~lljssj~ to make digital or hard copies of all or part ot’this work for
personal or cfassroom use is granted without fee provided that copies
are not made or distributed for protit or commercial advantage and that
topics bear this notice and the full citation on the first page. TO COPY
otherwise. to republish. to post on sewers or to redistribute to fists,
requires prior specific permission andior a fee.
1999 Symposium on Interactive 3D Graphics Atlanta GAUSA

Copyright ACM 1999 I-581 13-082-1/99/04...$5.00

The interface we present complements existing 3D mod-
eling systems by providing additional flexibility for directly
sketching nonplanar curves.

3 OVERVIEW OF THE SYSTEM

We support four basic operations for sketching curves: draw-
ing a new curve in some plane, “overdrawing” a section of an
existing curve, redefining a curve’s entire shadow, and over-
drawing a section of a curve’s shadow. Figures 1, 2, 3, and 4

17

illustrate the steps involved in creating and editing a curve.
To distinguish between operations that edit the shadow and
operations that edit the curve, the user selects either shadow
mode or curve mode via a menu or keyboard shortcut.

When the user draws a stroke in curve mode or shadow
mode, the system determines whether the stroke is an “over-
draw” by checking whether it starts and ends near and nearly
parallel to an existing curve or shadow. If so, we merge it
into the existing curve using a method similar to that de-
scribed in [4]. In curve mode, if the stroke is not an overdraw,
the system interprets it as a new curve that is projected onto
a plane; the plane is determined by a set of heuristics de-
scribed below.

To define a shadow, the user (in shadow mode) draws a
stroke beneath the curve to be modified. If the stroke ap-
pears to be an overdraw, the system blends it into an existing
shadow. If there is no existing shadow with which the new
shadow can be merged, we test whether its endpoints he ap-
proximately below some curve’s endpoints. If so, we take
this to mean than the the curve’s shadow was entirely re-
drawn. (If not, the stroke is rejected.) Finally, we reproject
the curve back into the scene to match its new shadow.

3.1 Drawing Curves and Shadows

We represent 3D curves as parameterized polylines, i.e., as
piecewise linear curves defined by a mapping from [0, l] +
R’. Before they are used to define curves or shadows, input
strokes are smoothed in the following way. First we filter
the stroke to remove all points whose screen-space distance
is less than some threshold (e.g. 25 pixels) from the previous
point. We fit a Catmull-Rom spline [8] to the remaining
points and sample the spline every few pixels to generate a

smooth-looking polyline.’
When a curve is first drawn, we project the 2D stroke

onto a plane in world space to create a 3D planar curve. We
choose the plane as follows. If either endpoint appears to he
on an existing object (or curve), we take this as intentional
and place the endpoint in 3D so that it lies on the existing
object. We then choose a plane that contains the endpoint
(or points). Since one or two points do not uniquely deter-
mine a plane, we choose, among all planes containing them,
the one that is most nearly screen-parallel.

If neither endpoint appears to he on an existing object in
the scene, we determine which plane to use from the angle of
the camera. If the camera is looking down, we use the floor
plane, and if the camera is at an oblique angle, we use the
plane perpendicular to the floor plane that is most nearly
screen-parallel.

A shadow is a 3D curve obtained by projecting another
3D curve along a fixed vector, which we call the projection
vector, onto some surface. In this discussion, we always use
the world Y axis as the projection vector, and we always
project onto the floor plane. These choices are arbitrary -
we could just as easily use the world X vector and let the user
draw shadows on a wall. Also, note that in all of our exam-
ples, the shadow is a planar curve. This assumption is not
necessary for any of the algorithms described below. Thus,
we could project shadows onto rolling terrain, for instance.

The key feature of this system is the ability to edit a
curve via its shadow. As noted in [11, 20, 19], a point’s
location is determined uniquely by its appearance from an
oblique camera position and by its shadow. We extend this
idea to curves: the shape of a 3D curve is determined by its
image-space projection and its shadow.’ Thus, to modify
a curve’s shape in our system, the user redraws its shadow.
This redefines the curve’s shape while leaving its appearance
from the current camera position unchanged.

It can be difficult to draw a valid shadow for a given curve.
To facilitate this, we draw vertical guidelines at both ends
of the curve. These lines provide feedback that helps the
user align the shadow with the curve. Also, the matching
algorithm does not require that the curve and shadow be
exactly aligned, only that they be “close,” as explained in
the next section.

3.2 Correlating Curves with Shadows
Once a curve’s shadow or image-space projection has been
redefined, we project the curve back into the scene using the
following method.

We assume either a perspective or orthogonal projection,
with the restriction that the camera’s “look vector” is not
close to parallel with the projection vector. In a perspective
projection, the vanishing point for vertical lines must be off
the screen. This allows us to define a left-to-right ordering of
3D points (see figure 5). To test if a point A is left or right of
another point B, we project A into the image. Then we take
the line parallel to the projection vector running through A’s
world location and project this line into the image. This line
(call it I) partitions the image into two sections, one to the
left and one to the right. If the image-space projection of
B is to the left of I, we say B is image-space left of A and
similarly for image-space right. If B lies on 1, we say A and

‘This smoothing step, while independent of the overall tech-
nique, is important since noise in the input device propagates to
the final 3D curves.

21n certain cases described below, the curve’s 3D shape is not
determined uniquely.

deform the shadow so that all matching critical points are
precisely image-space aligned. This is done by rotating and
scaling each span of the shadow to align it with the corre-
sponding span of the curve, as shown in figure 11. This step
allows the user to sketch an approximate shadow, leaving it
to the system to ensure that curve and shadow are precisely
aligned.

We now have a valid aligned shadow and a correspon-
dence between each span of the shadow and some span of
the curve. Just as the shadow defines a particular surface, we
can think of the curve as defining a unique surface containing
all rays extending from the camera through the image-space
projection of the curve. We intersect each portion of the
curve surface with the corresponding layer of the shadow
surface to produce a section of the 3D curve, as shown in
figure 12. Because we use a piecewise linear representation
for our curves, we intersect these two surfaces by breaking
them up into planar segments and intersecting the corre-
sponding segments. We splice all such sections together to
get the final 3D curve.

Near a critical point on the shadow, the tangent plane to
the shadow surface is oriented nearly edge-on to the camera.
This has the effect of magnifying noise in the 2D input: that
is, small variations in the input stroke result in large varia-
tions in depth for the 3D curve. To alleviate this problem,
we remove points that are nearly aligned to critical points of
the shadow, replacing them with a smooth spline that joins

neighboring sections of the 3D curve. Finally, we perform
the same filtering and smoothing operations described above
to improve the smoothness of the final curve.4

In certain cases this algorithm may produce an unintended
result. This can happen when the curve and shadow have
multiple critical points that are image-space aligned. One
example is shown in figure 13. In a case such as this, the
image-space curve and shadow do not define a unique 3D
curve. Our algorithm will find one possible 3D curve, but it
might not be the intended one.

3.3 Strut Manipulation
We can consider the problem of correlating a curve with a
shadow to be an instance of the general problem of matching
features in two signals. From this point of view, we wish to
extract the “salient” features of the image-space curve and
shadow, register the two curves to align these features, and
finally calculate the final 3D curve.

In our current system, we take into account only the crit-
ical points of the image-space curve and shadow. That is,
critical points are the only features we consider to be salient.
The system ignores other features, such as bends, because
we assume that the user will draw such features in correct
alignment (figure 17 shows what happens when this is as-
sumption is incorrect).

It might be useful to provide automatic registration of
such features - one possible way to do this would be to adapt
the dynamic timewarping algorithm from [6] to register the
curve with the shadow.

Though we do not currently support this more general
notion of signal matching, we do let the user explicitly align
certain features. To facilitate this, we allow the user to draw
struts, which are lines parallel to the projection vector that
connect a fixed point on the shadow with a fixed point on the
curve. After placing a strut, the user may drag its bottom up
or down. This has the effect of adjusting the shadow while
leaving the appearance of the curve unchanged, as shown in
figure 14. The shadow is affected just in the span between
the two neighboring struts.

4 DISCUSSION

Color Plates 14 - 17 show our system in action.
This system is well suited for applications that require

fast specification of approximate 3D curves. Applications
that require more precise curves might still benefit from this
technique, because of the lack of overhead required and the
simplicity of the interface. In one scenario, the user would

4Because we perform these filtering and smoothing steps, the
appearance of the curve is not constant - it often changes by a
few pixels after each edit.

quickly sketch an approximate curve, then refine its shape
with more conventional techniques.

We mentioned previously that our technique can be ex-
tended to allow shadows on walls or nonplanar surfaces.
There is also no reason to restrict the user to drawing the
curve and shadow from the same point of view. The user
might draw the shadow from an overhead camera position
(thus specifying the shadow more accurately), then sketch
the curve from an oblique viewpoint.

A limitation of this method is that it can be quite hard
to judge what the shadow should look Iike for complex 3D
curves, especially from an oblique viewpoint. We have ob-
served that users in our lab, even those with artistic training,
have considerable difficulty drawing corkscrews and other
spiraling shapes. In such cases, a better solution might be
to use a 3D input device such as a Phantom or a 3D tracker.

5 FUTURE WORK

We use context-sensitive commands to indicate over-
sketching operations and keyboard modifiers to indicate
modes and to differentiate between different editing oper-
ations. Although this works, it is neither consistent nor
supported by user studies. We would Iike to find a more
streamlined user interface, perhaps using marking menus or
gestural commands [15]. We would also Iike to have more
users try this system, especially users with artistic training
but little experience with computer graphics tools.

Finally, we have started to use this curve-sketching tech-
nique within a sketch-based free-form modeling system. We
believe this interface is a good starting point from which to
build a modeling system that leverages a user’s talent with
pencil and paper to create more complicated shapes than
was possible with the original SKETCH system [20].

6 ACKNOWLEDGMENTS

We thank Andries van Dam and the Graphics Group.
This work is supported in part by the NSF Graphics
and Visualization Center, Advanced Network and Services,
AIias/Wavefront, Autodesk, IBM, Intel, Microsoft, National
Tele-Immersion Initiative, Sun Microsystems, and TACO.

References

PI
PI
[31

[41

[51

PI

Alias / Wavefront. Maya, 1.0 edition, 1998.

Autodesk. 3D Studio MAX, 1996.

Michael J. Banks and Elaine Cohen. Realtime spline
curves from interactively sketched data. In Computer
Graphics (1990 Symposium on Interactive 30 Graph-
ics), pages 99-107, 1990.

Thomas Baudel. A mark-based interaction paradigm
for free-hand drawing. In Proceedings of UIST 94, pages
185-192. ACM SIGGRAPH, 1994.

Jules Bloomenthal and Brian Wyvill. Interactive tech-
niques for implicit modeling. In Computer Graphics
(1990 Symposium on Interactive 3D Graphics), pages
109-116, 1990.

Armin Bruderlin and Lance Williams. Motion signal
processing. In SIGGRA PH 95 Conference Proceedings,
pages 97-104. ACM SIGGRAPH, August 1995.

E71

PI

PI

PO1

WI

WI

[131

P41

P51

WI

P71

WI

WI

WI

WI

M. F. Cohen. Interactive spacetime control for anima-
tion. In SIGGRA PH 92 Conference Proceedings, pages
293-302. ACM SIGGRAPH, July 1992.

Gerald Farin. Cvrves and Surfaces for Computer Aided
Geometric Design. Academic Press, third edition, 1993.

Barry M. Fowler and Richard H. Bartels. Constraint-
based curve manipulation. IEEE Computer Graphics
and Applications, pages 4349, September 1993.

Cindy Grimm and Matthew Ayers. A framework for
synchronized editing of multiple curve representations.
In EUROGRAPHICS ‘98, pages C-31 - C-40, 1998.

Kenneth P. Herndon, Robert C. Zeleznik, Daniel C.
Robbins, D. Brook&ire Conner, S. Scott Snibbe, and
Andries van Dam. Interactive shadows. In Proceedings
of UIST 92, pages 1-6. ACM SIGGRAPH, November
1992.

T. Igarashi, R. Kadobayashi, K. Mase, and H. Tanaka.
Path drawing for 3d walkthrough. In Proceedings of
UIST 98, pages 173-174. ACM SIGGRAPH, 1998.

T. Igarashi, S. Matsuoka, S. Kawachiya, and H. Tanaka.
Pegasus: A drawing system for rapid geometric design.
In CHI’98 Summary (A CM Conference on Human Fac-
tors in Computing Systems), pages 24-25, 1998.

R. Pausch, T. Burnette, D. Brockway, and M. E.
Weiblen. Navigation and locomotion in virtual worlds
via flight into hand-held miniatures. In SIGGRAPH
95 Conference Proceedings, pages 39%400. ACM SIG-
GRAPH, 1995.

Dean Rubine. Specifying gestures by example. In
SIGGRAPH 91 Conference Proceedings, pages 329-337.
ACM SIGGRAPH, August 1991.

Emanuel Sachs, Andrew Roberts, and David Stoops.
bdraw: A tool for designing 3d shapes. IEEE Com-
puter Graphics and Applications, pages 18-25, Novem-
ber 1991.

P.H. Schneider. An algorithm for automatically fitting
digitized curves. In A. Glassner, editor, Graphics Gems.
Academic Press, 1990.

Karan Singh and Eugene Fiume. Wires: A geometric
deformation technique. In SIGGRAPH 98 Conference
Proceedings, pages 405414. ACM SIGGRAPH, July
1998.

Robert C. Zeleznik, Andrew S. Forsberg, and Paul S.
Strauss. Two pointer input for 3d interaction. In
Computer Graphics (1997 Symposium on Interactive
30 Graphics), April 1997.

Robert C. Zeleznik, Kenneth P. Herndon, and John F.
Hughes. Sketch: An interface for sketching 3d scenes.
In SIGGRAPH 96 Conference Proceedings, pages 163-
170. ACM SIGGRAPH, August 1996.

J. M. Zheng, K.W. Chan, and I. Gibson. A new ap-
preach for direct manipulation of free-form curves. In
EUROGRAPHICS ‘98, pages C-327 - C-334, 1998.

21

Figure 15: The rope in the tetherball scene was drawn from the viewpoint in [a]. Figure [b] shows the same scene from a
different viewpoint.

Figure 16: The user has sketched a camera path through this virtual environment. The curve was created from the viewpoint,
in [a]. Figure [b] shows the scene from a different viewpoint.

