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ABSTRACT
This paper explores the use of visual operators for solids modeling. We focus
on designing interfaces for free-form operators such as blends, sweeps, and
deformations, because these operators have a large number of interacting
parameters whose effects are often determined by an underlying parameter-
ization. In this type of interactive modeling good solutions to the design
problem have aesthetic as well as engineering components.

Traditionally, interaction with the parameters of these operators has been
through text editors, curve editors, or trial-and-error with a slider bar. Para-
metric values have been estimated from data, but not interactively. These
parametersare usually one- or two-dimensional,but the operators themselves
are intrinsically three-dimensional in that they are used to model surfaces
visualized in 3D. The traditional textual style of interaction is tedious and
interposes a level of abstraction between the parameters and the resulting
surface. A 3D visual interface has the potential to reduce or eliminate these
problems by combining parameters and representing them with a higher-
level visual tool. The visual tools we present not only speed up the process
of determining good parameter values but also provide visual interactions
that are either independent of the particular parameterizations or make ex-
plicit the effect of the parameterizations. Additionally, these tools can be
manipulated in the same 3D space as the surfaces producedby the operators,
supporting quick, interactive exploration of the large design space of these
free-form operators.

This paper discusses the difficulties in creating a coherent user interface for
interactive modeling. To this end we present four principles for design-
ing visual operators, using several free-form visual operators as concrete
examples.

CR Categories: I.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling, Curve, surface, solid, and object representations, Splines;

Additional Keywords: User Interfaces.

1 Introduction
Modeling free-form surfaces is a difficult problem that has
attracted a good deal of attention. The difficulty has two pri-
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mary sources: the mathematics for describing surface types
that are sufficiently general to be termed “free-form” is often
complicated, and the design space – the set of all possible
surfaces that can be made from such a description – is often
so huge that the task of selecting an element of this space (or
even of narrowing down to subsets of the space that converge
on a desired element) is extremely difficult.

Usually the latter problem is addressed in part by providing
a user interfacewhose job is to help a user define an element
of the design space; such interfaces are often only thinly
disguised editors of the parameters of the original mathemat-
ical description. Examples are control-point manipulation
methods for free-form curves and surfaces and “tension” and
“bias” editors for various spline types. While in many cases
these parameters have natural geometric interpretations, they
may not represent the characteristics that a user wishes to
adjust: all too often, the user says “I wantthis basic shape,
but I want this point to be just a little further overthere.”
Interactiveinterfaces – ones providing rapid feedback – have
evolved to fill this need, in particular interfaces that let the
user interact directly with curves and surfaces instead of their
control points.

Building interactive interfaces that support users’ goals re-
quires an intimate understanding of the parameters of the
design space and their influence on the resulting model. In-
terfaces that exist in the same 3D world as the surface being
modeled have the advantage that the user may get the sense
of “shaping the surface directly.” Furthermore, 3D interfaces
can provide “coordinate-free” interaction, which may match
a user’s expectations, especially in the context of free-form
shape development. Finally, theinteractivityof an interface
can exploit the users’ ability to generalize by letting them try
small variations of a model and thereby predict what larger
changes will generate. This can help give users an intuitive
feel for the large design space and the tools that are provided
for navigating within the space.

This paper first describes some concrete examples of inter-
active interfaces for free-form modeling operations; the un-
derlying operations act on spline surfaces. We abstract our
experience in building these interfaces to give guidelines for
developing “visual tools.” We also discuss how the develop-
ment of such visual tools actually provides feedback into the
realm of operator design: a sufficiently powerful interface
to an operator may suggest the need for a different operator
with enriched expressiveness. Thus the entire process of de-
signing interfaces to free-form modeling becomes not only
an interface problem but an operator design problem as well.
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Figure 1: (a) A curve with one point pinned and a
vector showing the desired movement. (b) The result-
ing solution. (c) Curve with desired move vector. (d)
Result with two different parameterizations.

We begin by discussing previous work in 3D interaction and
modeling. We then discuss in Section 2.1 the prototyping
system we use to create and test our visual interfaces. In
Section 3 we describe the sweep, warp (a deformation), and
blend operators and the interfaces we have created for ma-
nipulating them. Section 4 presents four goals appropriate
in creating visual interfaces, using the previously discussed
visual interfaces as examples. In the final section, Section 5,
we discuss possible avenues for future work. An appendix
gives some of the mathematics necessary for communication
between the visual interface and the underlying operators.

2 Related work
We examine here the two primary methods for interactive
operator specification. The first method focuses on direct
manipulation of a curve or surface, while the second method
involves specifying operators using a geometric object that
represents the operation. The work in this paper builds on the
latter method.

The direct manipulation of curves and surfaces began with a
“push-pull”metaphor in which an arbitrary point on the curve
is selected and then dragged using the mouse to another loca-
tion [FB91] [Fow92]. Extensions to this work include adding
other geometric constraints, such as requiring that a particu-
lar point of the curve remain fixed, or adjusting the tangents
as well as the positions of the curve [WW92]. This form of
manipulation simplifies the task of shaping a curve or surface
by hiding the dependency upon the control points, but has
two main drawbacks that have not been dealt with. The first
is that the constraints may lead to some unexpected results.
For instance, if the middle of the curve is pinned to a partic-
ular location and a nearby point is moved, the curve on the
other side of the pinned point may also move (see Figures 1a
and 1b). The second problem is that the underlying parame-
terization of the manipulated object determines the behavior
of the manipulation. This is because most direct manipu-
lation techniques are implemented by finding control-point
configurations that satisfy the desired constraints. For exam-

ple, in Figures 1c and 1d the two curves are parameterized
differently, yielding two different behaviors when a point is
selected and moved. This problem was partially addressed
in [HHK92] where a 3D lattice for a free-form deformation
was manipulated directly using several different techniques.
The effects of these techniques were indicated visually by dif-
ferent geometric shapes, or tools, which were used to sculpt
the object in the 3D lattice.

Thesecond areaof research has focused on creating geometric
representations of modeling operators. We call such repre-
sentationsvisual tools. The first visual tools, representing
the twist, bend, and taper [TPBF87] operators [SHR+92],
have geometry that represents the different parameters for
the given modeling operator. For example, the beginning and
ending points of the twist operator are represented by two 3D
points and the amount of the twist is represented by the angle
of the twist “handle”. This work demonstrated the potential
inherent in 3D interfaces and explored basic guidelines for
their construction; the design of the visual tools presented in
this paper began with these guidelines.

There are, however, problems and issues in the realm of solids
modeling that have not been specifically addressed. The first
problem isinteractivity. For a 3D interface to be usable, it
must run at interactive rates, i.e, user’s actions should elicit
immediate feedback. Because many solids modeling oper-
ations, such as blending between two surfaces, cannot be
computed at interactive rates, we have developedapproxi-
matetechniques, that allow us to run in realtime, with the
loss of some resolution (see Appendix A).

The visual tool for the twist, bend, and taper [SHR+92] and
our warp tool (Sec. 3) both use a one-to-one correspondence
between the parameters of the operator and the geometry of
the tool. Although this was possible for these operators, the
parameters of many modeling operators do not have such an
obvious geometric equivalent, or the values of one parameter
cannot be decoupled from those of another. For example, the
tools for the blend operator in Section 3 use geometry that
indicates the result of the operation, not the parameters.

One further problem to address is the order of operations, and
how one visual tool affects another. With a textual interface,
the order of the operators is fairly well-defined, but with an
interactive interface there is some ambiguity.

2.1 The prototyping system
The system used to create and examine the visual tools is
a hybrid of Brown University’s interactive 3D illustration
system [ZCv+91] and the University of Utah’s modeler, Al-
pha1 [EGS91]. Many of the visual operators were con-
structed using Brown’s Toolkit [ZHR+93] [SZH94], a 3D
toolkit designed for quick prototyping of three dimensional
widgets. The actual modeling operations were performed by
Alpha 1 (see Figure 2).

3 The operators
We have seen some of the reasons why a 3D interface can be a
powerful design tool,and we have listed some of the problems
confronting a visual tool designer. This section describes in
detail three different modeling operators and their associated
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Figure 2: The connection between Brown’s interface
system and Alpha 1.

visual tools,which were developed by applying the guidelines
in [SHR+92] to a solids modeling interface. The following
section gives some principles for a solids modeling interface
design similar to those in [SHR+92].

The operators presented in this section are used to illustrate
the principles given in the followingsection. We first describe
the operator as defined in Alpha1 and then the visual tools
and how they relate to Alpha1’s operators.

The parts of the visual tools fall into three different classes:
manipulable geometry (e.g., a vector which can be moved
or rotated), explanatory geometry (e.g., a vector indicating
a tangent), and geometric parameters (e.g., a curve defined
elsewhere). A part is not necessarily restricted to one of
the three classes; it can play several roles depending on the
context.

The operators we define here exemplify three different types
of design interaction; a surface construction operator (the
sweep), a surface deformation operator (thewarp), and an
operator that smoothly joins two surfaces (theblend).

3.1 The sweep tool
A sweep is a curve, surface or volume that is the result of
moving a geometrical object (such as a point, curve, sur-
face or volume) through 3D space. Bloomenthal in [BR91]
presents a formal framework for the generation of sweep sur-
faces based onnon-uniform rational B-splines. This method
sweeps a set of three-dimensionalcross-sectioncurves along
a three-dimensionalaxiscurve. Each cross section curve is
associated with a parameter value of the axis curve which
specifies where the cross section lies. The sweep is the result
of blending between successive cross section curves. Figure 3
shows an axis curve, cross-section curve, and the resulting
sweep surface.

Thesweep tool(shown in Figure 4a) is used to add or change
a cross-section curve of a sweep. The geometric parameters
to this tool are the axis curve and a cross-section curve: the
center of the tool is constrained to lie on the axis curve and
its orientation is determined by the tangent and normal of
the axis curve. The tool slides along the axis curve freely;
the center of the tool determinesp, the position of the cross-
section curve on the axis curve. The cross-section curve can
be scaled and rotated using the dark gray point. The lightgray
vector indicates the tangent of the axis curve atp. The dark

(a) (b)
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Figure 3: (a) The axis curve and tangent vector (b)
The cross-section curve with x and y axes shown; the
z axis is out of the paper. (c) The resulting sweep sur-
face: the z axis of the cross-section is always oriented
in the direction of the axis curve’s tangent vector.

gray vector indicates the orientation of the cross-section curve
and is drawn in the plane orthogonal to the light gray vector.
Additionally, the cross-section and axis curves can be directly
manipulated in place using the push-and-pull method. If the
cross-section curve is initially planar, then the location of the
curve and the curve manipulation are constrained to the plane
orthogonal to the tangent vector.

The user creates a sweep tool, either providingaxis and cross-
section curves or using the system’s default curves. The tool
is constrained to lie on the axis curve; initially, a constant-
width sweep is produced. The location at which a specific
cross-section curve is placed in the sweep is changed by
moving the sweep tool to the desired point on the axis curve.
The cross-section curve can be deformed, rotated, or scaled
as desired.

Additional cross-sections are added by unconstraining1 the
tool from the current cross-section and reconstraining it to a
new one. Ghosts of these specified cross-sections are drawn
in place. At any time the user can constrain the tool to an old
cross-section for futher modification or deletion.

3.2 The warp tool
The warp operator is used to introduce bumps of various
shapes into a surface [Cob84]. The warping operator takes as
input the center of the warp, a warp direction~d, and several
unintuitive parameters that specify the shape and region of
influence of the warp. In addition, restriction planes may be
used to restrict the warp to the part of the surface lying on
one side of the plane. Warps are created simply by moving a
set of the surface’s control points around the warp center in
the direction~d.

1The Brown University toolkit is a geometrical constraint system; un-
constraining one object from another essentially removes the dependency
between the two objects.
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Figure 4: Sweep Tool, consisting of orientation vec-
tor (dark gray), scale point (dark gray), tangent vector
(light gray), center of tool (light gray point) and cross-
section curve. (a) Sweep tool with the axis and cross-
section curves in black. (b) Sweep tool with the sweep
defined by the axis and the cross-section curve.

A major motivation for developing this operator was to elim-
inate the tedious and often difficult task of moving the indi-
vidual control points of the surface. Although this operator
simplifies the creation of free-form bumps, the textual inter-
face to the warp operator results in multiple interations of
parameter-tweaking. Thewarp tool allows for interactive
specification of warps in an intuitive, visual way, thereby
eliminating much of the change-view cycle.

The visual tool for a warp is shown in Figure 5a. The warp
tool can be moved to any point in three-space; the center of
the warp is indicated by the point in the center of the ring. The
dark gray vector indicates the direction and strength of the
warp. The ring, which can be scaled in and out, represents the
region of influence of the warp. (The remaining parameters,
those which influence how the warp falls off, are currently set
to default values.) The light gray planeand vector in Figure5b
form a restriction plane; any control points “below” the plane
are not moved. The location and orientation of the plane are
controlled by the light gray vector normal to the plane.

3.3 The blend
Surface blending is a powerful design tool for making smooth
C1 transitions between two surfaces. Blends are used for a va-
riety of reasons: to physically strengthen the join between two
objects, to model objects to be milled with a ball-end cutter, to

clean up the sharp edges after a boolean operation, and to in-
crease visual appeal. The blending operator [Kim92], [Fil89]
is a function of three parameters:

� Two primary surfaces,�1(u; v) and�2(u; v), whereDi is
a rectangular subset of<2

�i(u; v) : Di � <2 ! <3 (1)

� two curves defined in the parametric space of the surfaces,

1(t) = (u1(t); v1(t)) and
2(t) = (u2(t); v2(t)), where


i(t) : < ! Di (2)

� two tangent curves�1(t) and�2(t) describing the direction
and magnitude of the tangents along the boundary of the
primary surface and the blend surface.

The parameter space curves
1(t) and
2(t) are symbolically
composedonto the respective primary surfaces to produce
curvesΓ1(t) andΓ2(t) that lieexactly(to machine tolerance)
on the surfaces:

Γi(t) = �i(
i(t)) = �i(ui(t); vi(t)): (3)

Figure 6a, b and c gives an example of�(u; v), 
(t) andΓ(t),
respectively. The composed curveΓ(t) becomes therail
curveor blend-surfaceboundary. WithΓ1(t),Γ2(t),�1(t)and
�2(t), a Hermite blending surface [Far92] can be constructed
which isC1 to both primary surfaces (see Figure 7a and b).

Unfortunately, it is currently impossible to perform the sym-
bolic curve-surface composition interactively due to its com-
putational expense. We have therefore developed a fast ap-
proximation to composition to let us explore blending op-
erations interactively, the details of which are given in Ap-
pendix A.1. With these approximated rail curves, we can
create a blend surface that isC1 to a certain tolerance. We
use these approximations during interaction in order to pro-
vide feedback to the user. This approximation gives the
user a good idea of how the final blend will appear after the
interactive design. After interaction, the exact, more time
consuming blend can be computed. This technique provides
a good tradeoff between interactivity and correctness.

We have created several different visual tools that interact
with the blend operator. Our first tool simultaneously speci-
fies the two rail curves of a blend operation (see Figure 8a);
we call this therail-tie tool because it looks like a railroad
tie. The second tool is for altering a rail curve once it has
been constructed. This tool is a direct manipulation tool and
has no associated geometry (see Figure 9). The last tool is
for altering the tangents of the blend surface and is called the
tangent tool(see Figure 10).

The rail-tie tool takes as parameters the two surfaces between
which the blend surface is to be defined. The idea of the rail-
tie tool is to specify some number of contiguous points on
each surface through which the rail curve for that surface will
pass. The rail-tie tool creates two points that are constrained
to lie in the two surfaces. One of the major difficulties in
specifying rail curves is getting a good correspondence be-
tween the two rail curves; the parameterization of the top half
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Figure 5: Warp Tool. (a) Warp applied to a flat surface.
(b) The same warp with a restriction plane.

of the blend surface is defined by the top rail curve, while
the parameterization of the bottom half is defined by the bot-
tom rail curve. If these two parameterizations do not match
nicely, the blend surface “twists” (see Figure 8b). The rail-
tie tool provides explicit control over the parameterization
of the blend surface by defining a correspondence between
the parameterization of the two rail curves while defining the
geometry of the rail curves.

To specify rail curves, the user first creates a rail-tie tool
over the two primary surfaces. The two points of the rail-tie
tool are automatically constrained to default points on the
two surfaces. The user then positions the two spheres to
indicate the first two points of the rail curves. Once they are
positioned, the user requests two new points. Gray spheres
now appear on the surface to indicate the locations of the
previously specified points. The user is now free to move the
new points to indicate the positions of the next two points
on the rail curves. The system continuously updates the rail
curves to pass through all the given points.

Therail-curve manipulation toolallows us to manipulate the
composite rail curveΓ(t) on the surface, instead of the curve

(t) defined in the parameter space of the surface. The be-
havior of most direct manipulation techniques depends upon
the parameterization of the curve; in this case, the difficulty
is compounded because the behavior also depends on the
parameterization of the surface. To solve this problem, we
developed a curve manipulation technique that does not de-

(a) (b)

(c)
Figure 6: Composition. (a) Surface, �(u; v). (b) 
(t),
curve defined in parametric space of �(u; v). (c) Com-
posite curve Γ(t) = �(
(t)) in bold.

pend upon the parameterization of the curve or the surface
(details are given in Appendix A.2).

To delineate the extents of the curve manipulation we use two
spheres that are constrained to the curve. Figures 9a and b
show the same curve with two different curve extents marked
out. When the curve is grabbed and pulled, only the section
of the curve between the two spheres moves.

The tangent tooltakes as parameters a rail curve and its
corresponding blend region. The tool is constrained to lie on
the rail curve, but is free to move along it in order to indicate
the pointp = �(
(t)) at which to scale the cross-boundary
tangents. The vector points in the direction of the cross-
boundary tangent atp. We can scale the tangent of the blend
atp by stretching and shrinking the vector. The corresponding
tangent curves are altered using a least-squares technique to
achieve the desired tangent values.

4 Principles of visual tool design
Designing 3D interfaces presents several problems not found
in 2D or textual interfaces. The principles below begin to
address the problem of devising successful interfaces. They
are similar to the guidelines in previous work [SHR+92] on
designing 3D interfaces in general, but are tailored for the
solids modeling domain. Their purpose is to give the 3D in-
terface designer a framework within which to pose individual
problems. Although designing successful interfaces is still
more an art than a science, these guidelines may help expose
where and how the power of 3D user interfaces can be used.

We begin by stating the four principles and then examine each
of them individually in light of our examples.

1. The visual tool should exist in the same space as the object
or objects it manipulates.

2. The visual tool should eliminate the need to understand the
particular implementation details of a modeling operator.
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Figure 7: Rail Curves. (a) Two primary surfaces with
rail curves shown in bold. (b) Primary surfaces with
blending surface.

3. The visual tool should provide visual clues on its function
and use.

4. The design of the visual tool should be based on the user’s
intuition of how the operator should behave, not on the
parameters to the operator.

4.1 Operator space

The visual tool should exist in the same space as the
object or objects it manipulates.

This principle has to do with understanding what happens
to an object or operator when its values or parameters are
changed. Often, there is an inherent abstraction or hidden as-
sumptions in an operator’s parameters. By defining a visual
tool in the same space as the result of the operator, we can
reduce these abstractions and assumptions. Consider posi-
tioning one cube next to another in three space. With a text
interface, the user alternates between typing in different posi-
tions and examining the locations of the cube. If the location
of the first cube is known, the user can calculate the location
of the second. Note, though, that not only is the location of
the first cube needed, but where that location is relative to the
cube, since cubes can be defined with their origin at a corner
instead of at the middle. (This is what we mean by hidden
assumptions: the normal assumption is that a cube’s origin is
at its center.)

Now consider a “tool” that exists in the same space as the
cubes and moves a cube in the direction in which the mouse
moves. Now a cube can be picked up and moved directly to
its location, without knowledge of the exact numeric value of
that location, the size of the cube, or how cubes are defined.
This type of tool is called anobject handle, and is explained
in detail in [SHR+92].

Our first example of this principle is the sweep tool. Tra-
ditionally, placing a cross-section on an axis curve required
knowledge of how the axis curve is parameterized. With the
sweep tool in the space of the axis curve, we can specify the

location of the cross section by its desired location, without
needing to know the parameterization of the axis curve. This
tool simplifies placing multiple cross sections on the axis
curve because their relative scales and rotations are immedi-
ately apparent: if a cross-section is oriented incorrectly on
the axis curve, we merely rotate it in place without needing
to know how much or in which direction to rotate.

Another example of this principle is the warp tool. To create
a warp, the warp tool is placed in the location and direction
of the desired warp. The actual parameter values are unim-
portant to the user: what matters is the particular shape the
user is trying to achieve. The warp tool lets the user alter the
shape of the warp by adjusting geometry that indicates the
effect of a parameter, without concern for actual values.

4.2 Independence of operator implementation

The visual tool should eliminate the need to understand
the particular implementation details of a modeling op-
erator.

This principle has several aspects. The first is that the user
should not have to know the effect of the implementation de-
tails of an operator on the result. For example, in Alpha1’s
sweep operator, the location of a cross section can be given
by a parameter value or an arc length value. In the sweep
tool, the method by which the cross section is placed is in-
dependent of these issues and of the parameterization of the
axis curve. In the rail-curve manipulation tool, not only is the
parameterization of the curve and surface hidden, but the user
need not know that the rail curve is actually defined in the
domain of the surface. Instead, the user alters the geometry
of the curve as it appears on the surface.

Another aspect is portability. For example, the warp tool de-
fined here is currently used to apply Alpha1’s warp operator
to a surface. Suppose a different warp operator is defined
that operates in a similar manner but with different effects or
on a different representation, such as a polygonal mesh. The
warp tool could be used without outward change with either
of these warp operators.

Another way to hide implementation details is to make their
effects explicit to the user. The rail-curve manipulation tool
is an example of this: the user defines not only which point on
the curve should move where, but how much of the curve to
move. This allows the user to control the rail-curve geometry
explicitly.

This principle extends to the number and type of parameters
as well as the individual parameters. In the rail-tie tool, all
the parameters to the blend are tied up in one tool. Since
with this tool the rail curves are specified on the surface, we
need not know that the rail curves are actually defined in
the 2D parameter space of the surface and then composed.
The parametric correspondence between the two rail curves is
defined implicitly because they are defined at the same time.
This prevents the common problem of orienting one curve
incorrectly with respect to the other.
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Figure 8: Rail curve construction. (a) Rail-tie tool con-
structing a blend between two surfaces at 90�. (b)
Example of a blend surface that is twisted because the
parameterization of the two rail curves does not match.

4.3 Visual clues

The visual tool should provide visual clues on its function
and use.

This principle allows the tool designer and the tool user to
exploit a common knowledge base when designing tools, thus
reducing a tool’s learning time. There are two different ways
to give visual clues. The first is to use geometry for the tools
that evokes physical objects in the real world – for example,
to use a graphical representation of a dial to indicate a part
of a tool that can take on different values. This approach,
however, can produce excessive visual clutter and rendering
overhead.

A different approach is to define a set of visual objects that
represent common interaction objects. This approach is dif-
ficult to achieve because there is neither a well-established
language for 3D interaction, nor a commonality among oper-
ators. A good example of this principle in 2D is the Macin-
tosh [App85] interface: users once exposed to a few sample
applications find it very easy to extend their knowledge to an-
other application because they have learned the visual clues
such as icons and menu bars.

One way to approach this problem is to implement the tools
in a toolkit such as Brown’s 3D toolkit [CSH+93] [SZH94].
This has the advantage of providing visual commonality

among the parts of the tools, such as the points and vec-
tors found in almost all of the tool examples here. However,
this approach has the disadvantage that the tool designer must
think in terms of the toolkit when creating new tools. This
makes it difficult to experiment with ideas that are not ex-
pressed well within the toolkit paradigm.

4.4 User’s view of the world

The design of the visual tool should be based on the user’s
intuition of how the operator should behave, not on the
parameters to the operator.

In the real world, people specify blends in a gestural way.
For example, to blend putty into a window sill one can run
a thumb along the join, pressing the putty into the sill in the
shape of the thumb, thus indicate both position and tangency
information. We would like an equivalent visual tool on the
computer. Although such a tool is impractical at the moment
for several reasons, we can abstract out reasons why a thumb
works so well in the real world. Some key ideas are:

� A single thumb can produce several types of blends (i.e.,
different tangencies) depending upon its orientation.

� A thumb creates both “rail curves” at the same time and
establishes the correspondence between them.

� There are no “patch boundaries” in the real world, so if a
surface appears to be one piece, it is.

It was the second item that motivated the development of
the rail-tie tool. The third item suggests constructing rail
curves that cross between several surfaces or on different
pieces of the same surface. The difficulty here is maintaining
continuity across those boundaries.

By thinking of the visual tool problem from in terms of the
desired interaction or result, we can move beyond just imple-
menting an interface for existing operators. One source of in-
spiration for visual tools is the real world. Another approach
is to identify problems that are hard for a designer to express
textually or numerically but simple to explain gesturally. Al-
though gestures are difficult to translate into the language of
the standard modeling operators, doing this allows designers
to exploit their knowledge of the real 3D world.

4.5 Summary
We have applied guidelines for the design of 3D interfaces to
the particular domain of visual interfaces for solids modeling.
We presented here several issues not dealt with in previous
work, such as designing visual tools for operators that do not
have an obvious geometric equivalent. These issues were
addressed in the realm of modeling operators, but the same
issues can be found in other realms of user interface design.

These guidelines are a beginning only. Further experience
with visual tools and how a designer interacts with them is
needed. As work on 3D interfaces in general continues, we
will learn more about how to create successful design tools
on the computer.

One lesson learned from designing these tools is that con-
structing visual tools is not simply a matter of assigning ge-
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Figure 9: Rail curve manipulation. (a) Manipulating
a small section of the rail curve. (b) Manipulating a
larger section of the rail curve.

ometry to an existing operator. Instead, the design process
should begin by defining what the user sees and manipulates.

5 Future work
Many other operators might benefit from a visual interface:

� A surface-of-revolution tool which provides visual adjust-
ment of the axis and the profile curves.

� A tool to sketch warp boundary curves on surfaces to per-
form skeletalor regionwarps [EGS91].

� A flattening tool that can bepushedonto surfaces.
� Several sculpting tools of various sizes and shapes for ma-

nipulating curves and surfaces.

The visual tools presented here by no means exhaust the
possibilities. Traditional modeling system have many opera-
tors that are versions of one basic operator, for example, the
sweep. Most systems support simpler versions of the sweep,
such as a constant-width sweep, a circular sweep, etc. The
visual tool library can also be extended in a similar manner.
More importantly, we can extend the tool library to work
on particular aspects of an operator, such as the profile, or
scaling, of a sweep. The sweep tool shown here does not pro-
vide adequate control of the profiling of a sweep. A tool for
adjusting just the profile of a sweep might let the user both
set the specific scale values and specify how to interpolate
between those values.

We have begun to explore the interactions between the visual
tools, but without a more complete library of tools we can

(a)

(b)

Figure 10: Tangent tool. (a) Before stretching the tan-
gent. (b) After stretching the tangent.

only touch on how the different tools will interact with each
other. In a textual interface, the operations have an inherent
order of application. With a visual interface, that order is not
so clear and may result in ambiguities.
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A Composition and curve manipulation
In this section we detail the approximation methods used
for interactive curve-surface composition and manipulation
of the rail curves independent of the parameterization of the
curve and the surface.

A.1 Curve surface composition
Creating blend surfaces requires the generation ofrail curves
for the blend region boundary. We do this by symbolically
composing a parameter space curve onto a surface, yielding
a 3D curve that lies exactly in the surface (see Equation 3).

Standard symbolic composition of B´ezier curves into B´ezier
surfaces is defined as follows. Given aB´ezier surface�(u; v) 2
<3 and a Bézier curve
(t) = (u(t); v(t)) 2 <2 defined in
the parametric domain of�(u; v), the composite curveΓ(t)
is



Γ(t) = �(
(t)) = �(u(t); v(t)) =
nX
i=0

mX
j=0

Pij�
m
j (v(t))�

n
i (u(t))

(4)

wherePij is the control mesh for�(u; v), and �mj (v(t))

and �ni (u(t)) are themth- and nth-order Bézier blending
functions for�(u; v), with �ni (t) =

�
n

i

�
ti(1� t)n�i, where

�n0 � 1.

Kim [Kim92] described a method for composition of gen-
eral NURBS curves on to NURBS surfaces. Unfortunately,
this form cannot be currently computed at interactive rates.
To explore this operator interactively, we have developed a
method for very fastapproximationsto symbolic curve sur-
face composition.

Consider the simplest case. If the parameter space curve
(t)
is a line segment and the surface�(u; v) is planar and the
quality of the parameterization is close to isometric [Elb92],
the compositeΓ(t) is just a line segment with end points
�(
(tmin)) and�(
(tmax)):

Γ(t) =
1X

i=0

PiB
2
i (t) (5)

whereP0 = �(
(tmin)), P1 = �(
(tmax)), andB2
i (t) are

the second-order B-spline blending functions. The cost of
computingΓ(t) is essentially reduced to two surface evalua-
tions.

With this in mind, we approximate
(t) andΓ(t) by finding a
set of monotonic increasing parameter valuesft1 : : : tng such
that the two following constraints hold:

1. The segment of the curve from
(ti) to 
(ti+1) hasmax-
imumsquared curvature�(t)2 less than a specified value
�2:

Max(�(t)2) < �2 ; ti � t � ti+1: (6)

2. The surface patch defined by the four points:�(ui; vi),
�(ui+1; vi),�(ui; vi+1)and�(ui+1; vi+1), where(ui; vi) = 
(ti)
and (ui+1; vi+1) = 
(ti+1), has squared principal curva-
tures�1(u; v)2 and�2(u; v)2 less than a specified value
�2:

Max(�1(u; v)
2) < �2 ; (7)

ui � u � ui+1 andvi � v � vi+1;

(8)
Max(�2(u; v)

2) < �2 ; (9)
ui � u � ui+1 andvi � v � vi+1:

3. The surface patch has a quality parameterization specified
by the the magnitude of the twist vector being less that a
specified value�: ���� @�

@u@v

���� < � (10)
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0.5

1.0

Figure 11: The Bell(x) function used to scale the
movement vector ~m.

We can then construct piecewise linear approximating curves

̂(t) andΓ̂(t) as follows:


̂(t) =
nX
i=0


(ti)B
2
i;t̂(t); (11)

Γ̂(t) =
nX
i=0

�(
(ti))B
2
i;t̂
(t); (12)

whereB2
i;t̂
(t) are the second- order B-spline blending func-

tions defined over the end point interpolating knot vector:
t̂ = ft1 t1 t2 t3 : : : tn�2 tn�1 tn tng.

A.2 Rail-curve manipulation

With a fast method to create the aproximating rail curveΓ̂(t),
we now explore manipulating the rail curve to change the
blend surface. The four parameters to the manipulation rou-
tine are:

� The parameter valuest� 2 < andt! 2 < of the two points
� and! that demark the section of the curve ˆ
(g) to be
manipulated. The parameter values must satisfytmin <
t� < tmax andt� < t! < tmax

� The parameter valuet� 2 < of the point� on the curve to
be moved.t� must lie in the section of curve to be moved,
i.e., t� < t� < t!.

� A movement vector~m 2 <2 that indicates the direction
and magnitude of movement in thedomainof �(u; v).

If the rail curve Γ̂(t) does not have knots att!, t� or t�,
the values are added byrefining Γ̂(t) at the missing knot
values [CLR80] [Far92].̂Γ(t) is then a 2nd order curve with
knots att!, t� andt�. The subscripts�, � and! can then be
thought of as indices into the knot vectort̂.

To move the curve in the direction of the movement vector~m
we apply a scaled version of~m to each point of the section
of curve demarked bŷΓ(t!) andΓ̂(t�). We scale~m by the
bell-shaped curveBell(x) (shown in Figure 11). Note that
Bell(x) has maximum value of 1 whenx = 1 and goes
smoothly to zero asx! 0 andx! 2.

Let �i be the amount to scale~m by when adding it to the point
at ti; we define�i as follows:



�i =

8>>>>>>>>>>><
>>>>>>>>>>>:

Bell

� P
i

j=�
jΓ(tj+1)�Γ(tj)jP

�

j=�
jΓ(tj+1�Γ(tj))j

�
� < i < �

Bell

�
1+

P
i

j=�
jΓ(tj+1)�Γ(tj)jP

!

j=�
jΓ(tj+1�Γ(tj))j

�
� < i < !

Bell(1) i = �

0 otherwise

This equation specifies that the amount to scale~m by (i.e.,
�i), is related to the ratio of the geometric distance of the
current pointΓ(ti) from eitherΓ(t!) or Γ(t�).

We now define the moved curve as follows:


move(t) =
nX
i=0

(~m�i + 1)
(ti)B2
i;t̂
(t): (13)

The functionBell is shown in Figure 11.�i is maximum at
i = �, i.e., at the point selected by the user.

When 
move(t) has been computed, a new set oft values
ft1 : : : tng can be found that satisfy the three constraints in
Eqs. 6 and 10.
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