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Abstract

Free-form deformation (FFD) is a powerful modeling tool, but
controlling the shape of an object under complex deformations is
often difficult. The interface to FFD in most conventional systems
simply represents the underlying mathematics directly; users de-
scribe deformations by manipulating control points. The difficulty
in controlling shape precisely is largely due to the control points
being extraneous to the object; the deformed object does not follow
the control points exactly. In addition, the number of degrees of
freedom presented to the user can be overwhelming. We present a
method that allows a user to control a free-form deformation of an
object by manipulating the object directly, leading to better control
of the deformation and a more intuitive interface.

CR Categories: 1.3.5 [Computer Graphics]: Computa-
tional Geometry and Object Modeling - Curve, Surface,
Solid, and Object Representations; 1.3.6 [Computer Graph-
ics]: Methodology and Techniques - Interaction Techniques.

Additional Keywords: Direct manipulation, free-form de-
formations.

1 Introduction

Geometric modeling of complex objects is a difficult task.
Sophisticated techniques for shaping and creating complex
objects are generally awkward and tedious to use [8]. Free-
form deformation [15] falls into this category. It is a powerful
modeling technique that enables the deformation of objects
by deforming the space around them, but using this technique
is sometimes difficult. The deformations are defined by para-
metric functions (3D splines) whose values are determined
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by the location of control points. Describing a free-form de-
formation (FFD) in conventional modeling systems is done
by manipulating these control points, an interface that reflects
the underlying mathematics of the modeling method. This
type of interface can be confusing because the control point
movement merely hints at the type of deformation the object
will be subjected to. The following examples will help to
clarify this.

Although the movement of the control points gives an
indication of the resulting deformation, some shapes are not
intuitive to form. As a first example, to create a bulge with a
flat top one may think to align the control points to a plane,
as shown in Figure 1a. However, it is actually necessary to
position the control points as shown in Figure 1b to create
the flat top. As a second example, Figures 6 and 7 show
the prongs of a ring modeled with free-form deformations.
Precise placement of the prongs is needed to ensure that they
do not penetrate the gem stone.

Complex deformation operations often require a large
number of control points resulting in screen clutter. They
also tend to get buried within the model being deformed. As
a result, it is virtually impossible to select or manipulate the
control points efficiently.

Thus we can see four problems in manipulating defor-
mations via control points.

1. Exact shape is difficult to achieve.
2. Exact placement of object points is difficult to achieve.

3. Users unfamiliar with splines do not understand the pur-
pose of the control points and the results of their move-
ment.

4. The control points become difficult to manipulate when
occluded by the object being deformed, or when there
are so many they clutter the screen.

One way to improve the usability of this technique is to
move control points in groups, and then apply linear and non-
linear transformations to them, similar to the group control
point manipulation presented in [5] for spline surfaces. While
helping the user move many control points at one time, this
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(b)

Figure 1: An FFD in the plane. The dashed line shows the
original shape, and the solid line shows the shape after the
deformation. (a) shows the result of a flat line of control
points. (b) shows the control point configuration to create a
fiat top.

does nothing to alleviate the shape and placement problems.
It is unclear which control points should be moved and how
transformations will affect the object. The limited usefulness
of this approach for spline surfaces was noted by [14]; the
3D volume of control points for FFDs (in contrast to the 2D
mesh of control points for spline surfaces) exacerbates the
difficulties of deciding how an aggregate move should be
performed.

Another approach to an easier and more intuitive inter-
face is the Extended Free-Form Deformation (EFFD) tech-
nique of [6]. With EFFDs, the user configures the initial
lattice of control points to the approximate shape of the in-
tended deformation, instead of starting with the FFD’s par-
allelepiped of control points. EFFDs are quite effective for
creating impressions, reliefs, and other fairly simple defor-
mations that might otherwise be difficult to achieve with
FFDs. However, the user must know the general shape of
the deformation before starting to model, and the interface is
still a direct representation of the underlying mathematics.

Both FFDs and EFFDs are based on the notion of de-
forming the underlying space in which an object lies. This
has the advantage that it can be applied to any parametric
or polygonal model, and is therefore not restricted to any
class of objects. On the other hand, the control lattice used
to manipulate the underlying space is not directly related to
the object being deformed. Therefore, a control point that
happens to be close to the surface of the object (which is,
after all, the focus of the user’s attention) may be far from the
object surface after the deformation. Thus, these methods
may surprise a user who does not understand the distinction
between the object and the space in which it lies.

In this paper, we develop a direct manipulation tech-
nique which makes formation and placement of deforma-
tions easier. The essential idea is that the user selects (with
some sort of pointer) a point on an object and then moves
the pointer to a location where that object point should be.
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Our technique computes the necessary alteration to the con-
trol points of the FFD spline that will induce this change.
This alteration is generally under-determined; we use a least
squares approach to select a particular alteration.

The rest of the paper is structured in 4 sections. Section
2 describes FFDs, and introduces B-spline FFDs. Section 3
describes a direct manipulation interface to B-spline FFDs, in
which the user describes actions, and these actions are con-
verted into control point displacements that will effect the
actions. Section 4 discusses related work in direct manipula-
tion interfaces, possible applications and directions for future
research. Section 5 summarizes the results of the paper.

2 Free-Form Deformation

The FFD method deforms an object by first assigning to
each of its points within the deformation lattice a set of lo-
cal coordinates. The local coordinate system is defined by
a parallelepiped-shaped lattice of control points with axes
defined by the orthogonal vectors s, t, and u, as shown in
Figure 2. All object points within this parallelepiped are as-
signed local coordinates through a mapping applied to their
zyz-coordinates; we describe this mapping later.

Once the control points are moved, the new location of
an object point is then determined by a weighted sum of the
control points. The weights are functions of the local coor-
dinates originally assigned to the point. Hence, a positional
change of the control points changes the location of the object
point.

Vt\Tu/r

»

Figure 2: A lattice of control points. The s, t, and u vectors
define the local coordinate system

In our implementation, the deformation function is a
trivariate B-spline tensor product. We use the B-spline basis
instead of the Bemstein polynomials used by Sederberg and
Parry because of the local control properties of B-splines.
Local control is desirable for both aesthetic value and for
efficient computation with large control point lattices. We
also prefer B-splines for its guaranteed continuity when any
of its control points are moved, in contrast to, for example,
Bézier splines.
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In summary, then, the deformed position, q, of any
arbitrary point with local coordinates, (s, t, u), is given by

0

Z Pitij+m,k4nBi(8)Bm(t)Ba(u)
tmn=-3
(1)

where P, ; , isthe it*, j** kt* control pointinthe s, t, and u
direction, respectively, and the Bs are the B-spline blending
functions.

In our implementation of FFD we allow both direct
manipulation of the object and manipulation of the control
points. A drawback of using B-splines is that the image of the
B-spline does not fill the convex hull of the control lattice, if
the control lattice is evenly spaced and all control points have
multiplicity one. We compensate for this by giving the outer
control points of the lattice a multiplicity of three, which
ensures that the image of the B-spline is the convex hull of
the control lattice.* Phantom control points could be used as
well; constraining their positions guarantees C? continuity
along the borders. See [3] for more details.

Before the deformation is applied, object points must
first be assigned local (s, t, u) coordinates, as already men-
tioned. When the control lattice is in its initial position, it
defines an injective map from its domain to the convex hull of
the lattice. Thus each point w within this hull is q(se, %o, to)
for some so, o, uo in the parameter space of the B-spline.
The numbers sg, tg, up are the local coordinates we assign.
To compute them, we must invert the B-spline map. We first
determine the spline segment g ;  that contains the object
point. Then we compute 3o, to, and ug by explicitly solving
the cubic equations @;,; x(%0,%, uwo) = w.> Note that the
local coordinates need only be computed once for a given
lattice, and not for each deformation calculation.

Qi k(s,t,u) =

3 Direct Manipulation

In this section, we describe an interaction technique that con-
verts a user action of the form “move zhis point of the object
to there” and finds control point positions that will effect this
action. We first describe the method in the case where the
user wants to move a single selected object point to a new
position, or target point. We then build upon this technigue to
describe how multiple selected points can be moved simul-
taneously. Although we demonstrate this method with the
B-spline FFD, it can be used in conjunction with any other
spline basis.

4If control points are not displayed at all, then all the control points in
the lattice can be of multiplicity one, and the region deformed can be repre-
sented by the border of the B-spline image. This simplifies the deformation
equation, and the latier portion of section 3.1 can be dismissed.

3Genenal root finding is needed only for the outer two segments due to
the tripling of control points at the borders. Otherwise, (s, o, ug) can be
found by the position of the object point in relation to the segments that
contain it directly, as was done in the original FFD paper [15].

3.1 Single point constraint

As the user moves a target point our goal is to configure
the control points such that the deformed location of the se-
lected point matches the target point location. This problem
is under-determined; there are many control-point configu-
rations that will yield the same deformed location for the
selected point. One obvious, but not very useful, solution is
to simply translate all the control points by the target point’s
translation. Another solution is to choose the nearest control
point and translate it until the target point reaches the desired
location. A more natural solution is one that moves the con-
trol points the least (in the least-squares sense). The blending
functions of Equation (1) assign weights to the control points
for a given target point. The closer the control point is to the
target point the greater the weight, or influence, the control
point has. By using a least squares solution, control points
are moved such that the resulting surface reaches its intended
destination while the effect of the deformation smoothly ta-
pers off. This effect provides predictable and physically
intuitive behavior. We begin with some linear algebra.
Recall from Equation (1) that the deformed object point
location, q, is a linear function of 64 control points, P, which
can be written in matrix form as q = BP, where B is asingle
row matrix of the blending functions, and P is an 64 x 3
array whose rows are control point coordinates. (Henceforth
we write coordinates of all points as row vectors.) A new
location for the point q, gn ¢y, iS then qn., = B(P + AP),
or
Aq = BAP (2)

where AP is the change in position of the control points and
Aq is the change in position of the object point. We are given
Aq (the difference between the target point and the selected
point), and wish to find a value of AP satisfying Equation 2.
To do this we use the pseudoinverse (often referred to as the
generalized inverse) B* of B.

Digression on Pseudoinverses Given a system of linear
equations y = Bx, the pseudoinverse B* is a matrix where
xo = B%y is the best solution, in the least squares sense,
to the system of equations, (i.e., for which ||Bxs — y|| is
minimized and ||Xo|| is as small as possible [12]). The pseu-
doinverse is computed by first representing the m x n matrix
Binthe form B = CD, where Cism x kand Dis k x n, 80
that all three matrices B, C, and D have rank k. The general
formula for the pseudoinverse B+ of B is then given by

B* = CcT(ccT)"' (DTD)"'DT (3)

This formula can be used for both under-determined and
over-determined systems of equations. When the problem is
under-determined, as with the single target point constraint,
only (D7 D)~ DT is needed to compute the pseudoinverse,
and B = D. Likewise, the pseudoinverse for the over-
determined case is computed by CT(CC7T)-!, (DDT)"!
reduces to 1/||D||?, and the pseudoinverse of the single-row
matrix B can now be found by the equation
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1

Bt = —
|IBjI?

BY (4)
(end of digression).

Once the pseudoinverse of B is determined, the change
in position of the control points based on the movement of
the target point can be expressed as

AP = B*Aq (5)

Because the pseudoinverse gives a least-squares solution, the
change in control point positions is minimized.

This solution, however, applies only when all control
points are allowed to move independently. Recall from Sec-
tion 2 that in our implementation the control points on the
outer border have a multiplicity of three, and therefore must
be coincident. To formulate the pseudoinverse equation to
reflect this constraint, a matrix, S, which selects the proper
control point position is added to Equation (2), so that the
deformed object point location is defined by

Aq = BSAP (6)

The matrix S is the identity matrix, if all control points are
allowed to move freely. Control points that must be coin-
cident with one another have the one in their row shifted
to the column that corresponds to the control point it must
follow. For example, in the one-dimensional border case, if
P = [p_2p_1pop1]7, where p_; and p_, are required to be
coincident with po (i.e., po has a multiplicity of three), then

0010
0010
S=1001 0
000 1

The equation for the pseudoinverse (BS)* is

(BS)* = (DS)T(DssTDT)! (7)

For efficiency, S can be compressed to a vector, and B*
need be computed only once for a given target point.

3.2 Multiple target point constraints

The same technique is used to move several selected points
to new targets simultaneously. Precise control over shaping
objects becomes easier. When the multiple selected points are
independent (i.e., when they share no control points), solving
for control point position is a straightforward extension of the
single target point method.

When selected points are influenced by the same control
point, the system of equations must be designed so that each
control point only appears once in the array P. The number
of columns of B is the number of distinct control points
affecting the selected points. The number of rows of B will
be the number of target points. In a one-dimensional analog
of this situation, if we want to move two selected points that
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share three control points, then the dimension of Bis 2 x §
and P would list 5 control points. The blending functions
in B are arranged in accordance to the listing of the control
points. In this example, the equation becomes

Po
BEHEEHIE
T 10 by by b, b
9 o 1 02 O3 Ps

P4

where qq is affected by control points 0-3 and q is affected
by control points 1-4, and b} are the blending functions used
to compute the location of the i*" selected point.

Once again, the pseudoinverse of B is calculated using
Equation 3 and the new control point locations are determined
by Equation 5. Figures 3 to 5 show how multiple constraints
can quickly effect a change in the shape of an object.

As more target points are added, the problem can be-
come over-determined. For example, if a user tries to create a
wavy surface with more undulations than is possible to gen-
erate with the given B-spline, then the pseudoinverse can-
not provide a complete solution. The pseudoinverse has,
however, the property of providing the solution with the
least squared error, which is the best solution considering
the given constraints. Furthermore, the failure to move the
selected points to the target points can be quantified; large
errors suggest to the user the need to use a B-spline with a
finer mesh.

4 Discussion

4.1 Other direct manipulation techniques

Direct manipulation has long been used as a 3D modeling
technique for polygonal meshes [13]. However, we find that
coupling the free-form deformation technique with direct ma-
nipulation is a richer modeling tool with several advantages
over polygonal and purely spline-based modeling methods.
FFDs work independently of the underlying data structure of
the object being deformed, and hence can be applied to any
parametric or polygonal model. An implication of this is that
FFDs are “resolution” independent. Complex objects can be
modeled in real-time by rendering them in low resolution,
which can later be rendered at high resolution using the same
deformation description. Though a procedural language may
provide similar capabilities for a polygonal modeler, some
restrictions apply. For example, vertices moved by the user
in one level of mesh refinement must have a corresponding,
coincident vertex in every other level of refinement [1].
Since the FFD technique deforms the space within it,
another advantage is that the same description can be used
for several objects. The deformation is dependent on the
relative position of the control points. The control points
undergo rigid transformations and scaling without affecting
the general shape of the deformation, which is useful when
applying the same deformation definition to objects of differ-
ent size. If more than one object lies within the deformation
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space, the deformation can be applied to all objects, preserv-
ing automatically their relative position and spacing.

Recent developments have been made in the direct ma-
nipulation of B-splines. Forsey and Bartels allow direct ma-
nipulation of hierarchical B-spline surfaces [9], but only at
the B-spline joints, severely limiting the possible shapes that
can be formed. The method was extended by Bartels and
Beatty to manipulate spline curves at arbitrary points [2].
Their method is based on the Householder transformation,
which computes a weighting function that relates positional
changes in the target point to positional changes in the con-
trol points. In [10], Fowler and Bartels have extended the
technique to include the manipulation of the first and second
derivatives of the function at an arbitrary point as well.

Recently, [16] independently developed a system for
direct manipulation of B-spline surfaces, based on their dif-
ferential manipulation technique. This technique uses the Ja-
cobian to “suggest” the direction of movement, and through
least square projection uses the inverse of the Jacobian to
solve for the position of the control points. Though this
method for direct manipulation is similar to the method pre-
sented in this paper, it is applied only to B-spline surfaces. In
contrast, the method described in this paper merely requires
that the substrate in which the model lives (namely 3-space)
be the image of a 3D spline; this is a property of the substrate
and not of the model, and hence lets the technique apply to
all polygonal models as well. Also, since our FFD technique
is an “indirect” method of modeling, lattices of different size
and resolution can be used on the same object to create a
multitude of different curvatures.

4.2 Application

In addition to modeling static models, the direct manipula-
tion technique can automate some forms of animated defor-
mations. For instance, the technique can be used to simulate
“Play-Doh®°® physics,” where objects deform when they are
pressed against other objects, but without the complexities of
simulating momentum transfer and non-rigid behavior. This
level of simulation is useful to animators who want full object
motion control, while still desiring automatic deformation in
response to interpenetration or object collisions. In addition,
this technique could be used to construct the final deforma-
tion lattices for Animated Free-Form Deformations (AFFD)
[7]. In general, direct manipulation could be easily incorpo-
rated into EFFD (which AFFD is based upon) as a means for
interactive shape control.

4.3 Future Research

Though the general technique for direct manipulation of free-
form deformations has been implemented, further research
is needed to provide a complete and robust user interface.
Intuitive and easy to use techniques for moving aggregates

$Play-Doh is a registered trademark of Tonka Corporation. It is a soft
modeling compound similar to clay.

of object points are needed. Some widgets we have devel-
oped are based on the idea of using a magnet or suction cup
to move several points at a time [11]. It would be desirable
for users (especially naive users) not to deal with control
points at all. The proper metaphors for controlling the reso-
lution of the lattice of control points and the spacing between
the points must therefore be developed. Other aids, such as
highlighting the area affected by the deformation can con-
vey information that was previously conveyed by displaying
control points. In general, a comprehensive metaphor needs
to be developed to fully hide the details of the FFD technique
and make the interface as transparent as possible. Creating
a metaphor that is both believable and general enough to
encompass all operations is a difficult task and will require
further study [4]. We envision an environment where users
will be able to sculpt objects using a Dataglove-like input
device. The finger tips, digits, and palm of the hand will be
tracked to offset selected points in a malleable object, with
smooth valleys and hills attained by the FFD operation. Dif-
ferent elasticities can be assigned to the object by varying the
resolution of the control-point lattice. Perhaps a metaphor
of molten metal or glass may be appropriate, where a blow
torch and cold air are used to heat and cool the object to
give it different molding properties. By making modeling as
natural as possible, or by imitating the ways it is done in the
real world, a greater number of users can be reached and an
increase in expressiveness in modeling attained.

With the technique described in this paper, there are oc-
casions when the user can create over-constrained situations,
and although the resulting solution has the minimum error it
may not be what the user expects. A more gracious solution
needs to be found, perhaps one that reconfigures the lattice of
control points automatically, without disturbing the previous
deformations.

5 Conclusion

With direct manipulation, using FFDs for modeling complex
objects becomes more intuitive. Better control over the shape
and placement of the deformation is gained. By eliminating
the need to display control points (and its associated control
lattice) the interface is more transparent, allowing the user to
concentrate on his or her work. With the proper metaphor,
users no longer need to understand splines in order to use this
powerful modeling tool. By adding greater control over how
an object is shaped, new modeling paradigms and environ-
ments can be explored.
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Figure 3: An example of multiple constraints. The red and
white object is a deformation tool which projects all points
which lie within it against the red plane.

Figure 5: The results of the deformation at a higher resolu-
tion.

Figure 4: The deformation is created by positioning the con-
trol points according to the displacement of several of the
vertices of the green object.

Figure 6: A ring with prongs shaped by free-form deforma-
tion,
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Figure 7: A close-up of the prongs in the ring. Figure 9: An intermediate stage of the gargoyle bust.

e

Figure 8: An elongated sphere is used as the foundation for Figure 10: The resulting gargoyle bust. The entire model,
a gargoyle bust. The resolution of the deformation lattice is except for the eyes, was modeled using the free-form defor-
20x20x20. mation modeling technique with direct manipulation.

184




