

A Suggestive Interface for 3D Drawing
Takeo Igarashi John F. Hughes

Computer Science Department, Brown University
115 Waterman Street, Providence, RI 02912, USA

takeo@acm.org, jfh@cs.brown.edu

ABSTRACT
This paper introduces a new type of interface for 3D
drawings that improves the usability of gestural interfaces
and augments typical command-based modeling systems. In
our suggestive interface, the user gives hints about a desired
operation to the system by highlighting related geometric
components in the scene. The system then infers possible
operations based on the hints and presents the results of
these operations as small thumbnails. The user completes
the editing operation simply by clicking on the desired
thumbnail. The hinting mechanism lets the user specify
geometric relations among graphical components in the
scene, and the multiple thumbnail suggestions make it
possible to define many operations with relatively few
distinct hint patterns. The suggestive interface system is
implemented as a set of suggestion engines working in
parallel, and is easily extended by adding customized
engines. Our prototype 3D drawing system, Chateau, shows
that a suggestive interface can effectively support
construction of various 3D drawings.

KEYWORDS: interaction technique, user interface design,
3D drawing, prediction, gestural interface.

INTRODUCTION
Typical 3D modeling tools are designed for precise control
of complicated shapes, and the interfaces are generally hard
for casual users to learn. To provide simplified interfaces
for sketching 3D structures quickly, various gestural
interfaces have been explored [12,25]. These let the user
interact directly with 3D scenes without using buttons and
menus and reduce the explicit control required by
implementing various context-dependent rules.

Although gestural interfaces for 3D modeling have been
successful as an experimental effort, they still have several
limitations. First, they have been designed primarily for
building approximate models rather than for the precise

control used in traditional 3D modeling tools, and the realm
between these, i.e., approximate modeling of objects with
important symmetries and repeated substructures, has been
largely unexplored. This makes it hard to sketch many
interesting architectural forms, for example.1 Second, they
do not scale well because a system designer cannot define
many gestures with limited combinations of gestural
elements (stroke, click, modifier key, etc.). Third, it is
difficult for novice users to learn a set of gestures because
the user must complete a gesture to see the result, and must
start over if it fails.

This paper introduces a new type of interface that extends
gestural interfaces to address these limitations. In the
proposed suggestive interface, the user gives the system
hints about the desired operation by highlighting related
components in the scene, and the system suggests
subsequent operations in an array of small thumbnails
derived from the hints and the overall scene configuration
(Figure 1). The user can complete an operation by choosing

1 It was an interest in sketching French chateaus that
originally motivated this work.

Figure 1: A screen snapshot of our prototype
system Chateau. The user gives the hints to the
system by highlighting related lines (red lines),
and the system suggests possible operations
(thumbnails at bottom) based on the hints.

one of these suggestions, or can ignore them and continue
constructing and/or hinting. Suggestions are generated by
suggestion engines, each of which constantly observes the
scene and generates a suggestion when the current hint
configuration matches its input pattern.

A suggestive interface can be viewed as a mediated version
of a gestural interface. Instead of responding to the user's
input by updating the scene immediately, the system asks
for the user's confirmation after showing multiple
suggestions. This approach has several advantages over
earlier gestural interfaces. First, the hinting mechanism lets
us use existing components as input. This naturally helps in
the specification of geometric relations among components
in the scene. Second, because suggestions are merely
offered, a single collection of hints can serve both as a
gesture and as a subset of a more complex gesture; e.g., the
new-drawing-plane engine responds to a single selected line,
while the rectangle-creation engine responds to two
connected perpendicular selected lines. Third, the
suggestive interface helps the learning process because
users can progressively refine their hints until the desired
result appears among the suggestions. The suggestions
themselves, even if not taken, may be helpful in the creative
process.

In this paper we describe Chateau, a simple
proof-of-concept 3D modeling tool we developed to explore
the suggestive interface idea. Our experience shows that it
is quite promising. Our initial concern was that too many
suggestions might be generated, confusing the user.
However, if the system is carefully designed so that most
suggestion engines have mutually exclusive input patterns,
users see only a few suggestions at a time and can control
the system fluently. Our informal test users understood the
interface quickly and created various 3D drawings
successfully.

Although our original goal was to improve gestural
interfaces, we believe suggestive interfaces can also be
useful in augmenting traditional command-based interfaces
for 3D modeling. Hinting and suggestions encourage novice
users to explore a new system and find unknown operations,
and some operations that require combinations of
commands can be specified naturally by only a few hints.

A demonstration video and the prototype program are
available at www.cs.brown.edu/research/chateau.html or
www.mtl.t.u-tokyo.ac.jp/~takeo/.

RELATED WORK
Many researchers are exploring possible next-generation
user interfaces beyond current WIMP-style GUIs [23]. A
common observation is that next-generation user interfaces
should be context-aware in order to reduce the number of
explicit command operations required [21]. This paper
reports our experimental effort to implement

context-awareness in the domain of 3D modeling.

Our interface is similar to predictive interfaces [5][19] in
that the system (or an agent) suggests possible subsequent
operations, but prior efforts have focused on operation
histories to facilitate repetitive operations, while our system
suggests various predefined operations based on the static
configuration of the user-provided hints.

Multiple candidates are commonly used in
recognition-based systems such as handwriting or speech
recognition to solve the inherent ambiguity problem [16].
Japanese text-entry interfaces rely on multiple candidates to
input thousands of characters using a limited number of
keys [18]. In computer graphics, multiple candidates have
been used to find desired parameter settings in a large
parameter space [22], most recently in the Design Galleries
work [17]. Typically, however, galleries represent samples
of a large continuous space of possibilities, while our
suggestions work with a small discrete space of
possibilities.

Some constraint-based drawing systems infer geometric
constraints from the user’s operations. Briar [7] and
ROCKIT [13] infer graphical constraints based on a user’s
dragging operation, and allow the user to select from
several candidate constraints. Hudson and Hsi presented a
system that infers layout algorithms by generalizing
examples provided by the user [9]. The system presents
multiple candidates for the generalization and lets the user
select the desired one. While these systems infer hidden
relationships or rules in a programming-by-example manner
[6], our system constructs static scenes using a simple
pattern-matching method [14].

Suggestive user interfaces extend the notions of
beautification and prediction introduced in the Pegasus
system [10,11]. Pegasus beautifies hand-drawn strokes by
inferring desired geometric relationships, and predicts the
next operation based on the surrounding context. It also
generates multiple candidates to facilitate these processes.
One problem is that too many candidates are offered as the
scene becomes complicated. We address this “candidate
explosion” by introducing an explicit hinting mechanism.
To prevent clutter, we also primarily use visual thumbnails
instead of presenting candidates in the scene.

Gesture-based interfaces, frequently used in 2D pen-based
applications [8,15,20], recognize specific stroke shapes as
gestures and replace them with predefined primitives or
invoke editing operations such as undo. The SKETCH
system [25] introduced a gesture-based interface for making
3D scenes consisting of stacked geometric primitives.
Teddy [12] used a gesture-based interface for freeform 3D
modeling. Our goal is to extend these systems to increase
scalability and to support geometric relations such as
symmetry and congruence.

THE USER INTERFACE
The user constructs 3D scenes by drawing 2D lines on the
screen. The system converts 2D lines on the screen into 3D
lines by projecting them onto 3D elements already in the
scene. Prediction and suggestion mechanisms facilitate this
drawing process by inferring possible subsequent
operations. Highlighting plays an essential role throughout;
highlighted lines guide the snapping mechanism for
drawing lines and provide hints for prediction and
suggestions. This section introduces the basics of the
modeling system and then describes the prediction and
suggestion mechanisms in detail.

A First Example
Suppose that a user wants to create two adjoining walls of a
room, i.e., the model shown in Figure 2h. We'll briefly
describe WHAT she does and her intention at each stage
(i.e., WHY), and then, in the following sections, give
further details and examples.

At the start of a modeling session, the user sees a ground
plane. She wants to create a wall that meets this plane, so
she draws a line segment on the plane to begin with: she
clicks at some point, drags to the right, and releases. This
creates a segment on the ground and automatically
highlights it. The single highlighted line causes a candidate
operation to be offered: the system offers to create a
drawing-plane that's perpendicular to the ground and passes
through the line (Figure 2a). Because the user wants to draw
a wall in just such a plane, she clicks on the candidate and
the transparent drawing plane appears (Figure 2b). Now she
again clicks on the same starting point, drags a line upwards
on the screen and releases, which creates a second line
perpendicular to the first and highlights it as well; because
both segments are highlighted, the system offers a candidate
operation ─ the creation of a rectangle in the drawing
plane (Figure 2c). This candidate is ideal, so she clicks on
the thumbnail to make it happen (Figure 2d). She now
wants to draw a new “aseline” on the ground plane, so she
first clicks on the background to unhighlight all lines
(Figure 2e). She then clicks on the ground plane some
distance in front of the first click point and drags back
towards it and releases the mouse over it. A new line
appears and is highlighted (Figure 2f). Finally, highlighting
(by clicking) the first vertical line she drew makes the
system offer a rectangle in the new drawing plane as a
candidate (Figure 2g), which she selects by clicking on the
thumbnail, resulting in the model shown in Figure 2h.

Thus the basic operations are “dragging out lines
segments,” clicking on things to highlight/unhighlight them,
and clicking on thumbnail “candidates” to choose them.

a) draw a line on the ground b) choose a temporary drawing plane

c) draw a line on the drawing plane d) choose a rectangle

e) unhighlight lines f) draw a line on the ground

g) highlight a line h) choose a rectangle

Figure 2: A first example.

Basics
Chateau currently supports the construction of 3D scenes
consisting of straight line segments and planar polygons
(curves and circles are not yet supported). Each line
segment (called a line) is defined by two terminal vertices
(called joints). Polygons (called plates) are always
surrounded by lines. The ground plane is always visible and
the user begins construction of every model by drawing a
line on the ground.

All modeling operations are effected by left-mouse-button
clicks and drags in the main screen. The right mouse button
is reserved for camera control, for which we use the
UniCam interface [24]. Only a few GUI buttons (clear,
erase, undo) are provided on the screen. Our system
requires no keyboard operation, and hence supports
one-handed operation on devices like hand-held notepads.

Highlighting plays an essential role in our system: the user
controls snapping, prediction, and suggestion by
highlighting appropriate lines as hints. The user highlights a
line on the screen by clicking on it. If the user clicks an
already highlighted line, it is unhighlighted. When the user

double-clicks a line, the system highlights all lines
connected to it. Any newly drawn lines are automatically
highlighted. The user can unhighlight all lines by clicking
on the ground or the background. When the user clicks on a
plate, the system highlights all its edges.

The user draws a new line on a plate or the ground plane in
the 3D scene by a dragging operation. To be precise, the
system first finds the foremost plate or plane under the
mouse cursor at the beginning of dragging, and projects the
line on the plate or plane. The end points snap to existing
lines and their end points [2] on the plate or plane. We also
implemented a “drafting assistant” mechanism [1] whereby
the user can activate additional snapping constraints by
touching a line during the dragging operation. For example,
if the user touches the midpoint of a line, the mouse cursor
starts to snap to the perpendicular bisector of the line.
Furthermore, snapping is affected by the highlighted lines;
it guides the user to draw lines that are parallel or
congruent 2 to the highlighted lines. In addition to the
visible plates and the ground plane, the user can draw a line
on a temporary drawing plane, so that lines can be drawn
floating in the air [3]. A temporary drawing plane is
activated by the suggestive interface mechanism described
later, and appears as an translucent plane in the display. The
user erases a line or plate by a scribbling gesture (moving
the mouse cursor back and forth while dragging). The
“erase” button on the screen erases all highlighted lines at
once.

Predictions
A prediction mechanism like that in the Pegasus system
[11] predicts the next lines to be drawn around the most
recently highlighted line and presents multiple candidates as
purple lines in the 3D scene. (This can be seen as a very
specialized version of suggestion; its rules are so simple and
it’s so often applicable that its candidates are shown in the
3D scene rather than as thumbnails.) While Pegasus uses all
lines in the scene as the context information for prediction,
Chateau uses only the highlighted lines, which significantly
reduces the number of candidates generated. Specifically,
Chateau generates the flipped duplications of the
highlighted lines connected to the most recently highlighted
line (Figure 3a-c). It also searches for a reference line that is
congruent to the most recently highlighted line, and copies
the lines connected to the reference line around the most
recently highlighted line (Figure 3d-f). The user can click a
candidate to adopt it or simply proceed to the next operation
to ignore the prediction. This prediction mechanism helps
users draw locally symmetric or congruent structures.
Prediction and suggestion are always active, but for clarity
we suppress prediction in the remaining figures.

2 Here, congruence means translational congruence and
does not include rotational congruence.

 a) original scene b) highlight the second line c) click a candidate and

and prediction occurs the next prediction occurs

d) original scene e) highlight a line f) click a candidate and

and prediction occurs the next prediction occurs

Figure 3: The prediction mechanism.

Suggestions
Chateau generates suggestions whenever the user adds,
erases, highlights, or unhighlights a line. The system
automatically infers possible next operations based on the
configuration of the highlighted lines, and presents the
results of the operations as an array of thumbnails (Figure
1). The user can either ignore these or adopt one by clicking
the thumbnail. The user can also “preview” the result as a
large image in the main screen by dragging the mouse
cursor across the thumbnails. The operation is finalized
when the user releases the mouse button over the desired
thumbnail.

a) draw lines on the ground b) choose a candidate

c) draw a line on the drawing plane d) choose a candidate

e) unhighlight all f) draw a line on the plate

Figure 4: Example operation sequence.

Figure 4 shows an example operation sequence. The user
first draws two lines on the ground and the system presents
three suggestions (a). Then she chooses the leftmost
suggestion, which creates a new drawing plane (b). She
draws the third line on the drawing plane and the system
presents three new suggestions (c). She chooses to make a
box (d). She unhighlights everything by clicking on the
ground (e). She draws a line on the box, and the system
shows two candidates (f), including one that suggests
chamfering.

Candidates are generated by a set of suggestion engines.
Each engine observes the scene, and when the current scene
configuration matches its input test pattern it returns the
updated scene as a candidate (Figure 5). The current
implementation duplicates the entire scene for each
candidate instead of maintaining a progressive data
structure. The behavior of an individual suggestion engine
can be seen as a variation of the constraint-based
search-and-replace operation in the Chimera system [14],
but our engines focus only on the highlighted lines instead
of pattern-matching against the entire scene. When a
suggestion is created, a thumbnail is rendered as an
offscreen image, using the same camera parameters (i.e.,
view) as in the main window. For efficiency, we use fixed
bitmaps for the thumbnails, which therefore do not update
as the main-window view is changed.

Examiner

Generator

Scene Suggestion engines Suggestions
Figure 5: Suggestion engines observe the scene
and return candidates when the scene matches
their input patterns.

Figure 6 shows our current list of engines, S1 to S20. The
first two suggestion engines support fundamental operations.
S1 creates a temporary drawing plane to let the user draw
lines in the air. If the most recently highlighted two lines
are on a single plane, the system offers it as the next
drawing plane. If not, the system offers a plane that
contains the last-highlighted line and is perpendicular to the
current drawing plane. S1 always returns a suggestion
unless the resulting plane is identical to the ground plane.
S2 creates a plate in a planar loop of highlighted lines.

All modeling operations can be achieved using just the
basic drawing operations and the two engines just described.
All the other suggestions can be seen as “assistants” that
facilitate typical modeling tasks. For example, instead of

using S4, the user could draw a box by drawing 12 lines and
making 6 plates manually. We briefly describe the behavior
of the suggestion engines to supplement the visual
description in Figure 6.

S3 and S4 respond to two/three highlighted lines connected
perpendicularly to one another. S5 and S6 respond to a
highlighted line that is perpendicular to the plane containing
all other highlighted lines; S6 responds only when the
remaining lines form a loop, in which case the top vertex is
positioned over the loop’s center. S7 responds when the
last-highlighted line overlaps a line in the highlighted group.
(A group is a set of highlighted lines and plates connected
to one another.) S8 responds to two sets of highlighted lines
when each set lies on a plane and each line in a set has a
parallel partner in the other set. S9 responds when the
extrusions from the planar highlighted lines hit an existing
plate (this is useful, for example, in making the legs of a
table). S10 and S11 respond to highlighted lines that touch
the edges of a polyhedron. Specifically, S10 requires that
the two edges touched by the highlighted line share a vertex
and that the vertex be shared by three plates. There must
also be another plate at the opposite side. S11 requires that
the highlighted lines form a planar loop and that all
highlighted lines be on plates surrounding a corner. S12
responds to two parallel highlighted lines, of which one is
an edge of a plate and the other touches the edges next to it.
S13 responds to two intersecting lines (this is useful for
trimming operations). S14 responds when the
last-highlighted line is isolated from the highlighted group
and is congruent with a line in the group. S15 is similar, but
responds when the highlighted line is the mirror copy of the
corresponding line. S16 responds when two congruent
groups are highlighted, and therefore appears whenever the
user has adopted an S14 suggestion. S17 responds to
sequences of parallel lines such that the gaps between
corresponding segments are nearly equal. S18 responds
when three congruent groups or lines are linearly aligned. It
generates equally spaced copies of the group between the
external two as hinted by the middle one. S19 responds to
irregular “stairs” (a repeated sequence of mutually
perpendicular lines). S20 responds to three lines of equal
length sharing a vertex when two of the joint angles are
equal. This engine is useful in drawing regular polygons.

The particular choice of engines was determined by our
needs as we experimented with the system and is clearly
application-dependent. In a plumbing application, for
example, it would be natural to have engines that created
standard junctions (tees, unions, couplers, elbows, etc.).

In the current implementation, engines require exact
matching in the examination phase. For example, S4
requires that all three edges to be exactly perpendicular and
S17 requires that the pairs be exactly parallel. Alternatively,
one can allow small deviations and beautify them after the
operation [14]. We did not adopt this scheme in order to

clearly distinguish the role of snapping/prediction and
suggestions. Our design principle is to use snapping and
prediction for satisfying basic relations such as congruence
and parallelism, and to use suggestions for completing
construction tasks. Another reason is that small deviations

in the hints can make the result of suggestions ambiguous.
For example, in the case of S4, the system has three options
for positioning the resulting box if the three lines are not
exactly perpendicular each other, and thus must ask the user
to choose one among them.

S1 creates a drawing plane S2 makes a plate in a closed loop S3 creates a rectangle from perpendicular lines

 S4 makes a box from 3 perpendicular lines S5 extrudes planar lines S6 creates a pyramid shape

S7 resizes the highlighted group S8 makes plates between parallel lines S9 extrudes lines under a plate

S10 makes a chamfer S11 cuts a corner of a polyhedron S12 trims a plate

S13 divides lines at their intersection S14 duplicates a group S15 makes a flipped copy of a group

S16 makes the third copy of a group S17 makes the gaps equal S18 makes equally spaced copies

S19 makes equally spaced stairs S20 arranges lines to be rotationally symmetric

Figure 6: Complete list of suggestions implemented in the current prototype (left: hints, right: result). (The dotted lines
are added for clarity; they do not appear in the actual system.)

To investigate the capability of a pure suggestive interface,
we intentionally excluded traditional editing operations
such as translation, rotation, and duplication. However, it is
natural and useful to provide both command-based and
suggestion-based operations in a single system. We
envision that in practical applications, suggestive user
interfaces will augment command-based interfaces.

IMPLEMENTATION
The Chateau system is implemented in Java (JDK1.1.5),
and uses directX3 for 3D rendering. Suggestion engines
(Java class files) are implemented as listeners that respond
to changes in the scene configuration. An engine has an
input examination part that determines whether it responds
to the scene, and a suggestion generator that edits a copy of
the scene to construct an updated scene. When the current
scene matches an engine’s input pattern, the engine returns
the updated scene object and a thumbnail image (Figure 5).
The implementation of suggestion engines is relatively
simple because standard routines are provided by the base
system. In the examination part, an engine checks the scene
based using such criteria as the number of highlighted lines,
connectivity, and spatial interrelationships. A typical
suggestion engine’s source code is between 100 and 200
lines.

It is essential to design suggestion engines carefully so that
their input conditions are as mutually exclusive as possible.
If many suggestion engines match a single scene
configuration, they will generate many suggestions,
confusing the user and cluttering the screen. With our
current choice of engines, the system generates only a few
suggestions at a time, showing that careful design can help
prevent suggestion explosion. In the future, we will
investigate the feasibility of the interface with many more
suggestion engines.

USER EXPERIENCES
We have started an informal user study using the prototype
system. Figure 7 shows examples of 3D models created by
our test users, all of whom are graduate students in
computer science. They learned the behavior of the system
in approximately 30 minutes of tutorial and practice and
created various models, including those shown in Figure 7,
within a few hours. Test users were generally satisfied with
the interface, but they wanted simple direct manipulation
functions such as “move” and “rotate.” Because of the
limitations of the current implementation, the system gets
too slow when the model becomes more complicated than
these examples.

Figure 7: 3D drawings created by test users using
Chateau.

We also asked students in an advanced computer graphics
class (including both graduate and undergraduate students)
to test the prototype system and to implement their own
suggestion engines as a part of an assignment. In general,
they found the idea of a suggestive interface attractive and
useful, but also felt that the current implementation requires
substantial improvements. They wanted a better interface
for controlling temporary drawing planes, appropriate
feedback for camera control and snapping, the ability to
turn off/on each feature, keyboard shortcuts for frequent
operations, and command-based direct manipulation or 3D
widgets for translation and rotation. This result suggests
that a pure suggestive interface is not very practical, and
that suggestion may be most effective when combined with
traditional interfaces. We also asked them to list suggestion
engines that they evaluated positively (useful) and
negatively (useless or difficult to use). Table 1 summarizes
the results. The basic engines (S1-S6) were popular, but
other engines received mixed reactions reflecting large
diversity in personal preferences.

Table 1: Subjective evaluation of suggestion engines.
The table shows the number of subjects who
evaluated each suggestion positively or negatively. Six
subjects provided answers.

S 1 2 3 4 5 6 7 8 9
positive 3 5 6 5 5 3 1 1 0
negative 0 0 0 0 0 1 2 3 5

10 11 12 13 14 15 16 17 18 19 20
3 3 3 3 2 1 2 0 4 0 1
3 2 1 1 2 3 2 3 1 2 4

Figure 8 shows some suggestion engines implemented by
the students. S21 takes a structure on the ground plane and

a vertical line, and hoists the structure. S22 takes two closed
loops that are not parallel, and makes a tube between the
loops. S23 takes connected lines and returns a spline curve.
S24 takes three lines in Y shape and fractalizes the Y.
Overall, students implemented their own suggestion engines
successfully, showing that one can extend the system as
desired with reasonable effort.

S21 hoists structure. S22 makes a tube.

S23 makes spline curve. S24 makes fractal Y shapes

Figure 8: Examples of suggestion engines
implemented by test users.

LIMITATIONS AND FUTURE WORK
Suggestive interfaces have some drawbacks: they can help
promote serendipitous discovery of available operations,
but they give a user no way to discover all operations
directly, as “browsing the menus” can in a WIMP interface.
If the hints given are inadequate, the system never responds
and it is unclear to the user why the system is failing. A
visual summary of suggestions, such as shown in Figure 6,
is necessary for learning and reference. For operations with
continuous parameters (e.g., shearing), there is no
opportunity for partial feedback (such as a highlighted
bounding box or parallelogram) during parameter
adjustment. These operations may be best supported by a
traditional direct-manipulation approach such as 3D
widgets [4].

As with any experimental interaction technique, scalability
is a major concern with the suggestive interface. One
scalability problem is the complexity of the 3D scene.
Although the hinting mechanism effectively limits the
number of candidate suggestions compared with the simple
search-entire-scene approach [11][14], complicated 3D
scenes can make it difficult to specify hints and to find the
desired one among small thumbnails. We need some
advanced mechanisms such as grouping and locking to deal
with complicated scenes.

Another scalability issue is related to the number of engines.
The current suggestive interface system may not work well
when hundreds of engines are implemented since the
system may generate too many suggestions and confuse the
user. We need refined mechanisms that automatically

suppress inadequate engines based on the user’s preferences,
or let the user manually activate/inactivate specific engines.
We also need to provide traditional command-based
interfaces to perform complicated tasks.

The order of suggestion presentation is fixed in the current
implementation: it is determined by the order in which the
suggestion engines are implemented in the system, so S1
always appears first, S2 (if appropriate) second, and so on.
We could instead first display recently used suggestions, or
sort the suggestions based on the current context, or
organize suggestions into a hierarchy. The value of such
approaches will have to be determined through careful user
studies.

In the near future, we will extend the current interface to
support circles and curves. We plan to implement
suggestion engines that construct cylinders, revolved
surfaces, and rounded corners. In the longer term, we hope
to use a suggestive user interface in a sketch-based freeform
modeling system [12].

One advantage of the suggestive interface is extensibility.
Users can customize the interface by adding their own
special-purpose engines to the system. In the current
implementation the user must write Java code, but we hope
to provide an end-user programming environment, possibly
an example-based framework [6].

Suggestive interfaces can be useful in various other
graphical applications such as 2D bitmap editors and graph
drawing programs. For example, if the user highlights
almost-aligned objects in a 2D drawing program, the system
might suggest an aligning operation, and it would be natural
in a graph-drawing program to support even spacing of
nodes or replication of selected subgraphs. Indeed, we
believe that the ease of describing useful suggestions for a
variety of applications indicates the promise of suggestive
interfaces.

ACKNOWLEDGMENTS
We would like to thank the Brown University computer
graphics group, especially Bob Zeleznik and Andy Forsberg,
for thoughtful discussions, and the CMU stage3 research
group, especially Dennis Cosgrove, for allowing us to use
their Jalice scenegraph. We also thank Brown CS224
students for testing the system and providing valuable
feedback.

REFERENCES
1. Ashlar Vellum Products, Ashlar Inc.,

http://www.ashlar.com/

2. E.A. Bier and M.C. Stone. Snap Dragging. Computer
Graphics, Vol. 20, No. 4, pp. 233-240, 1986.

3. J.M. Cohen, L. Markosian, R.C. Zeleznik, J.F. Hughes,
and R. Barzel. An Interface for Sketching 3D Curves.

1999 Symposium on Interactive 3D Graphics, pp.
17-21, 1999.

4. D.B. Conner, S.S. Snibbe, K.P. Herndon, D.C. Robbins,
R.C. Zeleznik, and A. van Dam. Three-Dimensional
Widgets. 1992 Symposium on Interactive 3D Graphics,
pp. 183-188, 1992.

5. A. Cypher. Eager: Programming Repetitive Tasks by
Example. Proceedings of CHI’91, pp.33-39, 1991.

6. A. Cypher. Watch What I Do: Programming by
Demonstration. Cambridge, MA: MIT Press. 1993.

7. M. Gleicher and A. Witkin. Drawing with constraints.
The Visual Computer, Vol. 11, No. 1, pp. 39-51, 1994.

8. M.D. Gross and E.Y.L. Do. Ambiguous Intentions: A
Paper-like Interface for Creative Design. Proceedings
of UIST’96, pp. 183-192, 1996.

9. S. Hudson and C. Hsi. A Synergistic Approach to
Specifying Simple Number Independent Layouts by
Example, Proceedings of INTERCHI'93, pp. 285-292,
1993.

10. T. Igarashi, S. Matsuoka, S. Kawachiya, and H. Tanaka.
Interactive Beautification: A Technique for Rapid
Geometric Design. Proceedings of UIST'97, pp.
105-114, 1997.

11. T. Igarashi, S. Matsuoka, S. Kawachiya, and H. Tanaka.
Pegasus: A Drawing System for Rapid Geometric
Design. CHI'98 Summary, pp. 24-25, 1998.

12. T. Igarashi, S. Matsuoka, and H. Tanaka. Teddy: A
Sketching Interface for 3D Freeform Design.
SIGGRAPH 99 Conference Proceedings, pp. 409-416,
1999.

13. S. Karsenty, J.A. Landay, and C. Weikart. Inferring
Graphical Constraints with Rockit, Proceedings of
HCI’92, 1992.

14. D. Kurlander and S. Feiner. Interactive
Constraint-Based Search and Replace. Proceedings of
CHI'92, pp. 609-618, 1992.

15. J.A. Landay and B.A. Myers. Interactive Sketching for
the Early Stages of User Interface Design. Proceedings

of CHI'95, pp. 43-50, 1995.

16. J. Mankoff, S.E. Hudson and G.D. Abowd. Interaction
Techniques for Ambiguity Resolution in
Recognition-based Interfaces. Proceedings of UIST'00,
pp. 11-20, 2000.

17. J. Marks, B. Andalman, P. Beardsley, W. Freeman, S.
Gibson, J. Hodgins, T. Kang, B. Mirtich, H. Pfister, W.
Ruml, K. Ryall, J. Seims, and S. Shieber. Design
Galleries: A General Approach to Setting Parameters
for Computer Graphics and Animation. SIGGRAPH 97
Conference Proceedings, pp. 389-400, 1997.

18. T. Masui. An Efficient Text Input Method for
Pen-based Computers. Proceedings of CHI'98, pp.
328-335, 1998.

19. D. Maulsby, I.H. Witten and K.A. Kittlitz. Metamouse:
Specifying Graphical Procedures by Example.
Proceedings SIGGRAPH'89, pp. 127-136, 1989.

20. T.P. Moran, P. Chiu, W. van Melle, and G. Kurtenbach.
Pen-based Interaction Techniques for Organizing
Material on an Electronic Whiteboard. Proceedings of
UIST'97, pp. 45-54, 1997.

21. J. Nielsen. Noncommand User Interfaces.
Communications of the ACM, Vol. 36, No. 4, pp. 83-99,
1993.

22. K. Sims. Artificial Evolution for Computer Graphics.
SIGGRAPH 91 Conference Proceedings, pp. 319-328,
1991.

23. A. van Dam. Post-WIMP User Interfaces,
Communications of the ACM, Vol. 40, No. 2, pp. 63-67,
1997.

24. R.C. Zeleznik and A. Forsberg. UniCam — 2D
Gestural Camera Controls for 3D Environments.
Proceedings of 1999 Symposium on Interactive 3D
Graphics, 1999.

25. R.C. Zeleznik, K.P. Herndon, and J.F. Hughes.
SKETCH: An Interface for Sketching 3D Scenes.
SIGGRAPH 96 Conference Proceedings, pp. 163-170,
1996.

