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Abstract

We present a system that lets a designer directly annotate
a 3D model with strokes, imparting a personal aesthetic to
the non-photorealistic rendering of the object. The artist
chooses a “brush” style, then draws strokes over the model
from one or more viewpoints. When the system renders
the scene from any new viewpoint, it adapts the number
and placement of the strokes appropriately to maintain the
original look.
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1 Introduction

Artists and designers apply techniques of 3D computer
graphics to create images that communicate information for
some purpose. Depending on that purpose, photorealistic
imagery may or may not be preferred. Thus, a growing
branch of computer graphics research focuses on techniques
for producing non-photorealistic renderings (NPR) from 3D
models. Strong arguments for the usefulness of this line of
inquiry are made by many researchers (e.g., [Durand 2002;
Lansdown and Schofield 1995; Meier 1996; Strothotte et al.
1994; Winkenbach and Salesin 1994]).

Much of the research in NPR has targeted a particular
style of imagery and developed algorithms to reproduce that
style when rendering appropriately-annotated 3D scenes.
Relatively little emphasis has been placed on the separate
problem of how to provide direct, flexible interfaces that a
designer can use to make those annotations in the first place.
Instead, the usual approach is to rely on complex scripting
or programming. Meier [1999] and Seims [1999] argue that
effective interfaces are essential for these algorithms to be
accepted by content creators. One reason is that NPR
imagery must often reflect a designer’s judgments regarding
what details to emphasize or omit. Thus, a key challenge
facing NPR researchers is to provide algorithms coupled with
direct user interfaces that together give designers flexible
control over the look of a scene. In this paper we begin to
address this challenge in the context of interactive NPR for
3D models.

Figure 1: Artists directly annotated the same 3D teacup
model to produce four distinct rendering styles.

We present a system called WYSIWYG NPR, for “what
you see is what you get non-photorealistic rendering.” We
focus on stroke-based rendering algorithms, with three main
categories of strokes: (1) silhouette and crease lines that
form the basis of simple line drawings; (2) decal strokes that
suggest surface features, and (3) hatching strokes to convey
lighting and tone. In each case, we provide an interface for
direct user control, and real-time rendering algorithms to
support the required interactivity. The designer can apply
strokes in each category with significant stylistic variation,
and thus in combination achieve a broad range of effects, as
we demonstrate in both figures and video.

In this paper we focus on tools that give the artist
control over the look of a scene. We also provide limited
control over how strokes animate during level of detail
transitions, recognizing that the ideal system would provide
more complete control over the animation of strokes as a
design element in its own right.

The applications for this work are those of NPR, including
architectural and product design, technical and medical
illustration, storytelling (e.g., children’s books), games, fine
arts, and animation.

The main contributions of this paper are to identify the
goal of providing direct control to the user as being key to
NPR, and to demonstrate with a working system the payoff
that can result from targeting this problem. In support of
this goal, we offer several new NPR algorithms, including
improved schemes for detecting and rendering silhouettes, an
algorithm for synthesizing stroke styles by example, methods
for view-dependent hatching under artistic control, and an
efficient technique for simulating various types of natural
media such as pencil or crayon on rough paper.
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Figure 2: Example session (L to R): load model; shading and paper; stylize outlines; add decals; hatching; labeled features.

2 Related Work

The last decade has seen a blossoming of work on NPR
algorithms in a variety of styles. For a survey, see Gooch and
Gooch [2001]. Much of this work addresses the production of
still images, while some systems for rendering 3D scenes have
addressed the challenge of providing temporal coherence
for animations [Deussen and Strothotte 2000; Meier 1996].
Our work falls into the latter category, within the subset
of systems that address interactive rendering (e.g., [Gooch
et al. 1999; Kowalski et al. 1999; Lake et al. 2000; Markosian
et al. 2000; Praun et al. 2001]), wherein the challenge
is to maintain temporal coherence, using limited run-time
computation, when camera paths are not known in advance.

Most work in NPR has focused on algorithms that are con-
trolled by parameter setting or scripting—the designer has
no direct control over where marks are made. An inspiration
for our work is the technique for direct WYSIWYG painting
on 3D surfaces proposed by Hanrahan and Haeberli [1990],
which is now available in various commercial modeling sys-
tems. These tools let the designer paint texture maps directly
onto 3D models by projecting screen-space paint strokes onto
the 3D surface and then into texture space, where they are
composited with other strokes. Strokes then remain fixed
on the surface and do not adapt to changes in lighting or
viewpoint. In contrast, strokes in our system are automati-
cally added, removed, or modified in response to changes in
lighting or viewing conditions.

Our system also draws inspiration from others that pro-
vide direct drawing interfaces for creating stylized scenes.
Arguably, the “Holy Grail” of NPR research is to allow
an artist to simply draw in the image plane and thereby
express a complete, stylized 3D world. The systems of
Tolba et al. [2001], Cohen et al. [2000], and Bourguignon
et al. [2001], each pursue this goal by making simplifying
assumptions about the underlying geometry. In contrast,
we start with a 3D model, and draw directly on it. Our
goal is eventually to integrate the WYSIWYG NPR inter-
face directly into a modeling system, ideally one that uses a
drawing interface for constructing geometry, like SKETCH
[Zeleznik et al. 1996] or Teddy [Igarashi et al. 1999].

Previous efforts have addressed finding silhouettes on
3D models and rendering them with stylization [Markosian
et al. 1997; Masuch et al. 1997; Northrup and Markosian
2000]. Other systems have addressed generating hatching
or structured patterns of strokes on surfaces to convey tone
or texture [Hertzmann and Zorin 2000; Mitani et al. 2000;
Praun et al. 2001; Winkenbach and Salesin 1994]. In our
system the challenge is to synthesize strokes with temporal
coherence, in real time, based on a user-given style, where
the user specifies where particular strokes should be placed.

3 An Interaction Example

To give a sense of the system from the artist’s viewpoint, we
now briefly describe the organization of the user interface,
and then narrate a step-by-step interaction session.

To support a direct interface for creating stroke-based
NPR styles, we provide a pen and tablet for drawing input.
Pressure data from the tablet pen can be used to vary stroke
attributes such as width and darkness. The UI makes use of
conventional menus and dialog boxes as needed.

The system has three editing modes. In the first, the artist
can position each object and set its “base coat” (described
in Section 4.1). In outline mode the artist can draw decals
and stylize silhouettes and creases. In hatching mode, he can
draw hatching strokes. In any mode, the artist can modify
the current “brush style” that affects stroke properties (see
Section 4.2). In practice, the artist will carefully design
combinations of parameters that together produce a desired
look, then save that brush style to use again in future
sessions. The artist can also select a background color or
image for the scene, and control the directional lighting that
affects the “toon” shaders used for object base coats. All
color selections are made via HSV sliders.

We now describe how an artist annotates a simple 3D
model to depict a stylized fruit can. Stages of the process
are shown in Figure 2; the names of various design elements
appear in the rightmost image.

1. We begin by loading a model of a can, which is initially
displayed in a generic silhouette style with a tan base coat
and background color.

2. We choose a toon base coat for the model from a
previously-created list. Next we set the background color
to gray, and apply a previously created paper texture to it.
We adjust the lighting so the right side of the can is lit.

3. From a list of previously saved brushes, we choose a
black pencil style. We select a silhouette, which highlights
in yellow. We draw over the highlighted portion with sketchy
strokes and then click an “apply” button to propagate the
sketchy style to all silhouettes. Next we select a crease where
the lip of the can meets the cylindrical part, oversketching
this and other creases in a sketchy style similar to that of
the silhouettes.

4. To add a label to the can, we draw decal strokes directly
on the surface, moving the viewpoint and changing the color
and other attributes of the brush as needed.

5. We now switch to hatching mode and draw roughly
parallel lines where we want shading to appear. To finish the
hatch group, we tap the background. We create a second set
at an angle to the first and tap again. The drawing is done!
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4 Rendering Basics

The models accepted by our system are triangle meshes
(possibly animated). A mesh is divided into one or more
patches, each rendered with several procedural textures, or
shaders. One shader draws a “base coat,” another handles
creases, a third draws silhouettes, and a fourth applies
hatching strokes.

4.1 Background and Base Coat

The focus of our work is to let the designer annotate a
model with strokes, but there are two other elements under
user control that provide significant flexibility. First, the
designer can choose a background color or image that fills
the rendering window (e.g. the “sky” in Figure 8.) Second,
the designer can select for each patch a base coat – a shader
that draws the triangles of the patch in some style. Examples
in this paper include drawing the patch using cartoon (or
“toon”) shading as in Figure 1, upper left, or in a solid color
as in Figure 1, upper and lower right. As described by Lake
et al. [2000], the designer can create custom 1D texture maps
containing the color spectrum for each toon shader. Our
1D toon textures may include an alpha component to be
used by the media simulation algorithm of Section 4.4, as in
Figure 3. In such cases the base coat is typically rendered
in two passes: an opaque layer followed by the toon shader.

4.2 Strokes

Our stroke primitive is based on that of Northrup and
Markosian [2000]. The main difference is that the path of
the stroke, called the base path, is represented as a Catmull-
Rom spline. Elements under user control are: color, alpha,
width, the degree to which strokes taper at their endpoints,
and “halo” (the degree to which a stroke is trimmed back
at an endpoint due to occlusion). These parameters are
controlled by sliders, though width and alpha can be made
to vary along the stroke due to pressure data from the tablet.
The designer may choose an optional 1D texture specifying
the image (including alpha) of a “cross-section” of the stroke.
(We found that using a 2D texture parameterized by stroke
length and width led to temporal artifacts arising from
abrupt changes in stroke lengths.) The stroke is rendered
as a triangle strip that follows the base path and matches
the varying width, alpha, and color or texture of the stroke.

As will be described in Section 5, we may further stylize a
silhouette or crease stroke using an offset list that represents
small-scale wiggles relative to the base path [Markosian et al.
1997]. Each offset records a parametric position along the
base path and a perpendicular screen-space displacement
from that point (in pixels). The offset list may progress
forward and backward along the stroke, and may contain
breaks. To render the offset list, we map it along the base
path to define one or more triangle strips in image space.

4.3 Stroke Visibility

The z-buffer cannot directly compute visibility for strokes
because the triangle strip for a stylized base path would
generally interpenetrate the surface. Instead, we adopt the
method of Northrup and Markosian [2000], which resolves
visibility using an ID reference image. Into this off-screen
buffer, we render the mesh faces, crease edges, silhouette
polylines – each in a unique color. The visible portions of
a particular stroke are found by sampling the ID reference
image along the base path, checking for the correct color.

Figure 3: Wide silhouette strokes and a subtle toon shader
are rendered over a coarse paper texture.

4.4 Media Simulation

To simulate natural media, the artist can apply a paper effect
to any semi-transparent scene primitive: background image,
toon shader, or stroke. We modulate the per-pixel color of
the primitive during scan conversion by the texel of a chosen
paper texture. Conceptually following Curtis et al. [1997]
and Durand et al. [2001], the paper texture encodes a height
field h ∈ [0, 1]. At peaks (h = 1) the paper easily catches
pigment, whereas in valleys (h = 0) it resists pigment. We
model this process by applying a transfer function to the
α component of the incoming color. For peaks we use the
transfer function p(α) = clamp(2α), and for valleys we use
v(α) = clamp(2α − 1). For intermediate height h we use
the interpolated function t(α) = p(α)h + v(α)(1 − h). We
composite the incoming color into the framebuffer using the
standard “over” operation with transparency t(α). We have
implemented this simple algorithm as a pixel program on our
graphics card. The paper effect is clear in Figures 3 and 4.

Durand et al. [2001] describe a similar strategy, using
a transfer function to re-map tones to produce bi-level
(halftone) output, and a modification to blur this bi-level
output for better results on color displays. In contrast, our
transfer functions were designed to reproduce patterns we
observed in scanned images of real crayon and pencil on
paper. They are simpler and better suited to implementation
on current pixel-shading hardware. Because we re-map
alpha instead of tone, our method more flexibly handles
arbitrary colors in both source and destination pixels.

Figure 4: Details of paper effect from Figures 1 and 3.
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Figure 5: The same cube rendered in two different styles.
Crease strokes were synthesized from the examples shown.

5 Decals, Creases, and Silhouettes

In this section we treat the placement, modification and
rendering of individual strokes. Section 6 will address level
of detail issues relating to management of groups of strokes.

5.1 Decal Strokes

The simplest annotation in our system is the “decal” stroke.
The artist draws a stroke directly onto a surface, and it sticks
like a decal. These strokes were used to draw the flowers and
the butterfly on the upper cups in Figure 1.

The interface for decal strokes was inspired by the system
of Hanrahan and Haeberli [1990], which projects strokes into
a texture map, and renders them using conventional texture
mapping. In contrast, our system represents decal strokes
as spline curves whose control points are projected onto the
surface and rendered as described in Section 4.2. Our repre-
sentation offers three benefits over texture mapping. First,
decal strokes do not require a parameterization of the sur-
face. Second, we avoid sampling artifacts at magnified and
oblique views. Third, with texture mapping the apparent
brush size depends on the obliquity of the surface, whereas
we can maintain the screen-space width of strokes to be con-
sistent with the artist’s brush choice under all views.

5.2 Crease Strokes

The artist may also annotate creases – chains of mesh edges
that follow sharp features on the model. Such features are
manually tagged by the modeler or automatically found by
thresholding dihedral angles in the mesh. The strokes in
Figures 5 and 6 all arise from annotated creases.

When the artist oversketches a chosen crease, perhaps
more than once, the system records these “detail” functions
in offset lists as described in Section 4.2. For every vertex of
the input stroke, an offset is recorded as a perpendicular
pixel displacement from the nearest point along the arc-
length parameterized crease path. The crease endpoints
are extended along the respective tangents to accommodate
sketching beyond the crease.

In subsequent views, the parametric positions of the
offsets remain fixed. However, we shrink the offsets when
the model shrinks in screen space, because we found this
to appear more natural than using fixed-magnitude offsets.
We take the ratio σc of the current screen-space length of
the crease to that when it was oversketched, and scale the
magnitudes of the offsets by min(σc, 1). I.e., we scale them
down but never up.

Figure 6: Victorian Storefront. Four example strokes were
used to synthesize strokes along all creases, combining the
best of both worlds: direct drawing to create the look, and
automation to avoid the tedium of sketching every stroke.

5.3 Synthesizing Strokes by Example

Since some models contain many creases, we provide two
techniques for automatically assigning them offsets based on
examples provided by the artist. The first technique, rubber-
stamping, repeats a sequence of example offsets along each
crease, using arc-length parameterization.

To produce less obviously repetitive strokes that still re-
semble the example strokes, we provide a second technique
that synthesizes new strokes from a given set of example
strokes. Freeman et al. [1999] describe a method of trans-
ferring stylization from a set of example strokes to a new
line drawing. Their method requires a large set of examples
(typically over 100), with each example stroke given in each
of the various “styles” to be supported. In contrast, the
method we describe below works with just a few example
strokes (we typically use three or four). This is possible be-
cause we separate each stroke into an unstylized “base path”
plus detail “offsets” as described in Section 4.2. We perform
one-dimensional texture synthesis on the stroke offsets using
Markov random fields, and can apply the result to any new
stroke base path. To maintain variety, we synthesize a new
offset list for each stroke requiring stylization.

Markov random fields have been recently used in graphics
in other data-synthesis applications [Brand and Hertzmann
2000; Efros and Leung 1999; Wei and Levoy 2000]. Our
algorithm closely follows the “video textures” algorithm
presented in Schödl et al. [2000]; rather than synthesize new
sequences of frames from an example video, we synthesize
new sequences of stroke offsets from a set of example strokes.
The synthesis algorithm constructs a Markov random field
where each state corresponds to an offset in an example
stroke; the transition probability between two states is a
function of the local stroke similarity between the two points.
With this method, we generate offset sequences containing
features of the example strokes, as shown in Figures 5 and 6.
Implementation details are given in Appendix A.
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Figure 7: The artist chose sepia-toned paper and brown and white conte crayon brushes to create this breakfast scene. The
toon shading, which is translucent brown in the dark areas and completely transparent in the light areas, implies an ink wash.
Multiple levels of detail are revealed in the free hatching when the camera zooms in for a closer view (right).

5.4 Silhouettes

Unlike creases, silhouettes are view dependent: their num-
ber, locations, and lengths vary from one frame to the next.
It is not obvious how the artist could annotate individual
silhouettes with unique stylizations that persist over time.
Therefore, our tools let the artist sketch a single proto-
type stroke that is rubber-stamped wherever silhouettes are
found. In most other respects, silhouettes behave like creases
from the point of view of the artist.

We have adapted the silhouette detection algorithm of
Markosian et al. [1997], which finds networks of silhouette
edges on the mesh. Our goal is to turn visible portions of
these networks into strokes. While the silhouette generally
looks smooth, it often bifurcates and zig-zags in 3D and
therefore backtracks in the image plane – an obstacle for the
construction of smooth strokes along the path. Northrup
and Markosian [2000] propose a set of heuristics for cleaning
up the resulting 2D paths before forming strokes.

Hertzmann and Zorin [2000] use an alternate definition of
silhouettes that avoids such problems. For a given vertex v
with normal nv and vector cv to the camera, we define the
scalar field f(v) = nv · cv, extending f to triangle interiors
by linear interpolation. Silhouettes are taken to be the zero-
set of f , yielding clean, closed polylines whose segments
traverse faces in the mesh (rather than following edges, as
in the Markosian and Northrup methods.) Hertzmann and
Zorin also describe a fast, deterministic method for finding
these silhouettes at runtime, based on a pre-computed data
structure. A drawback is that their method is not suitable
for animated meshes (e.g. Figure 10). Therefore, we use
their silhouette definition, but adapt the stochastic method
for finding the polylines, as follows. Sample a small number
of faces in the mesh. At each, test the sign of the function f
at its three vertices; if they are not all the same, then
the silhouette must cross this triangle and exit from two
of the three sides into neighboring triangles; locate those
triangles and continue tracing until returning to the starting
triangle. (If f is exactly zero at a vertex, slightly perturbing
the normal removes the degeneracy.) We cull “back-facing”
segments by checking if ∇f points away from the camera,
and test visibility of the remaining portions as in Section 4.3.

Since we render silhouettes with stylization (Section 4.2),
assigning them consistent parameterization is critical for
temporal coherence. This is easy for creases because they
are fixed on the model. But silhouettes are view-dependent
and do not necessarily have correspondence from frame to
frame. This paper does not fully address the challenge of
assigning consistent parameterization from one frame to the
next. Nevertheless, we adopt a simple heuristic described
by Bourdev [1998]. We begin by assigning all strokes arc-
length parameterization. In each frame, we sample visible
silhouettes, saving for each sample its surface location and
parameter value (with respect to the stylization). In the
next frame, we project the sample from 3D into the image
plane. Then, to find nearby silhouette paths, we search the
ID reference image (Section 4.3) by stepping a few pixels
along the surface normal projected to image space. If a new
path is found, we register the sample’s parameter value with
it. Since each new path generally receives many samples, we
use a simple voting and averaging scheme to parameterize it;
more rigorous analysis of clustering or voting schemes merits
future work.

Once we have parameterized the silhouette paths, we can
apply stylization as we do with creases (Section 5.2), with
one notable difference. Because the silhouette paths have
varying lengths, we truncate or repeat the stylization to fully
cover each path. When the artist oversketches a silhouette
to provide stylization, the length of the oversketched base
path is taken as the arc-length period for repeating the
offset pattern. We scale the period and magnitude of the
silhouette offsets just as for creases (Section 5.2), except
for the definition of the scaling factor (which for a crease
depends on a fixed set of edges). Instead we use the ratio
σm of the screen-space model diameter to that when the
oversketch was performed. We scale the offset magnitudes
only when zoomed out, using min(σm, 1), as on this sphere:

σm = 1/4 1/2 1 2 4
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Figure 8: A toon shader and mobile hatching suggest
lighting on the snowman, decal strokes depict a face, and
uneven blue crayon silhouettes imply bumpy snow. Conical
trees are annotated with sawtooth crayon silhouettes plus
two layers of mobile hatching.

6 Hatching

Our system provides tools for drawing several forms of
hatching – groups of strokes drawn on the surface that
collectively convey tone, material or form.

6.1 Structured Hatching

In illustrations, perhaps the most common form of hatching
could be characterized as a group of roughly parallel strokes.
We call such annotations structured hatching and leverage
their regular arrangement to provide automatic level-of-
detail (LOD) control. First, the artist draws a group
of roughly parallel and regularly-spaced strokes from a
particular vantage point. Then, he may move the camera
closer or further to adjust the screen-space stroke density
before “locking” it with a button. In subsequent views,
the system attempts to maintain the chosen density by
successively doubling (or halving) the stroke count when
the group size doubles (or halves). To compensate for the
discrete nature of these LODs, we modulate stroke widths
between levels.

In each frame we calculate a factor σh that approximates
the multiplier on the original stroke count necessary to
maintain density. We take σh to be the ratio of the current
size of the stroke group (measured transverse to the strokes)
to that when it was locked. Figure 9 shows the first LOD
transition as the camera approaches the locked stroke group.
The strokes do not double until σh reaches the threshold t+
(1.6 here). For σh ∈ [1.0, t+) the strokes thicken as their
density falls. When σh reaches t+ a brief animation (0.5s by
default) begins, during which existing strokes narrow while
new strokes grow in the interstices, as shown in the middle
three images. New stroke paths linearly interpolate those of
their neighbors. Finally, for σh ∈ (t+, 2.0] strokes thicken
again to eventually reach the original width. The doubling
process repeats analogously for larger σh ∈ [2n, 2n+1]. If the
camera path is reversed (zooming out) the process is inverted
using a threshold t− < t+, providing hysteresis for stability.
The designer may set a maximum LOD after which strokes
simply fatten rather than divide.

σh = 1.0 1.25 1.6 −→ 1.6 1.75 2.0

Figure 9: As the camera approaches a hatch group, level of
detail effects preserve stroke density. See Section 6.1.

6.2 Free Hatching

For some effects, an artist may find structured hatching too
constraining. Therefore, we also provide free hatching with
which the artist draws arbitrary arrangements of strokes to
explicitly build LODs. See, for example, Figure 7.

The scheme is simple. As before, the artist draws a set
of strokes from a particular view, and “locks” them at the
desired density. Then he moves to a closer view where higher
density is desired and adds more strokes, choosing whether
the new stroke group replaces or augments the previous.
This is repeated until the artist builds sufficient LODs. For
novel views, LOD transitions are handled using the same
policy as for structured hatching. (The user-adjustable
constants t+ and t− are particularly useful for tuning free-
hatching LOD transitions.) However, there is no obvious
way to measure σh for free hatching, so instead we use the
ratio σm based on mesh sizes (Section 5.4). When the first
LOD is drawn, σm = 1. Each additional LOD is associated
with the value of σm at the time it is drawn.

6.3 Mobile Hatching

Artists often use shading near outlines, suggestive of light
cast from somewhere behind the camera. To achieve this
effect when an object or camera animates, the hatching
must move on the surface. Our system provides a tool
for annotating the model with such dynamic strokes, which
we call mobile hatching. This effect is used, for example,
on the snowman Figure 8, and readers with access to the
accompanying video can see it in action.

Like stationary hatching, described in Sections 6.1 and 6.2,
mobile hatching may also be either structured or free. The
artist enters “mobile mode” and then sketches hatch groups
as before, but now each group implies a “directional light.”
The model we use is simple, and applies equally to hatching
suggestive of either highlights or shadows. From the drawn
group, we infer a light direction opposite to the local surface
normal. For highlights, we imagine a light source in the usual
sense producing this tone. However, for shading strokes, we
think of a “dark light” shining darkness on the local surface.
As the view changes, mobile hatch groups move over the
surface consistent with this pseudo lighting rule.

Our implementation is presently limited to smooth surface
regions with roughly uniform uv-parameterization, and we
further constrain the motion of mobile hatch groups to
straight lines in either u or v – let’s say u. When the artist
completes a mobile hatching group, the system (1) projects
the strokes into uv-space, (2) computes their convex hull,
(3) finds its centroid c, and (4) records the normal n̂c of the
surface at c. The parametric path over which hatch groups
travel is taken to be the line in u passing through c. For
new views, we sample the surface normal n̂(u) along the line,
and evaluate a Lambertian lighting function �(u) = n̂c ·n̂(u).
Prior to obtaining either n̂c or �(u), we smooth n̂(u) with
a filter whose kernel has the extent of the hatch group, to
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Figure 10: Four frames from an animation rendered by our system. Wings are drawn with semi-transparent free hatching.

reduce sensitivity to minor surface variations. Next, at each
local maximum in �(u) we create a mobile hatching group
whose extent is governed by the width of the peak. We omit
maxima where �(u) is less than a confidence threshold T
(we use 1

2 ) that prevents hatch groups from being placed
at insignificant local maxima arising from the constrained
motion of the group. Finally, as �(u) approaches T we fade
out the group to avoid “popping.”

While the “dark light” model may not be physically
accurate, it does yield plausible cartoonish lighting effects.
It is also extremely easy for the artist to specify, and it
does not constrain him to depict lighting that is globally
consistent. Still, the problem of inferring lighting in response
to hand-drawn shading merits further research. Other
researchers, for example, Schoeneman et al. [1993] and
Poulin et al. [1997], have addressed this problem with greater
rigor in the context of photorealism.

7 Results and Discussion1

The greatest strength of this system is the degree of control
given to the artist: the choice of brush styles and paper
textures, background and basecoats, and the look and
location of each mark. In our experience, working with each
new style requires a learning period but, as with a traditional
medium, it becomes natural once mastered.

We find that complex geometry offers detail that can
be “revealed” through the more automatic features of our
system (e.g., toon shaders or silhouettes), whereas simple
geometry offers a blank slate on which to create new details
where none exist. For example, in Figure 6, we simplified
the appearance of the intricate building with a sparse line
drawing representation. Four example strokes were used to
automatically synthesize detail over the 8,000 crease edges
in the model. This scene was completed in under fifteen
minutes, including time to experiment with media, textures,
and lighting. In contrast, the snowman scene in Figure 8
called for stroke-based detail to augment its simple geometry
(spheres and cones). This took about an hour to complete.

For interactive exploration, the artist may need to design
appropriate detail to ensure that a scene is “interesting”
from disparate views. In the scene shown in Figure 7, we
created three LODs for each object and also annotated the
“backside,” so of course the drawing took longer to create
than a still image. However, the scene in Figure 8 did not
have such additional overhead because mobile, structured
hatching automatically adapts to a moving camera.

While most of the images in this paper were captured
from interactive exploration of static scenes, our system also
supports offline rendering of scenes with animated geometry,
for example the winged character in Figure 10.

1The electronic version of this paper contains an Appendix B
with additional results.

While the system supports a diversity of styles, it does not
work well for those based on short strokes, such as stippling
or pointillism. Furthermore, silhouette stylization presently
cannot depict features local to a particular surface region,
since the style applies globally. Also, the system does not
yet support object interplay such as shadows or reflections.

Table 1 reports model complexity and typical frame rates
for various models rendered with a 1.5 GHz Pentium IV CPU
and Geforce3 GPU. All of the models render at interactive
frame rates, except for the building which uses a large
number of strokes. Stroke count has the greatest influence
on performance, while polygonal complexity has limited
impact. Reading back the ID reference image (Section 4.3)
imposes a significant but fixed overhead, so that trivial
models render at only roughly 25 fps.

Figure Faces (K) Strokes Frames/sec
1: cup 5 25 20
3: statue 120 100 10
6: building 16 7,000 3
7: breakfast 25 400 9
8: snowman 10 250 11

Table 1: Frame rates and sizes of various models.

8 Conclusion and Future Work

We have demonstrated a system for drawing stroke-based
NPR styles directly on 3D models. The system offers control
over brush and paper styles, as well as the placement of in-
dividual marks and their view-dependent behavior. Com-
bined, these afford a degree of aesthetic flexibility not found
in previous systems for creating stylized 3D scenes. We pre-
sented new algorithms for finding and rendering silhouettes,
synthesizing stroke detail by example, simulating natural
media, and hatching with dynamic behavior.

As future work, we hope to address some of the limitations
of our system and extend it, for example, to encompass
such styles as stippling and pointillism. We believe that the
stroke synthesis currently available for annotating creases
could be adapted to create regions of hatching strokes or
other structured patterns based on artist example, thus
reducing the tedium of creating every stroke manually. We
would also like to consider how we can help designers show
object-to-object interactions such as shadows, and create
artistic effects like smudging one object into another. Most
important is to put these tools in the hands of artists.
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A Stroke Synthesis

We follow the notation of Schödl et al. [2000]. The first
step of the stroke synthesis algorithm is to resample each
example stroke into offsets in the normal direction, regularly
spaced in four-pixel increments along the length of the
stroke (the synthesis algorithm does not yet handle breaks or
backtracking along the stroke). We then add a “separator”
offset to the end of each example stroke and concatenate the
example offsets together into a single vector y, keeping track
of the locations of the separator offsets. We calculate the
matrix D, where Dij is the “distance” from yi to yj:

Dij =

(
K, when yj is a separator
0, when yi is a separator and yj is not
|yi − yj| otherwise

where K is a large constant (we use 104). To take the
surrounding offsets into account, we filter the distance ma-
trix with a diagonal kernel [w0, . . . , wm]: D′

ij =
Pm

k=0 wk ·
Di−k,j−k, where out-of-range entries in D are assumed to
be zero. In our implementation, m = 4 and wi = 1/m.
D′ represents the difference between two windows of offsets,
but it does not accurately represent the future cost of tran-
sitions. For instance, a window may have a low difference
to windows near the end of an example stroke; if the al-
gorithm chose to transition to this window, it would have
a high probability of prematurely ending the stroke. We
want to assign high costs to such “dead-end” windows. To
calculate the future costs, we use Q-learning. We initial-
ize D′′ to the values in D′. We then iteratively compute
D′′

ij ← (D′
ij)

p+αmink D′′
jk until convergence; we use p = 2.0

and α = 0.999 in our implementation; Schödl et al. [2000]
discusses optimizations. Finally, we calculate the matrix
whose entries Pij are the probability of transitioning from
offset yi to offset yj: Pij ∝ exp(−D′′

i+1,j/ρ), where ρ is a
small multiple (we use 0.01) of the average magnitude of the
entries of D′′ that are greater than zero and less than the
magnitude of the largest example offset.

To synthesize a new list of offsets using y and P , we
first choose at random an offset yi that is the start of an
example stroke. We then transition to some other offset j
with probability proportional to Pij and iterate until the
desired number of offsets are generated.
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