
Multi-finger Cursor Techniques

Tomer Moscovich

Department of Computer Science

Brown University Box 1910

Providence, RI 02912, USA

tm@cs.brown.edu

John F. Hughes

Department of Computer Science

Brown University Box 1910

Providence, RI 02912, USA

jfh@cs.brown.edu

ABSTRACT

The mouse cursor acts as a digital proxy for a finger on graphical
displays. Our hands, however, have ten fingers and many degrees
of freedom that we use to interact with the world. We posit that by
creating graphical cursors that reflect more of the hand’s physical
properties, we can allow for richer and more fluid interaction. We
demonstrate this idea with three new cursors that are controlled
by the user’s fingers using a multi-point touchpad. The first two
techniques allow for simultaneous control of several properties
of graphical objects, while the third technique makes several
enhancements to object selection.

RÉSUMÉ

Le curseur de la souris est un avatar digital pour notre doigt. Cepen-
dant, nos mains ont beaucoup plus qu’un seul doigt, ainsi que
de nombreux axes de mouvement que l’on utilise pour manipuler
notre environment. Nous postulons que la création d’un curseur
graphique qui réflèterait encore plus d’aspects de la main permet-
terait des interactions plus riches et plus fluides. Nous démontrons
cette idée avec trois nouveaux curseurs qui sont contrôlés en glis-
sant plusieurs doigts à la fois sur une palette de digitalisation. Les
deux premier curseurs manipulent les objects graphiques directe-
ment, alors que le troisième manipule la sélection des objects.

CR Categories: H.5.2 [Information Interfaces]: User
Interfaces—Interaction styles; H.5.2 [Information Interfaces]: User
Interfaces—Input devices and strategies

Keywords: Cursors, Multi-touch Interfaces, High Degree-of-
freedom Input.

1 INTRODUCTION

People often wish that interacting with a computer were as conve-
nient as interacting with the real world—until we remind them of
the “undo” operation, which the real world lacks. Even with the
benefit of “undo,” much of our interaction with computers can be
frustrating, partly because it’s mediated by the mouse or other sim-
ilar cursor-control devices; enriching this aspect of interaction is
our goal. The cursor itself is an indirection in our interaction: we
control some device like a mouse, which in turn controls a cursor,
which has power over either some model (a text document, a draw-
ing) or our view of it. This indirection is analogous to the crafts-
man’s use of tools: the same hand may first use a screwdriver and
later a wrench. This is not to say that direct manipulation is a bad
thing—merely that the indirection introduced through cursors also
enables a powerful variety of tasks to be carried out with a single

Figure 1: The Hand Cursor lets the user move the puzzle pieces as
though sliding objects on a physical table.

device. For some of these tasks direct manipulation would be inap-
propriate. Just as we like to use tweezers to remove splinters and a
net to catch butterflies, we can use digital tools to select a control-
point on a curve with precision, or reach across a wall-sized display
with a flick of the wrist. The cursor acts as the visible end-effector
of such tools.

Cursors in desktop interfaces are typically controlled by only two
parameters (the motion of a mouse in x and y). This feels rather lim-
ited; it’s a great deal easier to move a book to a particular place and
orientation on a physical desk than to move a rectangle to a par-
ticular place and orientation on the virtual desktop. Therefore, we
present here three new cursors that control several parameters at a
time; the cursors themselves are controlled by multi-touch track-
ing of the user’s hand, i.e., by the positions of one or more of the
user’s fingers on a touchpad that can detect multiple finger locations
at once. These techniques demonstrate the power of simultaneous
multi-parameter cursor control, and show how the indirection pro-
vided by a cursor can overcome the physical constraints found in
similar direct-touch techniques. It is important to note that we have
chosen these techniques as representative points in the design space
of multi-finger cursors; they may be combined, modified, or ex-
tended to suit various applications. We also discuss the limitations
of these techniques, some hurdles that must be overcome to make
such cursors effective, and challenges for future work.

2 DESIGN PRINCIPLES

We have attempted to design our cursor techniques so they would be
easy for an experienced mouse user to use and understand. We do
this by maintaining, whenever possible, certain key attributes of the
graphical cursor. The first property is a continuous zero-order map-

1

Figure 2: (Left) Controlling many parameters at once is useful for
performance animation. Here the user animates two swimming fish
by using two hand cursors. (Right) Using several fingers allows users
to control objects with many degrees of freedom, like the control
points of this subdivision curve.

ping. That is to say we use the touchpad as a position control device
rather than a rate-control device. Research has shown that position
control devices lead to faster performance than other types of con-
trollers [34]. The limited range of the controller can be addressed by
making the mapping relative instead of absolute (the user can clutch
by lifting and repositioning), and by applying a speed-dependent
gain function which allows access to a large screen from a small
footprint, while still providing sub-pixel accuracy. Note that this is
particularly important for multi-finger cursors, since the space taken
up by several fingers decreases the effective size of the touchpad.

It is important, with relative positioning devices, to be able to dif-
ferentiate between the tracking and dragging states [3]. Our touch-
pad supports a single press on the interaction-surface that corre-
sponds to a mouse-button press (see section 4.1).

3 OVERVIEW OF THE TECHNIQUES

We begin by describing the three techniques, their benefits, and
their limitations. Implementation details and other considerations
are discussed in section 4. All three techniques map the position of
several fingers on a touchpad to parameters of the cursor.

Multi-finger touchpads are now commodity hardware [6, 30]. As
general purpose input devices, they can be used to drive the tradi-
tional mouse cursor by simulating single-finger touchpads. Thus
our techniques integrate seamlessly into existing GUI frameworks.

3.1 The Hand Cursor

Our first technique is a multi-finger Hand Cursor. It displays a set
of points on the screen, which correspond to contact points on the
touchpad. These finger points allow the user to control graphical
elements as though manipulating rigid real-world objects. For ex-
ample, Figure 1 shows the user moving and rotating a puzzle piece
just as one would maneuver a rigid object lying on a table.

Multiple fingers also allow the user to grasp several objects at
once, which is useful whenever it is necessary to control multiple
parameters concurrently. For example, it may be used to control
an array of sliders [4] or for modifying the control points of a curve
(Figure 2 (Right)). Multi-finger input is also useful for performance
animation [13] (Figure 2 (Left)).

While in theory the movement of five fingers on a surface can
describe up to ten parameters, in practice a finger’s motion is highly
correlated with the motion of the hand and the other fingers [12].
A reasonable way of increasing the bandwidth of interaction is to
use two hands. Two-hand cursors are especially well suited for
high-degree-of-freedom symmetric bimanual interactions such as
shape deformation [13, 22]. They can also be useful in asymmetric
interaction tasks, e.g., controlling the orientation of a toolglass ruler
[11, 1, 18].

In the real world we frequently use both hands to manipulate a
single object. When two Hand Cursors come close together, it be-
comes difficult to judge which finger (on screen) belongs to which
hand. To help the user perceive the cursors as two separate hands,
we draw a circle surrounding the fingers of each hand. Note that
this indicator only shows grouping, but does not fill in the “body”
of the hand. Test users of an earlier implementation which used a
translucent disc to indicate the hand attempted to select objects with
the disk rather than the fingers. (This type of selection may actually
be appropriate for some tasks, see Section 3.3.)

The touchpad-to-screen correspondence is not a one-to-one map-
ping from points on the touchpad to points on the screen. While
such a mapping is the most straightforward, it has several limita-
tions. For one, touchpads are generally smaller than the display
they control, which means that small errors on the touchpad are
magnified on the display. There is also a physical constraint on
the minimum distance between fingers; touch-points can never be
closer than the width of a finger, and this minimum distance may be
greatly magnified on a display. A one-to-one mapping also presents
problems when using two touchpads for two-handed input. Unless
the touchpads were several times larger than the span of each hand,
the working space for the fingers of each hand would overlap in a
confusing manner that is rarely experienced in the real world.

We solve these problems by scaling the coordinate frame of the
cursor so that the finger distances are appropriate for the manipula-
tion task (i.e. small enough to comfortably fit on the interface while
maintaining a reasonable reach). We then translate this coordinate
frame by the motion of the hand (see section 4.2). By applying
mouse acceleration to this motion, we give the hand access to the
entire screen, while maintaining high precision at low speeds. This
reflects the natural relationship of the hand to the fingers, where the
fingers work in a frame of reference relative to the hand. This tech-
nique is transparent; no one who used our system even commented
on it. However, there is an important shortcoming to this method
that must be considered: Since relative finger motion occurs at a
different scale than the global hand motion, it is difficult to inde-
pendently control the movement of each finger. Moving the hand
will move all of the fingers on the cursor, even if a finger remains
fixed on the touchpad. We find that in practice, the technique works
as long as the fingers operate in concert. For example, moving the
control segments of the curve in Figure 2 is easy, but placing fingers
on the control points is difficult.

3.2 The Similarity Cursor

Since users generally control only one object at a time, it is use-
ful to abstract the parameters of the hand into a single point cursor.
Positioning a single point over an object is easier than placing sev-
eral points, especially when the object is small relative to the width
of the fingers. The similarity cursor allows the user to focus on
a single target, while simultaneously controlling its position, rota-
tion, and scale (i.e., determining a orientation-preserving similarity
transformation). The cursor is controlled using two fingers by a
simple mapping from the hand’s position and orientation, and from
the span of the fingers (Figure 3).

Rotations, scaling, and translation are very common in illustra-
tion and 2D animation software, and in most commercial systems
must be performed separately. This is usually accomplished either
by switching modes, or by using a different control widget for each
operation. With the similarity cursor all three operations may be ac-
complished in a single smooth motion. Research on symmetric bi-
manual interaction suggests that, even discounting mode-switching
time, increased parallel input correlates with shorter completion
times for alignment tasks involving positioning, rotation, and scal-
ing [19]. This is especially evident at the final stage of alignment,
where separately adjusting each property may undo the previous

2

Figure 3: A user simultaneously translates, rotates, and scales a leaf
using the Similarity Cursor. Parallel control of an object’s properties
allows for more fluid interaction, and may decrease task completion
time.

adjustment. We expect that this will hold for parallel input using
one hand.

We provide feedback regarding the cursor state even when the
user is not controlling an object. To do this we render the cursor as
rotating cross-hairs which show the translating and rotating motion
of the hand. We do not scale the cursor to indicate scaling, since it
is undesirable to have a cursor that is too large or too small for the
task [32]. Instead, we indicate scaling by animating stripes which
slide toward and away from the center at a rate proportional to the
rate of scaling.

3.3 The Adjustable Area Cursor

Our third technique extends the idea of area cursors [16], by allow-
ing the user to control the size of the cursor’s activation area. As
with a real hand, the size of the cursor’s activation area is propor-
tional to the span of the fingers on the touchpad. Users can easily
select small isolated objects by simply spreading their fingers and
roughly moving the cursor to the vicinity of the object (Figure 4
(Left)). The object is selected as long as it lies within the activa-
tion area, so precise positioning is unnecessary. To select a specific
object from a crowded area users bring their fingers together to min-
imize the area of the cursor, making it behave like an ordinary point
cursor (Figure 4 (Right)). For very small targets (such as control-
points in a drawing program) it is plausible that users may benefit
from using a small or medium activation area even in the presence
of clutter. However, since the added cognitive load of selecting an
appropriate cursor size may negate the benefits of a larger selection
area, this is difficult to judge without a formal study.

An important feature of the Adjustable Area Cursor is that it can
distinguish the intentional selection of a single object from the in-
tentional selection of many. This means that users can easily grab
ad-hoc groups of adjacent objects (Figure 5 (Right)). These groups
are simply determined by the radius of the cursor, so they may be
quickly created or modified. To control a group of objects current
interfaces require an initial grouping step. The Adjustable Area
Cursor unifies the grouping and selection steps. Of course, for this
to work the group must be sufficiently separated from any objects
that are not to be selected. However, even if such “distracter” ob-
jects are present the cursor can potentially speed up existing group
selection techniques (for example, by using a modifier key to add
or remove objects to the selection).

Previous area cursor techniques [16, 10] share a problem which
makes them difficult to integrate into existing interfaces: They
make it difficult or impossible to click on the empty space between
selectable objects or interface elements (Figure 5 (Left)). This is
frequently a valid operation. For example, a user may want to po-
sition a text cursor in a word processor, or to create a new shape in
a drawing program. The Adjustable Area Cursor solves this prob-
lem by letting the user minimize the activation area. This does not
require a mode switch, or a change in the user’s conception of the
cursor. It is simply a consequence of the adjustable radius.

4 IMPLEMENTATION DETAILS AND DISCUSSION

4.1 A Relative Multi-point Touchpad

For multi-point input we use a FingerWorks TouchStream touch-
pad [6]. The touchpad provides a 16.2cm×11.34cm work surface
for each hand. It measures the position, velocity, and contact area
of each finger at about 100 Hz. In its default mode, the touchpad
acts as a relative positioning device, and distinguishes tracking and
dragging states using multi-finger gestures. This approach conflicts
with our use of multiple fingers for cursor control so we must use
an alternate method to separate the states. Instead, we have the user
use a light touch for tracking, and press down on the touchpad to ini-
tiate dragging. This technique was described by Buxton et al. [4],
and enhanced by MacKenzie [23], who showed that tactile feed-
back indicating a pressure-triggered state change provides greater
throughput and accuracy than a lift-and-tap technique or pressing
a separate button. MacKenzie also noted that using touch area as
a proxy for pressure is suboptimal, and that area thresholds must
be determined on a per-user basis. The problem is compounded
on a large surface touchpad, where a finger’s posture relative to the
touchpad is more variable, since changes in posture correlate with
changes in contact area.

To overcome these problems, we place a single tactile button
beneath the touchpad (Figure 6), and support the touchpad with a
spring at each corner. The stiffness of the button and springs must
be chosen so that users do not inadvertently press the button, and
to minimize fatigue during drag operations. The button provides a
crisp “click”, like a mouse button, making the distinction between
tracking and dragging clear. Note that this precludes independent
drag states for each finger. However, since finger movements are
not completely independent [12] it is likely that such a level of con-
trol would be difficult for most users. This technique appeared to
work fairly well in informal tests—one user did not even notice that
he was using a button. However, some users had trouble finding the
right level of pressure to keep the button pressed while dragging,
and consequently pressed harder on the touchpad, increasing their
fatigue. This problem may be addressed either by further adjust-
ment of the button stiffness, or by only using the button’s down

Figure 4: (Left) The large activation area of the Adjustable Area
Cursor reduces the time and precision needed to acquire isolated tar-
gets. (Right) The selection of fixed-radius area cursors is ambiguous
in crowded regions. This ambiguity is resolved with the Adjustable
Area Cursor by minimizing the activation area.

3

Figure 5: (Left) Traditional area cursors make it impossible to click on empty space near selectable objects. (Center) The Adjustable Area
Cursor can emulate a point cursor without requiring the user to switch modes. (Right) Since the Adjustable Area Cursor does not suffer from
the ambiguity of fixed-area cursors, it can be used to control groups of nearby objects.

event to initiate dragging, and terminating dragging when the hand
leaves the touchpad.

For most cursors, using the touchpad as a relative input device is
simple. We just add the gain-transformed change in hand position
to the current cursor position. For the Hand Cursor there is an ex-
tra complication that is discussed in section 4.2. Note that current
and previous hand positions must be calculated only from fingers
that are currently on the touchpad. Otherwise the estimated posi-
tion will change dramatically whenever the user adds or removes
a finger from the touchpad. Since using multiple fingers decreases
the effective size of the touchpad, adjusting the gain on the cursor
motion is essential to minimize clutching [15]. Our cursors use the
Windows XP gain function [27] which in practice yielded a Con-
trol/Display ratio ranging between 0.8 and 3.6.

Figure 6: Our prototype touchpad uses a tactile switch to allow users
to distinguish tracking from dragging motion.

4.2 Hand Cursor Implementation

Since we apply a gain function to the overall translation of the
hand, but not to the motion of the fingers relative to one another,
we must first separate hand movement from finger movement. By
using vision-based hand tracking, or touchpads that detect a hover
state, it may be possible to determine the actual hand motion. The
TouchStream, however, only provides contact information. We ap-
proximate the hand motion using the movement of the centroid of
the contact points. Since the finger positions are considered rela-
tive to the position of the hand on the touchpad, but the centroid
position relative to the fingers changes whenever a finger is added
or removed, we cannot use the centroid as the origin of the cursor
coordinate frame. Instead, we determine the origin of the cursor by
the fingers’ initial contact with the touchpad. The coordinate frame
is then translated by the displacement of the centroid of the fingers

currently on the touchpad (i.e. any fingers that are not present in
both the current and previous frames are discounted from the cen-
troid calculation).

This method for determining hand position has a few limitations:
The motion of any finger may displace the screen-space points of
other fingers. Even if all fingers move away from the centroid at the
same rate, the detected hand position will change since the fingers
are not evenly distributed around the center. Another issue arises
when users reposition their hand on the touchpad. Since in general
not all fingers touch down simultaneously, yet the cursor’s coordi-
nate frame is determined by the initial contact, the origin relative to
the fingers may not be where it was during the previous movement.
This may be remedied by dropping the first few contact frames, at
the cost of a slight delay.

4.2.1 Finding best-approximation rigid motions

Since human finger motion is not constrained to rigid transla-
tions and rotations, we often need to solve problems of the form
“Given the original finger positions P0,P1, . . . and their new posi-
tions, S0,S1, . . ., which transformation T in some class C of trans-
formations has the property that T (Pi) ≈ Si for each i?” where the
approximation is in the least-squares sense, i.e., we want to mini-
mize ∑i ‖T (Pi)− Si‖

2. For translations, this is easy: we translate
the centroid of the Pis to the centroid of the Sis. For rotations, it is
more subtle. Rekimoto et al. [28] describes using multiple fingers
to move objects rigidly in 2D, but does not present the implementa-
tion. The analogous problem, in 3D, has been solved in the vision
community [8, 31]. We repeat the solution here for the reader’s
convenience: Letting P denote a matrix whose columns are the
P′

i = Pi−Q, where Q is the centroid of the Pi, and S denote a similar
matrix for the centroid-adjusted Si, we seek a rotation X such that
XP ≈ S. To find X , we compute H = SPT , and its singular-value
decomposition H = UDV T . In general, we then get X = UV T , pro-
vided both detU and detV have the same sign, and H has full rank.
If the determinants’ signs differ, we negate the last column of V T

before computing the product X = UV T . If the matrix H has rank
less than two (e.g., if the fingertips all lie along a line segment both
before and after moving), then we must add points that lie off that
segment before the rotation is uniquely determined.

4.3 Similarity Cursor Implementation

In our implementation, this cursor is controlled by one or two fin-
gers, but could easily be extended to use the entire hand. Cursor
position is controlled by the relative motion of the centroid of the
two fingers. We first apply the above-mentioned gain function to
this motion to reduce the control footprint and increase precision.

4

4.3.1 Rotation

To determine rotation, we look at the angle of the segment connect-
ing the two touch points. The change in this angle between drag
events is mapped to cursor rotation. Due to physical limitations of
finger and wrist movement, it is difficult to make large rotations
without placing the hand in an awkward position. We can remedy
this situation by applying a speed gain function to cursor rotation.

We use the same gain function for rotation as we do for transla-
tion. However, since the gain function is defined in terms of dis-
tance, we must first convert the rotation angle to a distance. Given
the vector C from the first finger to the second, the analogous vector
P for the previous frame, and the rotation matrix R which rotates
by the angle between P and C, we calculate the gain distance as:
d = ||RP−P||.

Because the best-fit rotation is computed after we have ac-
counted for the best-fit translation using centroids, objects end up
rotating about the cursor-center, which is moved by the centroid of
the fingers, so rotations of objects seem to the user to be about the
centroid of the fingers. If the user chooses to hold one finger fixed
and rotates the others about it, both rotation and translation result.
Our informal experience shows that users quickly grasp this idea,
and can easily adjust for any unintended translation.

4.3.2 Scaling

We set the scale factor s = 1 whenever an object is selected. If the
current and previous lengths of the segment connecting the touch
points are lc and lp then the new scale factor after each drag event
is s′ = s+(lc− lp)/d where d is the change in length which will in-
crement the scale factor by one. We set d to the height of the touch-
pad (11.34cm). An alternate design would multiply the scale factor
by the ratio of the current and previous segment lengths. While
this may be a reasonable choice for some applications, it leads to
exponential growth which is rarely useful in drawing applications.

Since it is common for items in digital illustrations and anima-
tions to have real-world analogues, it is likely that for many tasks
translation and rotation would be more common operations than
scaling. However, due to physiological constraints on finger mo-
tion it is difficult to rotate the fingers while keeping them at a pre-
cisely fixed distance. While the Similarity Cursor makes it easy for
the user to correct scale errors, for many tasks it may be helpful to
avoid them altogether. This may be done by using a modifier key or
gesture (e.g. two fingers for rotation/translation, three fingers for si-
multaneous scaling.) Alternatively, a gain function can be designed
that attenuates small variations in scale.

4.4 Adjustable Area Cursor Implementation

This cursor is controlled by one or more fingers. The cursor is
moved by the gain-adjusted translation of the centroid of the contact
points, while the diameter of the cursor is set to a multiple of the
maximum distance between touch-points. Note that the latter is
an absolute mapping, which makes it easy for the user to instantly
specify a large or small diameter with the initial touch of the fingers.
(A diameter greater than the height of the screen or smaller than one
pixel is not very useful, so there is no need for clutching to extend
the range of reachable diameters.) The control/display ratio for the
diameter is set so that a fully extended hand will cover most of the
screen. To ensure that a point cursor can be achieved it is important
to subtract the maximum width of a finger (if the result is negative,
the diameter is simply set to zero).1

1Of course, the variations in hand-sizes among users must be taken into

account; our current implementation uses the first author’s hand and finger

sizes. Since our informal tests have been with people of similar size, this

has worked reasonably well.

When all but one finger is lifted off the touchpad our implemen-
tation maintains the last specified diameter. An alternative is to
minimize the diameter to create a point cursor, but we believe that
for most tasks our choice is preferable. Creating a point cursor
by placing two fingers together is quick, and not much more diffi-
cult than lifting a finger, and maintaining the last specified diameter
has several advantages: The size of the area cursor is likely to be
correlated to the density of elements on the screen. If the user con-
tinues to operate in the same region, it is likely that the cursor size
will remain suitable. When the user manipulates a group of objects
maintaining a constant size will be useful if the group needs further
adjustment.

We render the cursor as a translucent gray circle (Figures 4 and
5). Short radial segments extending along the main axes become
a cross-hair indicator when the radius is zero. This indicator may
be enhanced to disambiguate the selection of partially overlapping
targets by modifying its boundary to include all selected objects (as
in the Bubble Cursor [10]). A simpler alternative is to highlight all
selected targets.

5 RELATED WORK

Multi-point touch-sensitive tablets have existed for more than two
decades [20], yet, to our knowledge, they have never been used to
control cursor parameters beyond position and, occasionally, pres-
sure. Closer to our work are video-based tracking systems such
as the Visual Touchpad [26, 25], and VIDEOPLACE [17] which
overlay segmented live video of the user’s hands (or body) onto the
screen. While the digital hands do act as cursors, the systems do
not abstract the video parameters, but rather rely on a homography
between the video and the screen. This means that the digital hands
possess many of the physical constraints real hands have (e.g. limits
in finger resolution and hand rotation).

Work using the Visual Touchpad has focused on a style of inter-
action where hand gestures invoke a mapping between a continu-
ous hand parameter and some control widget or action. This style
of multi-finger interaction has been studied by Grossman et al. for
volumetric displays [9], and by Wu et al. for table-top interaction
[33].

Another branch of multi-finger interaction systems have focused
on touch-screen type interaction, where the display shares the same
space as the touch-surface [28, 5]. Many graspable user interfaces
also share this property [7, 14]. The techniques described by these
systems illustrate the power of high-degree-of-freedom input. Since
all of the interaction is performed directly by the hands, no interme-
diary cursor is needed. However, these systems are limited by phys-
ical constraints such as occlusion, and space required by fingers or
handles.

Two handed input techniques also allow for simultaneous control
of multiple parameters [2]. However, these parameters are typically
mapped to two positional cursors [19], or are mapped directly to
model parameters.

Cursors with more than two degrees of freedom are common in
3D interaction [35, 24]. Generally, the position and orientation of a
3D tracking device is mapped to the position and orientation of the
cursor. Sturman and others have investigated whole-hand interac-
tion using instrumented gloves [29]. Much of this work has focused
on using hand-gestures to trigger actions, or on using a direct map-
ping of hand parameters to the parameters of some model.

6 DISCUSSION

When an artist selects a pen or a brush in lieu of finger-painting, she
overcomes the limited resolution and shape of her fingers. Like-
wise, by using an intermediary cursor instead of direct-touch ma-
nipulation, we can provide users with increased precision, greater

5

reach, and a more capable grasp. Using multiple fingers to control
such cursors allows for increased parallelism, which may simplify
the phrasing of interaction tasks [21].

Our initial experiments with multi-finger cursor control have
produced three graphical interaction techniques that offer several
benefits over traditional cursor techniques. The clear benefits in-
clude more fluid interaction through parallel input, lightweight
grouping, and resolution of outstanding issues with area cursors.
The techniques are immediately applicable, as they fit easily into
current GUI frameworks.

Other potential benefits of these methods require further study
before they can be ascertained. For example, the additional cog-
nitive load of the Adjustable Area Cursor may render it less than
useful for single target selection in dense areas. It is also impor-
tant to study the effects of using the same muscle groups to control
the cursor parameters while simultaneously indicating the dragging
state by maintaining pressure on the touchpad.

There are also some problems with our techniques that remain
to be solved. Our implementation of the Hand Cursor makes it
difficult to move fingers independently—the position of each finger
point is so dependent on the position of the other fingers, that it may
move even if the corresponding physical finger remains stationary
on the touchpad. Additionally, while our techniques make it easy to
control parameters simultaneously, they sometimes make it difficult
to control parameters independently (e.g. rotating without translat-
ing or scaling). Techniques for constraining cursor motion need to
be investigated.

These techniques also suggest further study on the limits of
multi-finger control. How many parameters can comfortably be
controlled? How do physiological constraints limit the types of vi-
able interaction?

We have observed an interesting phenomenon in our informal
tests of the system: When using multiple fingers to control cur-
sors, certain behaviors that resemble gestural interfaces appear. For
example a user will place two fingers together to turn the area cur-
sor into a point cursor, or lift all but one finger to restrict motion to
translation. These hand gestures are not arbitrarily assigned to these
meanings—they are a consequence of the properties of the cursors
themselves, and can be learned by the user without referring to a
manual.

The design space for multi-finger cursors is still largely unex-
plored, and contains many enticing possibilities. For example, ad-
justing the shape of the area cursor may be used for more precise
grouping. Snapping the cursor’s area to select an integer number of
targets may improve performance, while an area cursor that can ro-
tate and scale its selection may be useful for drawing applications.

7 ACKNOWLEDGMENTS

We would like to thank Dan Vogel for an implementation of the
Windows XP gain function, Dan Keefe for hardware assistance,
Guillaume Marceau for abstract translation, and Bob Zeleznik for
helpful discussions.

REFERENCES

[1] Eric A. Bier, Maureen C. Stone, Ken Pier, William Buxton, and

Tony D. DeRose. Toolglass and magic lenses: the see-through in-

terface. In Proceedings of SIGGRAPH ’93, pages 73–80, New York,

NY, USA, 1993. ACM Press.

[2] W. Buxton and B. Myers. A study in two-handed input. In Proceed-

ings of CHI ’86, pages 321–326, New York, NY, USA, 1986. ACM

Press.

[3] William Buxton. A three-state model of graphical input. In Proceed-

ings of INTERACT ’90, pages 449–456. North-Holland, 1990.

[4] William Buxton, Ralph Hill, and Peter Rowley. Issues and techniques

in touch-sensitive tablet input. In Proceedings of SIGGRAPH ’85,

pages 215–224, New York, NY, USA, 1985. ACM Press.

[5] Paul Dietz and Darren Leigh. Diamondtouch: a multi-user touch tech-

nology. In Proceedings of UIST 2001, pages 219–226. ACM Press,

2001.

[6] FingerWorks. iGesture Pad.

[7] George W. Fitzmaurice, Hiroshi Ishii, and William A. S. Buxton.

Bricks: laying the foundations for graspable user interfaces. In Pro-

ceedings of CHI ’95, pages 442–449, New York, NY, USA, 1995.

ACM Press/Addison-Wesley Publishing Co.

[8] D. Goryn and S. Hein. On the estimation of rigid body rotation from

noisy data. IEEE Transactions on Pattern Analysis and Machine In-

telligence, 17(12):1219–1220, 1995.

[9] T. Grossman, D. Wigdor, and R. Balakrishnan. Multi-finger gestural

interaction with 3d volumetric displays. In Proceedings of UIST ’04,

pages 61–70. ACM Press, 2004.

[10] Tovi Grossman and Ravin Balakrishnan. The bubble cursor: enhanc-

ing target acquisition by dynamic resizing of the cursor’s activation

area. In Proceedings of CHI ’05, pages 281–290, New York, NY,

USA, 2005. ACM Press.

[11] Y. Guiard. Asymmetric division of labor in human skilled bimanual

action: The kinematic chain as a model. Journal of Motor Behavior,

pages 485–517, 1987.

[12] C. Hager-Ross and M.H. Schieber. Quantifying the independence of

human finger movements: comparisons of digits, hands, and move-

ment frequencies. Journal of Neuroscience, 20(22):8542–8550, 2000.

[13] Takeo Igarashi, Tomer Moscovich, and John F. Hughes. As-rigid-as-

possible shape manipulation. ACM Trans. Graph., 24(3):1134–1141,

2005.

[14] Hiroshi Ishii and Brygg Ullmer. Tangible bits: Towards seamless

interfaces between people, bits and atoms. In CHI, pages 234–241,

1997.

[15] H.D. Jellinek and S. K. Card. Powermice and user performance. In

Proceedings of CHI ’90, pages 213–220, New York, NY, USA, 1990.

ACM Press.

[16] Paul Kabbash and William A. S. Buxton. The “prince” technique:

Fitts’ law and selection using area cursors. In Proceedings of CHI ’95,

pages 273–279, New York, NY, USA, 1995. ACM Press/Addison-

Wesley Publishing Co.

[17] Myron W. Krueger, Thomas Gionfriddo, and Katrin Hinrichsen.

Videoplace: an artificial reality. In Proceedings of CHI ’85, pages

35–40, New York, NY, USA, 1985. ACM Press.

[18] Gordon Kurtenbach, George Fitzmaurice, Thomas Baudel, and Bill

Buxton. The design of a gui paradigm based on tablets, two-hands,

and transparency. In Proceedings of the SIGCHI conference on Hu-

man factors in computing systems, pages 35–42. ACM Press, 1997.

[19] Celine Latulipe, Craig S. Kaplan, and Charles L. A. Clarke. Bimanual

and unimanual image alignment: an evaluation of mouse-based tech-

niques. In Proceedings of UIST ’05, pages 123–131, New York, NY,

USA, 2005. ACM Press.

[20] SK Lee, William Buxton, and K. C. Smith. A multi-touch three di-

mensional touch-sensitive tablet. In Proceedings of CHI ’85, pages

21–25, New York, NY, USA, 1985. ACM Press.

[21] Andrea Leganchuk, Shumin Zhai, and William Buxton. Manual and

cognitive benefits of two-handed input: an experimental study. ACM

Transactions on Human Computer Interaction, 5(4):326–359, 1998.

[22] I. Llamas, B. Kim, J. Gargus, J. Rossignac, and C.D. Shaw. Twister:

a space-warp operator for the two-handed editing of 3d shapes. ACM

Trans. Graph., 22(3):663–668, 2003.

[23] I. Scott MacKenzie and Aleks Oniszczak. A comparison of three se-

lection techniques for touchpads. In Proceedings of CHI ’98, pages

336–343, New York, NY, USA, 1998. ACM Press/Addison-Wesley

Publishing Co.

[24] Jock D. Mackinlay, Stuart K. Card, and George G. Robertson. Rapid

controlled movement through a virtual 3d workspace. In Proceedings

of SIGGRAPH ’90, pages 171–176, New York, NY, USA, 1990. ACM

Press.

[25] S. Malik, A. Ranjan, and R. Balakrishnan. Interacting with large dis-

plays from a distance with vision-tracked multi-finger gestural input.

6

In Proceedings of UIST ’05, pages 43–52. ACM Press, 2005.

[26] Shahzad Malik and Joe Laszlo. Visual touchpad: a two-handed ges-

tural input device. In Proceedings of ICMI ’04, pages 289–296. ACM

Press, 2004.

[27] Microsoft. Pointer ballistics for windows xp, 2005.

[28] Jun Rekimoto. Smartskin: an infrastructure for freehand manipulation

on interactive surfaces. In Proceedings of CHI 2002, pages 113–120.

ACM Press, 2002.

[29] David J. Struman. Whole-hand input, 1992.

[30] Tactex Controls Inc. Kinotex pressure sensing material.

[31] S. Umeyama. Least-squares estimation of transformation parameters

between two point patterns. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 13(4):376–380, 1991.

[32] Yanqing Wang and Christine L. MacKenzie. Object manipulation in

virtual environments: relative size matters. In Proceedings of CHI ’99,

pages 48–55, New York, NY, USA, 1999. ACM Press.

[33] Michael Wu and Ravin Balakrishnan. Multi-finger and whole hand

gestural interaction techniques for multi-user tabletop displays. In

ACM UIST, pages 193–202, 2003.

[34] Shumin Zhai. User performance in relation to 3d input device design.

SIGGRAPH Comput. Graph., 32(4):50–54, 1998.

[35] Shumin Zhai, William Buxton, and Paul Milgram. The “silk cursor”:

investigating transparency for 3d target acquisition. In Proceedings of

CHI ’94, pages 459–464, New York, NY, USA, 1994. ACM Press.

7

