
SHORT PAPER: Data-Centric Visual Sensor Networks for 3D Sensing ∗

Mert Akdere Uğur Çetintemel Daniel Crispell John Jannotti Jie Mao Gabriel Taubin
Brown University

{makdere,ugur,dcrispel,jj,taubin,jmao}@cs.brown.edu

ABSTRACT
Visual Sensor Networks (VSNs) represent a qualitative leap
in functionality over existing sensornets. Cooperating net-
works of cameras could reconstruct features in three dimen-
sions, produce images from novel viewpoints, match trajec-
tories or objects against known patterns, or combine these
tasks to provide a flexible monitoring system.

With high data rates and precise calibration requirements,
VSNs present challenges not faced by today’s sensornets.
The power and bandwidth required to transmit video data
from hundreds or thousands of cameras to a central location
for processing would be enormous.

A network of smart cameras will process video data in
real time, extracting features and 3D geometry from the
raw images of cooperating cameras. These results will be
stored and processed in the network, near their origin. New
content-routing techniques will allow cameras to find com-
mon features—critical for calibration, search, and tracking.
A novel query mechanism will mediate access to this dis-
tributed datastore, allowing high-level features to be de-
scribed as compositions in space-time of simpler features.

1. INTRODUCTION
We propose an architecture for the construction and use

of Visual Sensor Networks (VSNs). VSNs will handle much
richer data than today’s simpler data collection sensornets.
Each camera will perform local image processing, and then
cooperate to perform higher-level tasks, such as calibration,
view combination, object detection, and tracking.

Today, the largest camera networks are analog systems
used for video surveillance. These systems consist of many
cameras and capture a huge volume of data. The average
casino has 2000-3000 cameras operating continuously. These
systems require a small army of security personnel to mon-
itor the video feeds. Smart event detection based on higher
level analysis of the image data can help the security per-
sonnel manage this deluge of data.

Combining information from multiple cameras, trajecto-
ries of individuals can be computed, and suspicious behav-
iors can be identified. However, large camera systems must
avoid streaming all video data to a central server in order
to scale. Instead, we are developing distributed techniques
that allow for the fusion of information across cameras.

∗This work is supported in part by the NSF under grant
IIS-0448284.

1.1 Example Application
Consider how a potential VSN could be deployed and used

in a busy metropolitan airport. The network might include
the hundreds of static cameras in use at such an airport
today, augmented with thousands of additional static cam-
eras to gain greater coverage, and with many more mobile
cameras attached to airport personnel.

The VSN will provide security personnel with various ways
to access the camera network. The simplest is to ask for
views of any area, from any direction. Virtual views would
be synthesized from overlapping views provided by the cam-
era network’s extensive coverage. Operators might choose
to follow people or objects that appear suspicious, or to
construct a super-resolution view of a traveler’s face. Mov-
ing beyond human suspicion, such a network could be pro-
grammed to draw attention to activity in a restricted area,
or an activity by unrecognized personnel. Finally, we en-
vision the network detecting high-level activities such as a
traveler who has left his baggage unattended.

It is critical that operators have the tools available to
assess the threats detected by the network. For example,
users should be able to follow a person or object back in

time or ask high-level questions about the past. How long
has this person been in the room? Which other people has
he spoken with? Based on its motion when carried, how
heavy is his bag?

1.2 Requirements
In order to support applications of the type we envision,

smart cameras must capture and process image data in real-
time, and cooperate to make that data available to applica-
tions in a structured way.

Virtual Views. With sufficient coverage, a VSN can gener-
ate virtual views—images that are the result of combining
data from multiple cameras in order to generate views from
a new angle or with greater resolution.

For each pixel in an image, there is a unique directed
straight line, or ray, which leaves the camera. The map-
ping from 3D rays to colors is known in computer graphics
as the light field. Virtual views are generated by interpo-
lating sample values in the light field. In a VSN, light field
samples come from individual images stored in a distributed
fashion in or near the smart cameras where they were ob-
served. When a user issues a request for a virtual view,
the request must be routed to the smart cameras containing
relevant pixels, with multiple cameras possibly contributing
to different parts of the virtual image. By super-sampling



the light field across multiple overlapping images, super-

resolution images may be generated with greater clarity than
any of the individual image frames.

Detection and Tracking. In order to track moving objects,
the objects must be segmented from their background. This
operation requires a continually maintained model of the
background. Once foreground objects are segmented out
of the background, noise removal and connectivity analysis
defines blobs. Tracking 2D blobs over time requires a signif-
icant amount of computation at the smart camera level, but
reporting their trajectories requires very little communica-
tion. Tracking in 3D requires establishing correspondences
between blobs detected in separate smart cameras, requiring
fine-grained calibration and collaborative processing.

Establishing correspondences between blobs detected in
different images requires feature detection and matching.
Features are small blobs which are likely to have a similar
appearance in a different image. Features might correspond
to corners of buildings, or facial features of people. The
feature data interchanged between cameras is not large, but
the complexity of feature matching is, in principle, quadratic
in the number of cameras. Recent contributions [4, 3] that
address this problem seem to be appropriate for VSNs.

Storage. In a large-scale VSN, it is neither efficient nor
practical to continuously stream acquired data to external
locations for persistent, long-term storage. To answer his-
torical questions, therefore, VSN nodes need to have local
storage. Local storage also facilitates in-network processing,
which potentially increases the overall efficiency and effec-
tiveness of the VSN.

To make the best use of available storage, A VSN should
first eliminate redundant data through coordinated storage—
close nodes can communicate, identify common data, and
avoid storing it at multiple locations. In addition, nodes
should store data selectively and potentially at varying res-
olutions. It is often the case that more recent data is more
valuable than older data, so data could be aged out through
increasingly lossy compression. Similarly, certain image re-
gions (such as the background or static objects) could be
entirely discarded or compressed more than other regions.

1.3 Challenges and Contributions
The requirements of a VSN go beyond the techniques de-

veloped for existing sensornets for two reasons. First, the
raw data is extremely bandwidth intensive. Few sensor sys-
tems tackle this challenge. Those that do focus on data
types that can be compressed in isolation by, for example,
Fourier transform. Second, the image data acquired by a
VSN is more difficult to aggregate. Existing systems build
collection trees in which aggregation reduces the size of ac-
quired data at join points.

In order to aggregate image data, extensive communica-
tion must take place first. Nearby cameras must share image
features in order to establish correspondences that create
a common coordinate system. Even with aggregation, we
expect that in-network storage will be critical to reducing
bandwidth requirements. With in-network storage comes
challenges of routing and distributed query processing. Our
contributions lie in a scheme for storage and processing of
data in the VSN, and a high-level data access mechanism
for operating on that data.

3D Data-Centric Storage, Routing, and Processing.
We introduce data-directed localization to dynamically cali-
brate without specialized hardware. Nodes will dynamically
build ever larger Geographic Hash Tables (GHTs) in which
the nodes share a common reference frame. GHTs allow for
distributed feature matching and, in fact, feature matching
in smaller GHTs is used to bootstrap localization.

We also introduce data-centric processing (DCP), which
places processing elements in the network, located where
the data they process will be stored in the GHT. These
processing elements operate on data as it becomes available,
inserting new, higher-level items into the datastore. Further
processing elements may continue this process to produce
ever more complex observations.

VSNs must support queries that seek image data for a
given object from a given direction. To support these queries
that do not map easily to a hash-based content routing
scheme, we have developed Image Based Routing [2] which
builds a more traditional routing tree.

Space-Time Database Abstraction. Our proposal con-
tains two key components that simplify the development
of 3D sensornet applications. First, we use a space-time

“cube” abstraction for declarative access to the data avail-
able in the sensornet. This abstraction hides the raw data
acquired by the cameras, providing a form of physical data
independence. Second, we rely on a predicate language for
specifying space-time feature patterns for search and track-
ing of complex objects and activities easily.

2. NETWORK PRIMITIVES
In existing sensor networks, the need to route requests

to the sensors best able to make a specific observation has
been met by localization to determine sensor position, and
routing primitives that operate on position. In visual sensor
networks, the localization must be generalized to include
orientation, and routing must be generalized to account for
long range sensing.

2.1 Data-Directed Localization
In VSNS, even small localization errors may be unaccept-

able when a distant object’s location is estimated. Exist-
ing techniques, such as GPS and Cricket, are too coarse
to match image data from independent cameras. We pro-
pose data-directed localization in which smart cameras local-
ize with respect to each other based on shared image data.
Sensor nodes detect local features and then cooperate to
find common features observed by multiple cameras, allow-
ing the nodes to orient themselves in a shared coordinate
system. Additional cameras may orient themselves in this
system by finding features in the shared space.

Data-directed localization requires that sensors find sim-
ilar features in nearby cameras. Unfortunately, low-level
two-dimensional features are very difficult to match between
uncalibrated cameras. Instead, we advocate smart cameras
with two image sensors. Using two sensors with a known
(short) baseline allows for the local recognition of 3D fea-
tures from the 2D images. 3D features drastically reduces
the search space when considering inter-node matches.

We have prototyped this approach using several camera

pods. Each camera pod includes four rigidly mounted net-
work cameras capable of small baseline feature matching and
stereo reconstruction. 3D features locations were estimated



and matched between pods. Using at least three 3D feature
correspondences, a rotation and translation was calculated
to bring the seperate pods into a common reference frame.

2.2 Feature-oriented Search and Computation
Our prototype explored data-centric calibration, but per-

formed inter-node feature matching in a centralized way.
Real VSNs must find correspondences without centraliza-
tion. We build on the idea of Geographic Hash Tables [7] to
support decentralized inter-node matching. Features will be
placed in the GHT, binned by geometric (not geographic)
hashing [10]. Similar features will therefore be placed at the
same location. Nodes with shared features can be notified,
and a relative transform computed.

Inter-node feature matching is one case of a more generic
VSN service—content-based search. GHTs operate by hash-
ing a data item key to a geographic coordinate, and storing
the item at the node closest to that coordinate.

Assuming data with a key corresponds to the needs of
queries, retrieval is efficient. For example, suppose that
cameras can detect and measure the heights of people they
observe. They might store observations in the GHT keyed
by those heights, binned into one inch increments. A query
can find all individuals of a certain height by examining the
hash location associated with the potential observation of
such an individual.

Hashing Hints. Performance improvements can be obtained
by using a hash function that creates locality among keys
that will be queried sequentially. For example, suppose that
an application seeks observations of faces in a room—a spe-
cific geographic area. These observations will be inserted
into the GHT with keys that include the rounded location
of the observation, in order to facilitate queries on the loca-
tion. Hashing each such key results in the storage of these
observations arbitrarily throughout the sensornet, requiring
our example query to collect values from several locations.

By widening the GHT’s insertion and lookup interfaces
to mark portions of the key as a geographic “hint”, spatial
locality can be preserved. The hash function is modified to
set the high bits of the coordinate at which the data will be
stored linearly, according to the hints. Thus, queries that
access ranges over the hinted attributes will require data
retrieval from a single geographic area.

Data-Centric Processing. The detection of high-level fea-
tures, such as faces, is generally accomplished by detecting
simpler features (eyes, noses) in a particular arrangement.
We have seen that simple feature detectors place a record
of their finding in the GHT by inserting the feature under
a well-defined name, such as “eye.” To detect higher level
features, a second level of feature detectors can be located
on the nodes that will receive the individual subfeatures.
For example, at hash(“mouth”), a face detector notes the
location of the mouth and inserts a facial observation in the
GHT. The data included with this observation indicates that
it is only a partial observation. A similar aggregator creates
partial observations for eyes and noses. These second-level
observations are inserted under the same name, and there-
fore make their way to the same location. When enough ob-
servations agree, a face has been detected. These operators,
placed in the GHT to process values at their insertion point,
are the natural computational analogue to data-centric rout-

ing and storage—data-centric processing.

2.3 Image Based Routing
Data-centric techniques are best suited for queries that

operate on meta-data, and are intended to find features that
may appear anywhere. When the focus is on retrieving data
from a known location, Image Based Routing [2] is more ap-
propriate. In IBR, smart cameras build a representation of
their fields of view and pass these representations up through
a routing tree. We have developed the “binmesh” which
succinctly represents the views of many cameras in a single
summary. Queries follow the binmeshes down the routing
tree toward cameras that observe the target object.

3. DATA ACCESS AND QUERYING

3.1 Basic Model and Primitives
An important goal of our system is to simplify VSN ap-

plication development. Any sophisticated VSN will require
search and detection of objects, activities, and complex events
based on images. Space-time point queries, range queries
and content-based similarity (k-NN) will also be common.
An extensible, high-level programming framework that en-
ables the specification and monitoring of complex objects
and activities of interest is a key requirement.

Multi-Level Data Representation. Our primary program-
ming abstraction is a space-time 4D view of the underlying
data, consisting of a 3D volume (x,y,z) representing geo-
graphic space and the fourth dimension t representing time.
This abstraction captures the data produced by all the sen-
sors in a sequence of time frames, where each frame is a
3D cube that provides a logical model of the world of inter-
est. The abstraction allows users to query the system based
on spatial attributes on a combination of live and histori-
cal data. This view is virtual with the implication that the
execution of a query involves accessing the distributed base
data (e.g., as in Cougar [12] and TinyDB [6]).

Our framework also includes a raw data layer and a feature

layer. The raw data layer continuously acquires and stores
camera data. The cube layer transforms raw sensor data into
the (virtual) cube abstraction. The feature layer consists of
cascadable space-time views defined over the cube layer.

Basic Data Access Methods. The basic image data ac-
cess and query interface is a linear, SQL-like notation that
facilitates declarative queries over the cube. Consider the
following query notation:

SELECT from CUBE

WHERE location = bbox

WHEN time = interval

VIEWPOINT = vp

WITH RESOLUTION k

SAVE AS VIEW name

This continuous query can be used to select a volume of
space specified by its bounding box and ask for an image
stream that corresponds to the target volume as observed
from a specific viewpoint. The query may specify a time in-
terval, which may refer to the past (clearly not all historical
queries can be answered with limited storage). The desired
temporal resolution of the stream can be also be specified.
Finally, the query may be saved as a named view.



Space-Time Features. Our system achieves extensibility
by allowing users to specify complex spatial and temporal

features through the composition of base features. A base
feature extractor is defined by a user defined function (UDF)
that analyzes an input image and returns a set of vectors,
one for each feature detected. A feature vector contains
a set of named attributes (e.g., color, bounding box, etc.).
One attribute is a probability value indicating the confidence
about the occurrence of the feature. An input threshold
on this value is used to discard unlikely candidates. More
complex spatial features are defined based on relationships
of lower-level features over space as:
DEFINE feature name WITH f1, f2, ..., fn WHERE p1, p2, ..., pm

where f1, f2, ..., fn are the simpler features to be composed
and p1, p2, ..., pm are the predicates that define the relation-
ship among these features. The relationships are expressed
using a small set of spatial predicates similar to those in
Allen’s algebra [1], e.g., a nose is above the mouth.

Temporal features will be defined in a similar manner al-
though, in this case, one is interested in the variation of
the spatial orientation of a feature over time. For example,
the activity of “moving” can be expressed as a specific fea-
ture changing its location. We are exploring techniques from
moving objects and motion database research to represent
and express complex movement patterns [11, 5].

Multiple predicates can be intermixed to express arbitrar-
ily complex objects and activities: a running person can be
identified by evaluating the spatial predicate that detects
a person in a given time snapshot with a temporal predi-
cate that checks whether that person is moving faster than
some threshold. To compose complex space-time patterns,
we use an extended event composition algebra (consisting of
disjunctions, conjunctions, sequences, and negations) which
allows for space and time constraints to be associated with
event instances. Another novel feature of the algebra is that
it takes into account uncertainty in feature detection using
probabilistic models.

We note that conceptually similar feature-driven query-
ing models have been proposed earlier (e.g., in immersidata
management [9] and visual surveillance systems [8]). The
new challenge we address is to design a practical model that
effectively handles uncertainty and lends itself to efficient
distributed implementation.

3.2 Query Execution
Once the user submits a query to the system, the query

will be translated into an execution plan. The planning
phase decides, based on the query specification, which rout-
ing indexes (image-based, spatial, temporal, feature-based,
or a combination) and feature detectors to use. The query
plan will then be distributed and executed collectively by
the appropriate nodes in a distributed fashion, after which
results are streamed back to the user.

One important goal of our execution strategy is to avoid
shipping raw images as much as possible. The basic oper-
ation model we envision is one where feature-based queries
are used to detect interesting events, which will then steer
the attention of human operators to zoom in on the activity
by requesting images using cube layer queries.

When a cube-layer query is specified, the system uses the
image-based routing scheme (Section 2.3) to route the re-
quest to the cameras that can collectively provide the best
view of the specified sub-cube. When a query refers to a
feature, the corresponding base and higher-level extractors

will be sent to the appropriate nodes and executed using
data-centric processing (Section 2.2). Here, the GHT may
also act as a spatial filter—if a feature-based query specifies
a target region, then the base feature extractors need only
be executed in that region.

We assume best-effort semantics for query execution; for
example, if a specific viewpoint cannot be presented due to
lack of data, the system might offer an alternative, similar
viewpoint for which data is available. Likewise, the sys-
tem may have to operate below the target resolution when
bandwidth is scarce or may not answer historical queries if
the data is no longer available. We will rely on adaptive
compression of image streams (e.g., using wavelets) to ame-
liorate both problems.

4. CONCLUSIONS
VSNs represent an opportunity and challenges. Smart

cameras offer far richer capabilities than simpler sensors,
but require far greater effort to coordinate effectively. We
have outlined a vision for using camera networks effectively,
from the the initial problem of self-calibration, through fea-
ture and image retrieval, to an expressive and efficient query
language for application interaction.

5. REFERENCES
[1] J. Allen. Maintaining knowledge about temporal intervals.

Communications of ACM, 26(11):832–843, 1983.
[2] D. Crispell, G. Taubin, and J. Jannotti. Image based

routing for image based rendering. In Proceedings 6th
Workshop on Omnidirectional Vision, Camera Networks,
and Non-classical Cameras (OMNIVIS 2005), Oct. 2005.

[3] K. Grauman and D. T. Efficient image matching with
distributions of local invariant features. In Proceedings
IEEE Conference on Computer Vision and Pattern
Recognition, San Diego, CA, June 2005.

[4] K. Grauman and D. T. The Pyramid Match Kernel:
Discriminative Classification with Sets of Image Features.
In Proceedings of the IEEE International Conference on
Computer Vision, Beijing, China, Oct. 2005.

[5] Keogh, Palpanas, Zordan, Gunopulos, and Cardle. Indexing
large human-motion databases. In Proc. of the 30th
International Conference on Very Large Data Bases, Aug.

[6] S. Madden, M. J. Franklin, J. Hellerstein, and W. Hong.
TAG: A tiny aggregation service for ad-hoc sensor
networks. In Proceedings of the 5th USENIX Symposium
on Operating Systems Design and Implementation (OSDI
’02), Boston, Massachusetts, Dec. 2002.

[7] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin,
R. Govindan, and S. Shenker. GHT: A geographic hash
table for data-centric storage in sensornets. In Proc. of the
1st ACM International Workshop on Wireless Sensor
Networks and Applications (WSNA), Sept. 2002.

[8] Saykol, Gudukbay, and Ulusoy. A database model for
querying visual surveillance by integrating semantic and
low-level features. In Proc. of 11th International Workshop
on Multimedia Information Systems, 2005.

[9] C. Shahabi. Aims: An immersidata management system. In
Proc. of the First Biennial Conference on Innovative Data
Systems Research (CIDR’03), 2003.

[10] H. J. Wolfson and I. Rigoutsos. Geometric hashing: An
overview. IEEE Computational Science and Engineering,
pages 10–21, October-December 1997.

[11] O. Wolfson, A. P. Sistla, B. Xu, J. Zhou, and
S. Chamberlain. Domino: Databases for moving objects
tracking. In Proc. of the 1999 ACM SIGMOD
International Conference on Management of Data.

[12] Y. Yao and J. Gehrke. Query processing in sensor
networks. In Proc. of the First Biennial Conference on
Innovative Data Systems Research (CIDR’03), Jan. 2003.


