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Abstract

We pose the question: how do we efficiently evaluate a
join operator, distributed over a heterogeneous network?
Our objective here is to optimize the delay of output tu-
ples. We discuss key challenges involved in the distribu-
tion, namely how to partition the join operator, how to
place the resulting partitions on the network, and how to
route inputs values from sources to our operators. Our
model revolves on one simple concept – exploiting local-
ity. We consider data locality in the distributions of in-
put data values, and network locality in the distribution
of network distances between sites. We sketch strategies
to partition the input data space, and instantiate a struc-
tured topology, consisting of operator replicas to whom to
route tuples for processing. Finally, we briefly discuss im-
plementation issues that require addressing to enable the
networked join proposed here.

1. Introduction

Content-addressable networks, sensor networks, and
publish/subscribe systems have all begun to highlight
the interplay between data routing and data index-
ing in today’s widely distributed systems. Indeed many
classes of distributed systems applications need data
routing and indexing functionality at the application
layer, including web caching and content delivery net-
works. These applications frequently require a ren-
dezvous point, designating a specific place in the net-
work where a portion of application functionality is ex-
ecuted. For web caching, this involves clients reading
from a rendezvous, while updates are sent to, or re-
trieved by the rendezvous. We abstractly consider this
functionality as a join operation, taking inputs from
read and write stages of the application pipeline.

In sensor network applications, such as remote triage
on a battlefield [26], or intrusion detection monitoring,
the application requires notification, whenever a com-
plex set of conditions hold. This corresponds to run-

ning a continuous query to detect the condition, by
matching events via an application-defined predicate.
This matching of events corresponds to a join opera-
tion.

In publish/subscribe systems, events generated by
publishers are matched against profiles specified by
subscribers. Here profiles represent stored state in the
system, enabling continuous matching against events
as they arrive. Under the relational model, this match-
ing of events and profiles can be considered a join
of the events relation and the subscription relation.
Publish/subscribe systems have become the de facto
communication model in massively multiplayer online
games (MMORPGs). In these games, the virtual world
is statically divided into a set of zones, with players re-
ceiving all events in their current zone. However, the
static division of zones results in poor filtering effi-
ciency, especially under scenarios of non-uniform game-
play where players tend to congregate in the virtual
world. Accounting for this eventuality requires a more
dynamic publish/subscribe functionality.

In this paper, we discuss a framework for the con-
tinuous evaluation of a join operator, in a widely dis-
tributed manner. We optimize the expected delay of an
output tuple, caused by a successful match on two in-
put tuples. For an MMORPG application, a continu-
ous join eliminates the need for static subscriptions,
allowing a continual matching of events, and arbitrary
subscriptions. To efficiently support such a mechanism,
we focus on exploiting two key characteristics of dis-
tributed evaluation – network locality, and data local-
ity. Here network locality is defined as the proximity of
the data sources’ network locations. Data locality is de-
fined as the similarity between data sources in terms of
the input values produced, and the frequency these val-
ues are produced at. Data locality also captures tem-
poral properties of the inputs, such as the synchronic-
ities of the input values.

We approach the challenge of deploying a dis-
tributed join operator, considering two strategies to
optimize for tuple latency. We initially describe a place-
ment primitive, needed for any deployment algorithm.



This tackles the simple case of where to place a sin-
gle join operator, on the network. The first question
we pose for a broader deployment, is how do we de-
termine a parallelization (or partitioning) of the join
operator, to support distributed evaluation? We out-
line a strategy considering data locality in proba-
bilistic value distributions for each data source. Our
second question is how should we place these parti-
tions of our join operator at network sites to optimize
on tuple latency? We address this issue with a replica-
tion mechanism that utilizes our placement primitive.
We replicate considering network locality in source lo-
cations, in conjunction with the semantic behaviour
of sources, to construct a tree of join operator repli-
cas. In short, we are attempting to reflect trends in
each data source’s value distribution, as correspond-
ing trends in the networked execution of the join
operator.

Figure 1. Networked join evaluation overview: to
support a distributed deployment of a join op-
erator we i) partition the data space, ii) assign
replicas, connected in a tree, to process tuples in
each partition. Sources may then send tuples to
their nearest replica, via a content-based rout-
ing mechanism.

Figure 1 depicts an overview of these challenges
and our proposal. Our networked join operates on a
partitioned data space, evaluating each partition on a
structured operator replica graph. We perform content-
based routing to deliver tuples from our data sources
to these operator replicas. Throughout this mechanism,
we attempt to structure our deployment to rapidly out-

put any successful join of input tuples.

To the best of our knowledge, no present day sys-
tem considers the combination of network and data
locality in their design. Existing distributed hash ta-
bles (DHTs), such as Chord [25], Bamboo [13], and
CAN [22], provide lookup functionality and act as an
index for stored data. Recent systems, such as Mer-
cury [4], have also investigated range queries. These
systems primarily focus on load balancing, and do not
leverage the structure of participants in the twofold
access patterns corresponding to both branches of the
join. The PIER system [12] discusses several techniques
for widely distributed joins, yet uses these DHTs as an
unstructured rendezvous. By hashing the join key at-
tribute, and thus performing the join at an arbitrary
site, PIER eliminates any data or network locality in ei-
ther the attribute or the sources. The DIM data struc-
ture [16] answers multi-dimensional range queries in
sensor networks. This system considers a simple form
of data locality in associating similar values at nearby
network locations. However the authors do not con-
sider data or location trends in the values produced
by sources, rather assume that data values are pro-
duced uniformly at random by every sensor. In con-
trast our proposal, with the aid of probabilistic models
of value distributions, attempts to identify frequently
occurring matches, and the network origins of these
matches. This information is then used to structure the
rendezvous points of inputs from multiple sources, en-
abling sources to rapidly route their tuples to be joined.

2. System and Data Model

Our framework is designed for an infrastructure
model of a distributed system. We assume the avail-
ability of a substantial set of heterogeneous network
hosts, connected through a wide-area network. In this
model, stability, and churn are not as crucial as in peer-
to-peer systems. Furthermore, we do not address secu-
rity issues here, assuming that participants belong to
the same administrative domain.

Our data model is a continuous query model, as
found in stream management systems ([1, 2, 6, 18]).
Under this model, an infinite stream of tuples drives a
push-based control flow and evaluation of the join oper-
ator. We assume our join operator is associated with a
window, and for simplicity, assume each stream main-
tains its own window. In a distributed scenario, one
open issue is how to ensure the maintenance of dis-
tributed windows with global semantics.



Figure2.Simplified,motivatingexample:wepro-
pose exploiting data locality. In this scenario,
where sites A and B join with high probability on
“low” values, and sites C and D join over “high”
values, we create two partitions, and place each
partition to optimize for its relevant sources.

3. Networked Join Model

We begin with a simple scenario exemplifying how
we intend to exploit data and network locality. Con-
sider four sites, A, B, C and D. Sites A and B produce
a certain range of values at a high rate, while sites C
and D produce a different set of values at a high rate.
We claim that processing these tuples in a centralized
manner, where all four sites push data to a single net-
work location, does not exploit trends in the underlying
value distribution. We propose creating two instances
of the operator, one placed near sites A and B to han-
dle the range of values frequently emanating from these
sources, and another placed near sites C and D. This
is abstractly illustrated in Figure 2.

In addition to data locality, we investigate tech-
niques to exploit network locality between the sources.
Here we focus on placing replicas of instances, based
on the network proximity of sources. Abstractly, we at-
tempt to ensure nearby sources produce output tuples
with low latency, at a nearby site, rather than at a sin-
gle (centralized) partition instance.

3.1. Modelling Data Sources

Our join’s sources may be arbitrary network sites.
We assume each source maintains a probabilistic model
representing the probability density function (pdf) over
any values it produces. These pdfs may be obtained
as a simple histogram, or with standard learning algo-
rithms and distribution fitting techniques. Our input

tuples are comprised of multiple attributes, implying
these pdfs are joint distributions. We may marginal-
ize this joint pdf to obtain the pdf for any combina-
tion of attributes. With this model, each source is able
to provide the probability of producing a specific value.

3.2. Probabilistic Join Evaluation

Our join operates on tuples from all sources based
on a join predicate. In the scope of this paper, we con-
sider the equi-join operator, but remark the principles
applied here may be generalized to arbitrary joins. We
return to this shortly. Using the data source model de-
scribed above, we may compute the expected output
rate of our join operator as follows. For a single pair
of sources, this output rate is the product of the to-
tal input rate, and the probability of two tuples having
identical join key values. Since the join key attributes
are likely to be a subset of the joining relations’ at-
tributes, this probability is equivalent to a product of
each source’s joint distributions, marginalized over the
join key attributes.

This model of output rates is too simple for a
stream-based model, where join operators are defined
with windows to support asynchronous inputs. In this
model, we abstract away window semantics, such as
whether the operator has a window for each stream, or
whether the window is a band. We simply assume we
are able to ascertain a distribution yielding the proba-
bility of a specific value existing in the operator’s win-
dow. We refer to such a distribution as a window distri-
bution. For a join operator with one window per stream
and source, and a sliding policy of simply removing the
oldest tuple in the window, the window distribution is
equivalent to the nth power of the input distribution,
where n is the window size.

With this window distribution, we may obtain our
expected output rate of a source pair as a product of
one source’s input rate, the same source’s marginal dis-
tribution of join key attributes, and the window distri-
bution of the second source. Clearly any pair of sources
may join to produce an output tuple. Furthermore the
join occurs over all possible join key values.

The generalization to other types of join operators,
with arbitrary join predicates, may be accomplished
through the definition of an indicator function yield-
ing whether the values join. One open issue relates to
how we could capture the output probability distribu-
tion of arbitrary join predicates, since this distribution
is likely to be specific to each indicator function.



4. Networked Join Deployment Chal-
lenges

We now outline three key problems in deploying net-
worked joins, and sketch their solutions. These solu-
tions all target minimizing the total expected network
delay of a tuple. We address: i) how to construct a rout-
ing plane so that sources may send their input tuples
to an appropriate join operator, ii) how to augment
this routing plane with semantic information to con-
struct a join space, and subsequently use this space to
identify localization opportunities, and iii) how to par-
tition a join operator by differentiating sources based
on their position within this join space.

4.1. Join Routing Topology Construction

Our routing plane connecting the join’s sources and
the join operator is a routing tree with sources at
its leaves, and replicas of the operator as the inter-
nal nodes. We replicate operators to reduce network la-
tency between inputs and the location processing these
inputs. Operators on our replica tree compute join tu-
ples on different incoming branches, outputting join
results as well as forwarding tuples to their parents.
This ensures completeness when evaluating the join.
We use a hierarchical clustering algorithm to construct
our replica tree, initially bootstrapping our infrastruc-
ture by clustering on a synthetic coordinate system
capturing latencies between sites, such as Vivaldi [7]
or NPS [19].

We initialize our cluster hierarchy by choosing our
base clusters with a leader election algorithm. The base
clusters are (approximately) balanced subdivisions of
the synthetic coordinate space. Our algorithm is a stan-
dard leader election algorithm with a termination cri-
terion where a site elects itself leader whenever it has
knowledge of k other sites (where k is a configuration
parameter) or when it has received knowledge of a site
at distance d in the synthetic coordinate space (where
d is also a configuration parameter).

Base cluster leaders compute a weight based on
the total distance between themselves and every other
site in their cluster. Following this, base cluster lead-
ers exchange their weights with neighbouring leaders
to elect a higher level leader. The termination crite-
rion for leader election is based on a weight threshold
or again a distance threshold (whichever is met first).
The site meeting the condition then computes a cen-
troid of weights, and declares it a leader for the set
of known sites. Note that the centroid chosen as de-
scribed above is from the set of leaders only (as these
are the only sites propagating weights at this level).

The centroid selected may be significantly offset from
the actual centroid, thus we refine our centroid by prop-
agating weights down the hierarchy rooted by the ini-
tial centroid. At each level we recompute the centroid
amongst the sites available at that level.

4.2. Join Coordinate Space Construction

In this section we describe our methodology for aug-
menting this space with semantic information to sup-
port the exploitation of both network locality and data
locality. With the model of join output probabilities
presented previously, we claim that exploiting data lo-
cality requires comparing the join output pdfs of pairs
of sources. By differentiating the output pdfs for dif-
ferent sets of the attribute domain, we may tailor our
operator placement to optimize for the latency of ac-
cessing inputs. To this end we attempt to capture fea-
tures of our sources’ join pdfs in our coordinate space
to support a search for localization opportunities. We
do so by increasing the dimensionality of our coordi-
nate space, to include the first m moments of the source
pdfs. Thus each source is placed at a point on a c+m di-
mensional space (where c is the dimensionality of the
network-oriented coordinate space) with m moments of
their own pdf. The distance function on this space is a
Euclidean distance intended to approximate the simi-
larity of pdfs and the network separation of the respec-
tive sources.

In our model, we augment the original coordinate
space defined over network latencies alone to this
higher-dimensional join space over time, as probabil-
ity distributions are built up from the input data. We
adapt our routing plane to accommodate the chang-
ing positions of the sources in the join space, leverag-
ing our hierarchy to determine new parents for sources.
When a source changes its position on the join space,
we route through its existing ancestors towards the root
of our replica tree, stopping at the first ancestor root-
ing a subtree containing a cluster encompassing the
source’s new position. This ancestor then propagates
the source’s new position back down a path in its sub-
tree, updating the source’s routing information until
we reach the base cluster in which the source now lies.

4.3. Join Partitioning

Recall our objective of minimizing the total ex-
pected output delay of a tuple. We partition opera-
tors, ensuring partitions process different sets of the
attribute domain, and tailor the placement of this par-
tition to suit the sources most likely to produce outputs
lying in that set. Thus our partitioning algorithm must



determine how many partitions to create and what val-
ues of the attribute domain each partition must pro-
cess.

Our partitioning algorithm uses a gradient based
heuristic to drive the optimization. Specifically, we op-
timize our objective by differentiating sources in terms
of their output distributions, searching for changes
in a pair’s output pdf that significantly impacts the
total output pdf for a particular value in the at-
tribute domain. The point at which the output pdf
changes greatly is one candidate for placing a parti-
tion boundary. Our high level intuition for placing par-
tition boundaries at points of high pdf gradient is as fol-
lows. Given that the probability of output significantly
differs in value on either side of the point of large gradi-
ent, the relative contribution of the source to the total
output of the attribute values near this point also dif-
fers. Furthermore, a source’s contribution to a value de-
termines its position on the join space. Consequently
the source would be best served by operators placed
at different network locations (assuming the operator
is placed at a cluster centroid as described previously)
and using the same operator location would only in-
crease the expected tuple latency.

Our partitioning algorithm performs its search in a
distributed manner, first using a clustering technique
on the join space to prune the output pdfs considered
when searching over the attribute domain. Each clus-
ter chooses a leader as a search coordinator. The search
coordinator collects the probability distributions from
the other sources in its cluster alone, and computes the
pairwise join pdfs of these sources.

We briefly outline our mechanism for exchanging
probability distributions. We use existing algorithms
for creating and updating wavelet-based histograms as
the core of our distribution mechanisms. Sources con-
struct a wavelet-based histogram on their inputs and
exchange the h largest wavelet coefficients with neigh-
bours on the coordinate space, such that the value of
h is negatively correlated with the distance between
sources in the space.

The search coordinator then attempts to find par-
tition boundaries in these pdfs alone. The search for
boundaries occurs over the entire attribute domain,
greedily selecting points of high gradient. We employ
a thresholding technique defining the minimum width
of partitions to restrict the number of partitions cre-
ated. This threshold is based on the minimum separa-
tion of sources. The number of partitions created may
exceed the number of sites present in the network. To
account for this we group partitions based on the char-
acteristics of the distributions within the partitions,
and determine operator placements based on the con-

tributions of sources relative to these groups.
Finally we turn to the placement of these partitions.

Our strategy here is to use the hierarchical clustering
algorithm described earlier. The key difference how-
ever is that instead of clustering on a coordinate space
of network latencies, we are clustering on a projec-
tion of the join space. Specifically, we project the join
space corresponding to moments computed on the out-
put probabilities of the attribute values in a given par-
tition. Repeating this process over all partitions con-
structs our routing forest, connecting all sources to our
network deployed operator.

5. Adaptive Partitioning, and Replica-
tion

Now, we briefly discuss some of the issues our mech-
anisms will have to address, to be effective in dy-
namic, long-running distributed systems. We focus on
the question of adaptivity, describing our requirements
on operators for adaptive partitioning, and distribu-
tion models to cope with varying data distributions
over time.

5.1. Maintaining Partitioned State

In order to support dynamic repartitioning, where
we may acquiesce operators or partition them fur-
ther, we rely upon operator implementations support-
ing these semantics on their specific states. In addition
to function calls supporting the bootstrapping, and se-
rialization of state (as found in the Flux system [24]),
we require functions to support the injection and ex-
traction of state elements, stored as a side effect of pro-
cessing inputs of specific attribute values. For example,
in the case of incremental partitioning, these values cor-
respond to the attribute values of tuples to be routed
to the new operator instance. This requires identifica-
tion of state elements, as part of the extraction pro-
cess.

Another issue is the blocking effect of adapting the
number of partitions. In order to ensure complete pro-
cessing of inputs during the transitional phase, exist-
ing schemes employ buffering techniques. In a wide-
area system, modifying the deployment of partitions
requires interaction with the underlying content-based
routing layer. During the transition period of a par-
tition, the routing layer must support the necessary
buffering, raising the question of how to efficiently sup-
port distributed buffering, with the added information
of the eventual destination of the buffer.



5.2. Time-Varying Value Distributions

In the algorithms above, we measure models of the
data, as inputs to our framework, to widely partition
and distribute a single operator. In a long-running sys-
tem, with the semantics of an infinite input stream,
leveraging the entire history of tuples may not form
a strong basis for the model, especially with distribu-
tions that evolve, and change over time. Instead, we
may wish to be more selective in the use of historical
inputs, choosing relevant tuples based on either a tem-
poral or semantic criteria (e.g, an age function, or by
the value’s statistical significance over a window).

This selective use of history must coexist with up-
dates to the model in an online manner, as tuples ar-
rive. Recent work on approximate summaries of
streams (e.g. sketches, wavelet-based histograms [11])
have highlighted the necessity for single-pass, con-
stant time methods of updating models. Unlike these
works, we are leveraging an input model to guide
our optimization algorithms, and not to actually ap-
proximate the query itself. Given updates to the
model coincide with query processing, we envision an-
other optimization problem, investigating the cost of
introspection during query processing as its objec-
tive.

6. Related Work

The most prominent work on partitioning operators
lies in parallel databases research. This literature en-
compasses topics such as hash-based joins [9], handling
workload skew [10], and spatial joins [21]. While all
of these works provide a plethora of partitioning tech-
niques and join evaluation algorithms, to the best of
our knowledge, none consider the effects of heteroge-
neously distributed data access, across a wide-area net-
work, to support the operation. This lack of access lo-
cality can adversely affect the expected tuple delay.

The presence of a slow (and costly) medium for data
access has been investigated in sensor networks. Sys-
tems such as Cougar [27], and TinyDB [17] have in-
vestigated query processing techniques and both en-
ergy and bandwidth optimization mechanisms. Data
centric and geographic routing techniques have also ap-
peared in sensor networks [15, 16, 23]. Finally the use of
probabilistic models has been proposed to in the con-
text of acquisitional, and distributed inference prob-
lems ([8, 20]).

Operator placement itself has been approached in
both the distributed stream management domain [3],
and the sensor networks domain [5]. These works repre-
sent initial steps in our vision of our networked query

deployment, since they do not approach the tasks of
partitioning or replicating an operator, for the sake of
improving network latency.

Note that unlike most approaches in both the paral-
lel systems and sensor networks communities, the dis-
crete optimization problems we have described revolve
around system deployment. In both parallel databases,
and sensor networks, every site is assumed to be uti-
lized as either a source, or a processing site and thus in-
volved in query evaluation. This is not the case in our
infrastructure model.

7. Open Issues

There are several directions we have not even begun
to incorporate into this model. Recent work on mod-
elling streams as time series, and capturing the tempo-
ral nature of streams in detecting bursts and distribu-
tion changes [14] could be leveraged for optimization
purposes. Work on self-similarity to construct gener-
ative models of time series data could guide the pre-
diction of input tuples, potentially leading to proactive
optimization of networked joins.

We also briefly highlight our implementation plans
for the ideas discussed here. Our networked join imple-
mentation will use the Borealis query processing en-
gine for evaluating the query, while the SAND data
management framework will integrate the probabilis-
tic models and distributed optimization algorithms to
solve the partitioning and replication problems.
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