
Application-aware Overlay Networks for Data Dissemination∗

Olga Papaemmanouil Yanif Ahmad Uğur Çetintemel John Jannotti

Brown University, Department of Computer Science, Providence, RI USA
E-mail: {olga,yna,ugur,jj}@cs.brown.edu

Abstract

XPORT (eXtensible Profile-driven Overlay Routing
Trees) is a generic data dissemination system that supports
an extensible set of data types and profiles, and an op-
timization framework that facilitates easy specification of
a wide range of useful performance goals. XPORT im-
plements a tree-based overlay network, which can be cus-
tomized per application using a small number of methods
that encapsulate application-specific data-profile matching,
profile aggregation, and cost optimization logic. The clean
separation between the ”plumbing” and ”application” en-
ables XPORT to uniformly and easily support disparate
dissemination-based applications, such as content-based
data dissemination and multicast-based content distribu-
tion.

In this short paper, we provide a high-level overview of
XPORT. We also discuss its current implementation status,
applications we built using XPORT, and some preliminary
experimental results from the prototype. We finalize the pa-
per by summarizing our future directions.

1. Introduction

XPORT is a generic profile-driven distributed data col-
lection and dissemination system. Extensibility is the cen-
tral design consideration for XPORT. Our model allows
an extensible set of data types, profiles and optimization
goals. XPORT is designed to support the core data dissem-
ination infrastructure for a growing set of dissemination-
based applications and services, including web feed dissem-
ination (RSS/Atom), massively multiplayer network games,
multicast-based content distribution, large-scale collabora-
tive applications, and stock ticker distribution.

XPORT is motivated by the observation that even though
many dissemination-based applications exhibit diverse ap-
plication logic and performance requirements, they all re-
quire common underlying facilities. These include dis-

∗This work is supported in part by the NSF under grants IIS-0325838
and IIS-0448284.

semination overlay construction and maintenance, (content-
based) routing logic, and membership management. Cur-
rently, these applications are often developed from scratch,
requiring substantial effort and investment to “get it right”
for each specific case. XPORT addresses this problem by
providing the core application-agnostic facilities, and let-
ting the developers customize their system for a specific
target domain. This customization is facilitated through
a small number of methods that encapsulate application-
specific behavior and optimizations.

XPORT supports two types of extensibility.Profile-
related extensibilityrefers to the ability to easily define new
data and profile types, and is key to supporting a variety of
applications.Cost-related extensibilityrefers to the ability
to express application-specific performance goals, allowing
applications to define their own criterion of an efficient and
effective dissemination network. Moreover, users have the
ability to extend certain optimization rules. Given user-
defined data-profile, cost methods and optimization rules,
XPORT automatically builds and maintains an overlay dis-
semination network consisting of the available broker ma-
chines in the system. The system iteratively applies local
optimizing transformations to adapt to changes in the net-
work and workload conditions, and to incrementally con-
verge to an overlay configuration that is ”optimal” (as de-
fined by the application).

In this paper, we provide an overview of XPORT. We
begin by introducing the system’s API, which allows the
specification of application-defined methods that encapsu-
late the behavior of the system (Section 2). We continue
with XPORT’s optimization framework, which uses a novel
two-level aggregation model to define system cost (Sec-
tion 3). The first level computes the cost of each node as an
aggregation of an application-defined cost metric computed
over the node’s local neighborhood. The second level com-
putes the system cost by aggregating the node costs. We
also describe our prototype and the applications we built,
as well as present some preliminary implementation results
(Section 4). Finally, we discuss our plans for future exten-
sions to XPORT (Section 5).

2. XPORT API

We start by motivating XPORT’s basic API by dis-
cussing the common characteristics of dissemination-based
applications. We then continue by describing the methods
an application needs to define to express its “native” data
and profile types and performance targets.

2.1. Background: Dissemination-based Applica-
tions

To introduce XPORT’s API, it is helpful to review
profile-driven data dissemination applications in simple
terms. The goal here is to highlight the common function-
ality in these applications to motivate the general methods
used by XPORT.

Profile-driven data dissemination applications typically
adopt a declarative, publish-subscribe API that decouples
data producers (sources) and consumers (clients), and iso-
lates both parties from the details of the underlying imple-
mentation. The key abstraction is that data producers gener-
ate data bypublishingand data consumerssubscribeto data
by specifying their profiles. The underlying dissemination
system is responsible for delivering to each subscriber the
data that matches her profile.

The dissemination infrastructure consists of a set of
nodes (often calledbrokers) organized into an overlay net-
work. This network usually consists of one or more data
dissemination trees [6, 11, 16]. Clients register their pro-
files with brokers. Profiles are propagated upstream to the
root of the tree, creating a reverse routing path. Optionally,
profiles aremergedwhen possible to reduce routing state
requirements and filtering costs.

Using the routing tree, a broker can now send a message
to the subset of its children that is interested in receiving
the message, instead of forwarding the message to all its
children, thereby eliminating the “flooding” problem. This
routing scheme works bymatchingeach message with the
routing table entries that represent the aggregated profilefor
each subtree of the broker.

Depending on the data types and the complexity of the
profiles demanded by the application, data dissemination
systems may choose to use their own algorithms andindex-
ing structuresfor efficiently storing profiles on every broker
and matching incoming messages against them. For exam-
ple, ONYX [11] uses YFilter [10] for matching, whereas
SIENA [6] uses a custom index [7] for storing and match-
ing relational profiles.

Different dissemination-based systems and applications
can have widely varying efficiency and effectiveness tar-
gets and constraints. Various latency-related metrics (e.g.,
matching times, forwarding costs), bandwidth-efficiency
metrics (e.g., per-node bandwidth consumption), fairness

metrics (e.g., uniform bandwidth utilization across nodes),
reliability metrics (e.g., message loss rates), data qual-
ity metrics (e.g., fidelity), as well as composite metrics
(e.g., product of bandwidth and latency) have been studied.
Moreover, many systems have commonly limited certain
metrics to maintain quality of service (e.g., a maximum end-
to-end latency constraint) or control resource usage (e.g., a
maximum bandwidth consumption constraint).

2.2. Application-defined methods

Based on the main functionality of data dissemination
applications, we identified two types of methods an appli-
cation needs to define in XPORT,profile-relatedandcost-
relatedmethods. For simplicity of exposition, we abstractly
describe these methods, without providing their full signa-
tures or semantics.

Profile-related methods. These methods specify how
profiles are processed, stored, indexed and maintained at
each broker of the system. XPORT’s API provides a
merge(p, q) function that allows an application to define
how two profilesp andq are merged to a more general pro-
file covering these profiles. It also allows applications to
integrate an index structure by specifying three methods:
(i) an init() method for declaring and initializing the index
structure; (ii) anadd(p) method that adds a new profilep
to the index; and (iii) aremove(p) method that removes a
profilep from the index.

Finally, message matching is specified by the method
match(m, p) that returns true if a messagem matches a
profilep or false otherwise. If an indexing structure is used
then a methodmatch(m, ind), can be defined. This method
returns the set of profiles in the indexind that match the
messagem.

Cost-related methods. XPORT allows applications to
specify their own performance criteria, based on which the
dissemination network is created. XPORT uses atwo-level
aggregation modelto specify the system cost. The first level
computes the cost of each node as an aggregation of an
application-defined cost metric. We define thenode cost
as:

aggregate(aggregation function, value,

aggregation set)
Theaggregation functioncan bemin, max, sumor prod-

uct. The value is a metric calculated on every node, over
the node’s local neighborhood (e.g., link latency to its par-
ent or children), or the node itself (e.g., CPU latency). It
may either be a predefined performance metric provided by
XPORT or defined by the application by providing a method
to calculate it. For example, XPORT provides a built-
in method for calculating the link latency between nodes.
However, a user can also provide its own method to mea-
sure this metric. The above formula allows applications to

System cost Node cost Optimization metric
function function example

sum sum total outgoing bandwidth
consumption

average sum average path latency
average product average path reliability
average min average path bandwidth

max sum maximum path latency
min product minimum path reliability
min min min path bandwidth

Table 1. Two-level aggregation examples.

define a large set of metrics, used frequently for the evalu-
ation of dissemination-based systems, such as path latency,
outgoing bandwidth consumption, or even matching over-
head.

The second level of aggregation computes thesystem
costby aggregating the node costs:

aggregate(aggregation function, node cost,

aggregation set)
This aggregation functioncan bemin, max, sumor av-

erage. XPORT allows aggregation to be computed over a
number of entities, on which the node cost is defined,e.g.,
nodes, paths, clients, etc. This allows applications to define
a large variety of system cost measures, like maximum path
latency, total bandwidth consumption, or average matching
overhead.

Similarly, applications can also defineconstraintsas:
constraint(metric, operator, threshold)

This method allows a threshold to be specified for some
local metric of every node,e.g., maximum fanout of a node,
maximum profiles stored, etc. XPORT customizes its func-
tionality and optimization framework to respect these con-
straints. Table 1 shows some example metrics specified us-
ing the two-level aggregation model.

3. Extensible Optimization

XPORT strives to create dissemination trees that respect
application-specific performance metrics. Periodically,it
modifies the overlay tree using local transformations to
adapt to changing network and workload conditions affect-
ing the system’s performance. We define a local transfor-
mation as one that requires interactions between “nearby”
brokers on the overlay tree. In our current implementation,
these brokers are at most three levels from each other. These
include a brokerni, its parent, children and grandchildren,
as shown in Figure 1(a). We call these nodes collectively the
optimization unitof brokerni. Our local transformations do
not affect the optimization unit’s interface with the rest of
the network. Keeping the effects of our optimizations local
(i.e., only to the nodes in the optimization unit) allows us to

Level 3

Level 2

Level 1

...

...

...

...

...

(a) original tree (b) demote child (c) promote child

......

...

...

...

...

ni

nj

nknj1

subj1

nj

nj2

subj1

subj1

ni

nj1
nk

nj1

subj1

nk

ni

subk1

nj

nj1

subj1

np np np

Figure 1. XPORT’s primitive transformations.

maintain information only for the nodes inside the unit and
reduces the cost of network reconfiguration, as fewer nodes
are affected by each transformation.

XPORT provides twoprimitive transformations. These
transformations arechild demotionand child promotion
(shown in Figure 1(b) and 1(c), respectively). We now ex-
plain these transformations with respect to the 3-level opti-
mization unit shown in Figure 1(a).

Demote child.This transformation picks a nodenk from
the second level of the unit, and moves it along with its sub-
tree, under one of its siblingsnj . This increases the number
of subtrees ofnj while leavingni with one less subtree.

Promote child. This transformation picks a nodenj1

from the third level in the optimization unit and moves it
along with its subtree under its grandparentni. This in-
creases the number of subtrees ofni while leavingnj with
one less subtree.

The goal of the local transformations is to improve the
overall system cost. For every transformation, XPORT cal-
culates the cost change on every node affected by the trans-
formation. Since XPORT understands the semantics of the
aggregation functions, it can automatically quantify the ef-
fects of a transformation. This is achieved by the use of
general formulas that hold regardless of the specific aggre-
gation functions being used. Moreover, XPORT automati-
cally identifies the state a node needs to maintain in order to
quantify the benefit of a transformation, and also the infor-
mation to be exchanged among nodes during the optimiza-
tion. Both the state requirements and the communication
costs areO(1) for each node, for most of the aggregation
functions supported by our model.

Extending the transformation set. XPORT’s transfor-
mation set is also extensible. Applications can define their
owncompositetransformations by using the primitive ones.
An example composite transformation is the promotion of a
subtree, which is a sequence of child promotions for all the
children of a node. Composite transformations are impor-
tant as they help avoid being stuck in a local optimum.

Extending the scope of optimization units. As men-

tioned earlier, our optimization unit includes nodes within
three levels of each other. However, the optimization unit
can easily be extended to include nodes at mostn-levels
from each other. This extension allows an application to
define more complex composite transformations. However,
while it introduces new opportunities for optimization, it
also increases the state requirements at each node and the
overall communication cost.

3.1. Optimization approaches

XPORT employs two approaches for optimization;bot-
tleneckandopportunisticoptimization. The bottleneck ap-
proach tries to optimize the system cost function for the en-
tire system, while the opportunistic one optimizes the cost
function locally for each optimization unit. For example,
if the optimization goal is to minimize the maximum CPU
load, then the bottleneck approach will attempt to reduce
the load of only the most loaded node in the network, while
the opportunistic approach will reduce the workload of the
most loaded node in each optimization unit.

For bottleneck optimization, we rely on the notion of a
critical node. A node is considered critical if its cost change
may affect the system performance,e.g., if the system cost
is the maximum path latency, then the critical nodes are the
ones on the path with the maximum latency. Moreover, we
maintain the notion of acritical optimization unit. We de-
fine a critical optimization unit as one that may affect the
cost of a critical node, and thus the system cost. At each
optimization period, nodes consider local transformations.
In the opportunistic approach, all nodes participate in the
optimization period, while in the bottleneck approach only
nodes inside a critical optimization unit will attempt to op-
timize. In both cases, the most effective transformation is
identified and applied. Note that, the bottleneck approach
guarantees cost improvement in every optimization period,
if at least one beneficial transformation is identified. How-
ever, although the opportunistic approach does not provide
such guarantees, it can also indirectly lead the system to a
globally near-optimal configuration.

Another optimization issue is the number of optimiza-
tion units that can be optimized in parallel. The main ben-
efit of the single transformation approach is that it is eas-
ier to handle, as we do not need to consider potentially in-
terfering concurrent transformations across multiple opti-
mization units. However, serializing transformations slows
down convergence to the “optimal” topology. In our current
implementation, we allow parallel transformations to take
place in non-overlapping optimization units. In the future,
we will investigate concurrent transformations for overlap-
ping units.

Profile/Data Handler Optimizer

Parser RouterProfiles

Data

Application Network

Local State

Figure 2. XPORT node architecture.

4. Current Status

We developed an initial XPORT prototype and built two
related data dissemination applications on top of it. The
first application disseminates RSS feeds and the second al-
lows distribution of results based on queries to the Google
Scholar search engine [1]. In this section, we briefly de-
scribe the main components of our prototype and the appli-
cations we built. We also present some preliminary experi-
mental results.

4.1. Prototype

Our current prototype is implemented in Java. In our
implementation, nodes are organized into a single dissemi-
nation tree rooted at abootstrapnode. The bootstrap node
is responsible for periodically polling the sources and for-
warding any new messages to the dissemination tree.

The basic architecture of an XPORT broker node is
shown in Figure 2. Application-defined methods are given
to each node’sparser, which customizes various system
components to meet the application-specific profiles, data
types and performance metrics. Theprofile/data handleris
the component responsible for storing, indexing and main-
taining profiles. It also performs the matching of incoming
messages against the local profiles. Network transforma-
tions are identified and applied by theoptimizer. All com-
ponents communicate with the node’srouter, which com-
municates data and meta-data with other brokers. All com-
ponents have access to the local state of the node, which
consists of workload statistics, profile and data information,
and optimization meta-data.

4.2. Applications

RSS is a family of XML file formats for web syndication
commonly used by news websites and weblogs. Site owners
publish their site content via an XML file called anRSS
feed. Users can request these feeds through afeed reader, a
client application for subscribing to the feeds, periodically

polling the RSS sources and presenting the returned data.
Using XPORT’s API, we built an RSS feed dissemina-

tion tree. We implemented an XPORT proxy, which clients
can use to instantly allow their existing feed readers to be
part of the XPORT dissemination network. Clients request
their desired RSS feeds through their feed reader, and the
proxy registers their subscription to an XPORT node. The
bootstrap node polls the RSS sources and forwards only
new items to the dissemination tree. Using XPORT for dis-
seminating the requested feeds allows RSS sources to re-
ceive HTTP requests only from the bootstrap instead from
each individual client. Thus, the bandwidth requirements of
hosting an RSS feed are decreased. FeedTree [19] possesses
a similar structure.

In our second application, we used queries to the Google
Scholar search engine as our client profiles. Google Scholar
provides a way to broadly search for scholarly literature. In
our implementation, a user can search across many disci-
plines and sources by specifying a set of attribute values
like author, document title, keywords and publication date.
Results are transformed to an RSS format and pushed to the
users, which can then read them through their feed read-
ers. Clients with similar profiles can share the same RSS
feed. The advantage of our application is that it provides a
pushed-based interface to a traditional pull-based applica-
tion, allowing users to automatically get new results as they
become available.

4.3. Preliminary Results

We deployed our implementation of the RSS feed ap-
plication across the PlanetLab testbed and ran some initial
experiments. We created 100 clients and attached them ran-
domly to the XPORT brokers. Each client picks its profile
from a set of 700 RSS feeds using the Zipf distribution. The
total size of RSS Feeds was around 19MB. The bootstrap
node periodically downloads these RSS feeds and dissemi-
nates them down the tree.

The first metric we experimented with is the total path
latency. Figure 3 shows the sum of the path latencies of 20
PlanetLab sites. We compare XPORT’s performance with
the optimal tree, which is the star topology, when no con-
straints are imposed and assuming the triangle inequality
and lack of congestion. In the star topology, all the nodes
are connected directly to the bootstrap node. XPORT starts
with a random tree and continuously applies local transfor-
mations. Our preliminary results show that, while XPORT
starts with lower performance than the star topology, aftera
small number of transformations, our tree converges to the
optimal tree. In the future, we will investigate various op-
timization metrics, like bandwidth consumption and CPU
latency and compare XPORT performance to the optimal
dissemination topology.

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

2 4 6 8

T
ot

al
 p

at
h

la
te

nc
y

(m
se

cs
)

Time (units of optimization period)

Optimal

10

XPORT

Figure 3. Total network latency of PlanetLab
nodes. XPORT converges to the optimal after
approximately 8 transformations.

5. XPORT Extensions

5.1. Stateful subscriptions

An important goal of XPORT is to support profile exten-
sibility. Our current implementation allows stateless pro-
files to be evaluated independently over each incoming mes-
sage. However, many applications require the ability to
handle stateful subscriptions, e.g., “drop similar messages
if they arrive with less than 10 seconds”. In order to support
such applications, we plan to extend XPORT’s API.

Stateful operations require messages to be stored for
some period of time, e.g., if we need to eliminate duplicates
with at mostx seconds difference in their arrival time, we
need to store the incoming messages for this time frame.
Thus, we plan to support a more expressivematch func-
tion, which facilitates state maintenance. There are two ap-
proaches we are currently investigating. The first maintains
this state globally for the application, applying these oper-
ations for all the messages entering the system. This will
be beneficial for cases where the operations have the same
definition and semantics for all clients,e.g., messages with
temperature values with less than 5% difference and 10 sec-
onds apart are considered the same for a specific weather
alert application.

In the second approach, every subscriber can define its
own stateful operation as part of its profile, e.g., some
clients consider temperature readings with 5% difference as
the same if they appeared in the last 20 seconds while oth-
ers do so if the messages appeared in the last 10 seconds.
In this case, state needs to be maintained per profile in our
system.

5.2. Customizing delivered messages

Apart from stateful subscriptions, many applications de-
sire subscriptions to transform the structure and values of

incoming messages. A simple example would be subscrip-
tions mapping message values to a different value domain.
XML streaming applications where subscriptions are ex-
pressed as XPath queries [10, 11] also transform original
messages before they get delievered to the subscribers. In
this case, XPath queries are applied on incoming XML doc-
uments, and can return specific elements of the input docu-
ment.

To this end, we plan to further extend ourmatchfunc-
tion to allow data transformations. In our current API, this
function simply takes as input a single message and identi-
fies if it matches a given profile or not. This function will
be extended to provide also the output message to be sent
downstream.

5.3. Integrating collection and dissemination

Until now, we have described XPORT as an extensi-
ble data dissemination infrastructure. Prior to dissemina-
tion, XPORT is first responsible for gathering data from a
potentially very large number of data sources. Currently,
XPORT’s collection functionality is implemented by the
bootstrap node periodically polling the sources. We propose
the construction of an overlay topology to support efficient
data collection, as a dual to the tree for dissemination.

As our first extension, we plan on distributing the burden
of data collection from a single root node, to a tree-shaped
topology. XPORT will extend its framework to the collec-
tion task by defining a set of primitive transformations on
the collection tree, just as in the dissemination tree. One
example of a transformation is the ability to split the list of
sources a node gathers data from and assign this workload
to a parent or child node.

By combining data collection and dissemination into a
single framework, XPORT will be able to take advantage
of transformations specifically for end-to-end optimization
of the dataflow path. One example of such an optimiza-
tion technique is short-circuiting. Short-circuiting involves
adding a direct overlay link between an interior node of
the collection tree and an interior node of the dissemina-
tion tree. This technique may be applied in scenarios where
the data collected by the node in the collection tree covers
the data requested by the profiles in the dissemination tree.

Furthermore, XPORT may have to handle the use of mul-
tiple optimization metrics, one for collection, and another
for dissemination. In these scenarios, we will have to apply
transformations over combined metrics, or attempt to indi-
vidually optimize metrics through the use of multiple over-
lay trees. We return to the topic of optimizing with multiple
trees in Section 5.5.

XPORT will also support the notion of source advertise-
ments that specify the content a source produces. Adverts
are the collection tree’s equivalent of a profile, and XPORT

will use these adverts to perform processing tasks on the
data as it is gathered. Examples of these tasks include
presentation (e.g., translation of the message to another
language), aggregation and duplicate elimination, amongst
others. We intend to augment XPORT’s core API to support
collection related methods, as complements of the profile
related methods, to allow the application developer to cus-
tomize these tasks. Other extensions include supporting the
equivalent of a matching index for data collection purposes.
This collection index could be used to efficiently determine
which data sources to poll and when to poll them.

5.4. Supporting high-level profile languages

Currently, XPORT requires the user to ”fill in” all rele-
vant API methods using custom code. While it is rather easy
to specify simple profiles types (such as basic predicates)
this way, the specification of more sophisticated ”stateful”
profiles (e.g., ”give me only those news items that don’t
look like any I have received during the last two days”) may
be overly difficult, especially when dealing with methods
such as merge() (see Section 2). Therefore, to simplify the
job of the user, we plan to provide a ”native” profile lan-
guage that consists of a small number of powerful stream-
oriented operators with well-known semantics. Such a lan-
guage will make it easy to express complex user profiles,
while allowing XPORT to automatically derive and imple-
ment the associated API methods based on the knowledge
of the operator semantics.

To this end, we plan to use a subset of the dataflow lan-
guage of Aurora [3], which includes stream-oriented oper-
ators that can perform simple filtering and merging, as well
as complex time-window-based aggregation and correlation
over data streams. As such, users will be able to express
their profiles using either a graphical data-flow notation or
a textual notation, both of which are already supported by
Aurora and Borealis [2]. In addition to the benefits men-
tioned above, expressing profiles in this manner will allow
XPORT to use Aurora’s high-performance data-flow execu-
tion engine to perform low-latency message matching and
forwarding.

5.5. Supporting multiple collection and dissemina-
tion trees

The current model of XPORT allows the construction
of a single dissemination tree. However, previous work
[8, 14, 16] has shown that an overlay mesh can achieve fun-
damentally higher efficiency and reliability compared to a
single tree. Thus, we intend to extend our system to sup-
port the construction and maintenance of optimized meshes.
This will allow XPORT to improve significantly on metrics
like throughput, bandwidth consumption and create better

customized trees for its subscribers.
XPORT is currently limited to tree topologies by two de-

sign decisions. First, cost metrics are evaluated along the
single path between a node and the root. Second, optimiza-
tion units are defined by tree semantics (a node, its children,
and grandchildren). Together, these design decisions sim-
plify the computation of new costs after a local transforma-
tion is performed. In order to maintain the benefit of these
decisions, yet support the advantages of mesh topologies,
we will build meshes from multiple overlapping trees.

XPORT’s cost computation and optimization unit will
require extensions to accommodate this change. To eval-
uate the cost of multiple trees, XPORT will evaluate each
tree independently using our two-level aggregation model.
Then, a third aggregation level will be introduced to com-
pute the mesh cost by combining the scores for each tree.

XPORT’s optimization unit will also be extended to al-
low for optimizations across trees. We are considering a
number of approaches that would allow for transformations
that are sufficiently local to permit incremental cost recom-
putation following a change, yet allow for transformations
that affect multiple trees.

The concern is that a transformation that affects a single
optimization unit in one tree might involve nodes that are
widely scattered in another tree. It would be difficult to effi-
ciently assess the effects of swapping two nodes that are lo-
cated far from each other in a tree. With this in mind, trans-
formations will only affecttopologyin one tree at a time.
However, a topology change in one tree may still affect the
cost of another tree. For example, a node may suddenly
be asked to perform more forwarding, affecting its avail-
able bandwidth and its CPU load. However, these smaller
effects are readily quantified in the “other” tree. The total
effect of a change can be computed as the sum of the effect
caused by the topology change in one tree and the effects
caused in each of the other trees by the change in available
resources that came as a byproduct of the topology change.

6. Related Work

Supporting extensibility in systems engineering has of-
ten been a key research goal for the benefits brought via
modularity and software reuse. In the database community,
concepts such as extensibility and declarative specifications
have long been the norm as a result of pioneering works
such as System R [4] and Starburst [20]. Indeed, the gen-
eralization process need not be restricted to the domain of
large DBMS, perhaps best exemplified by GiST [12]. GiST
provides a framework generalizing the problem of imple-
menting search indexes in a database. In many ways, our
work draws its inspiration from GiST, striving to apply the
same design principles to distributed data dissemination ap-
plications.

Recent efforts from the networking community, such as
Click [13], MACEDON [17], and P2 [15] provide exam-
ples of systems promoting the advantages of extensibility.
Click provides a modular architecture for processing pack-
ets in routers using a flow-based configuration specifica-
tion. MACEDON and P2 both address the challenge of con-
structing overlay networks by abstracting over commonal-
ities present in the large number of overlay algorithms de-
signed over the last few years.

To the best of our knowledge, we have yet to see extensi-
ble data dissemination architectures capable of generalizing
over the core dissemination functionality and the system’s
optimization objective. Existing approaches such as Split-
Stream [8] and Bullet [14] construct application-level mul-
ticast networks that minimize the forwarding load of inter-
nal nodes by constructing mesh overlays, thereby enabling
clients to receive different data segments from multiple par-
ents in the mesh. ONYX [11] and XRoute [9] introduce
content-based publish-subscribe solutions for XML data
and XPath-based profiles respectively, and they both focus
on using structures for efficiently storing profiles match-
ing them to the incoming data. Siena [6] investigates a
publish-subscribe framework for relational data and con-
siders the system’s performance from a bandwidth-oriented
perspective. By abstracting over the matching functional-
ity, XPORT is able to support both the XPath and relational
profiles used by systems such as ONYX and Siena, in ad-
dition to supporting a superset of the optimization metrics
considered by these systems.

Also closely related are those approaches that use the
concept of local transformations to perform continuous
adaptive optimization of the dissemination tree [5, 21].
These systems attempt to optimize a specific metric, as op-
posed to the general optimization framework provided by
XPORT. Finally, AMMO [18] provides a similar frame-
work for constructing an adaptive multi-metric overlay net-
works. Their metric-independent framework focuses on
mimimizing the sum of a performance metric defined over
all the overlay edges of the dissemination tree. Compared
to AMMO, XPORT’s model is more extensible, since we
allow a wider variety of cost functions and a generic means
to combine them.

7. Conclusions

XPORT explores overlay routing tree design and extensi-
bility in the context of profile-based data dissemination sys-
tems. Our work is largely motivated by the growing number
of medium-to-large scale dissemination-based applications
and services. Addressing the needs of this broad application
domain requires a robust and flexible dissemination infras-
tructure that is application aware, highly extensible and eas-
ily customizable per application. XPORT is a step towards

building such an infrastructure.
We have built an initial XPORT prototype system and

will soon deploy it on PlanetLab, where it will be running
a profile-based feed dissemination service. This experience
will allow us to better debug our system and gather user
profiles for further experimentation.

References

[1] Google Scholar, http://scholar.google.com/.
[2] D. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel,

M. Cherniack, J. Hwang, W. Lindner, A. Maskey, A. Rasin,
E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik. The Design
of the Borealis Stream Processing Engine. InCIDR, 2005.

[3] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Con-
vey, S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik. Au-
rora: A New Model and Architecture for Data Stream Man-
agement.VLDB Journal, 12(2), 2003.

[4] M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P.
Eswaran, J. Gray, P. P. Griffiths, W. F. K. III, R. A. Lorie,
P. R. McJones, J. W. Mehl, G. R. Putzolu, I. L. Traiger,
B. W. Wade, and V. Watson. System R: Relational approach
to database management.ACM Transactions on Database
Systems, 1(2):97–137, 1976.

[5] S. Banerjee, C. Kommareddy, K. Kar, S. Bhattacharjee, and
S. Khuller. Construction of an efficient overlay multicast in-
frastructure for real-time applications. InINFOCOM, 2003.

[6] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and
evaluation of a wide-area event notification service.ACM
Transactions on Computer Systems, 19(3):332–383, Aug.
2001.

[7] A. Carzaniga and A. L. Wolf. Forwarding in a content-based
network. InSIGCOMM, 2003.

[8] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. I. T.
Rowstron, and A. Singh. Splitstream: high-bandwidth mul-
ticast in cooperative environments. InSOSP, 2003.

[9] R. Chand and P. Felber. Scalable protocol for content-based
routing in overlay networks. InNCA, 2003.

[10] Y. Diao and M. J. Franklin. Query processing for high-
volume xml message brokering. InVLDB, 2003.

[11] Y. Diao, S. Rizvi, and M. J. Franklin. Towards an Internet-
Scale XML Dissemination Service. InVLDB, 2004.

[12] J. M. Hellerstein, J. F. Naughton, and A. Pfeffer. General-
ized search trees for database systems. InVLDB, 1995.

[13] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click modular router.ACM Transactions
on Computer Systems, 18(3):263–297, August 2000.

[14] D. Kostic, A. Rodriguez, J. R. Albrecht, and A. Vahdat.
Bullet: high bandwidth data dissemination using an overlay
mesh. InSOSP, 2003.

[15] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis,
T. Roscoe, and I. Stoica. Implementing declarative overlays.
In SOSP, 2005.

[16] O. Papaemmanouil and U. Çetintemel. SemCast: Semantic
Multicast for Content-based Data Dissemination. InICDE,
2005.

[17] A. Rodriguez, C. Killian, S. Bhat, D. Kostic, and A. Vahdat.
Macedon: Methodology for automatically creating, evaluat-
ing, and designing overlay networks. InNSDI, 2004.

[18] A. Rodriguez, D. Kostic, and A. Vahdat. Scalability in adap-
tive multi-metric overlays. InICDCS, 2004.

[19] D. Sandler, A. Mislove, A. Post, and P. Druschel. Feedtree:
Sharing web micronews with peer-to-peer event notification.
In IPTPS, Ithaca, New York, Feb. 2005.

[20] P. M. Schwarz, W. Chang, J. C. Freytag, G. M. Lohman,
J. McPherson, C. Mohan, and H. Pirahesh. Extensibility in
the starburst database system. InOODBSs, 1986.

[21] Y. Zhou, B. C. Ooi, K.-L. Tan, and F. Yu. Adaptive reor-
ganization of coherency-preserving dissemination tree for
streaming data. InICDE, 2006.

