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Abstract— Accurate human body tracking is extremely
important for many virtual and augmented reality systems.
However, tracking human motion is extremely difficult. Some
of the difficulties arise from the fact that accurate process
models of human motion are difficult to derive. Approximate
models can have substantial time-correlated process noise
terms. In this paper we examine the effectiveness of using
the Split Covariance Addition (SCA) algorithm as part of
a human head orientation estimation system. We perform a
series of empirical experiments to compare the performance
of several implementations of SCA with an Extended Kalman
Filter (EKF). The results suggest that the benefits of SCA are
mixed. It leads to filters which are slightly more robust and
have slightly more accurate angular velocity estimates than
the KF. However, the absolute orientation estimate is slightly
worse than the EKF.

I. INTRODUCTION

Human body tracking is extremely important for many
virtual and augmented reality systems [1]. Accurate head
tracking is used to calculate the viewpoint from which the
graphics are drawn. Other parts of a user’s body (such as
wrists and hands) are often tracked to permit the use of
3D interaction devices [2]. However, people are extremely
sensitive to errors in tracking. For example, latency in
estimating head orientation of only a few milliseconds can
at best be distracting and at worst lead to cybersickness [3].
Similarly, errors in tracking of the other parts of a human
body can make the system difficult to interact with and use
effectively [4].

The solution to these problems is to use an appropriate
estimation algorithm which can be used to filter noise from
tracking systems and predict the future state to reduce
the effects of latency [5]. However, developing a suitable
estimator can be extremely difficult. Head motion, for
example, often consists of long periods of relative inactivity
punctuated by short bursts of violent activity (angular ac-
celerations can exceed 600◦s−2) [5]. Motions often contain
substantial time correlations which can degrade the filter’s
performance.

These problems have been partially overcome through the
use of Multiple Model Adaptive Estimation (MMAE) [6,
7]. A bank of filters are implemented where each filter uses
a process model which corresponds to a particular class of
head motion (such as head is still, head is turning at constant
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angular velocity, head is turning at constant angular accel-
eration). Each filter operates independently and in parallel
with all other filters. Probabilistic decision rules, based on
the likelihood of the innovation, are used to evaluate the
probability that, at any given time, a particular model is
correct. Although Kyger [6] reports that MMAE schemes
yield better estimates than single prediction schemes, each
filter is still implemented under the assumption that the
process noise terms act independently. However, because
no filter is truly an accurate description of the trajectory,
time correlated errors are still introduced and degrade the
performance of the filter.

To address the issue of prediction in systems with corre-
lated noise terms, an algorithm known as Split Covariance
Addition (SCA) has been developed [8]. Given two random
variables whose means and covariances are known, but
have unknown correlations, SCA calculates the smallest
covariance which is guaranteed to be consistent. Therefore,
SCA has the potential to address many of the issues con-
cerned with human motion tracking. However, no empirical
analysis of the performance of SCA has been conducted.

This paper performs the first empirical study on the use
of SCA to help refine the estimates of human motion.
Although there are many different types of motion that
could be examined, we focus on head orientation because
of its importance in providing visual fidelity [9]. The study
suggests that, compared with an Extended Kalman Filter
(EKF), the benefits of using SCA are mixed and marginal.
Although the resulting estimator is slightly more robust and
has slightly more accurate angular velocity estimates, the
absolute orientation estimate is slightly worse than that of
an EKF. However, given the limitations of the study we
believe the results indicate that more research is warranted.

II. THE EKF AND SCA ALGORITHMS

A. System Description
The system is described by the equations

x (k + 1) = f [x (k) ,u (k) ,v (k) , k]

z (k + 1) = h [x (k + 1) ,u (k) ,w (k + 1) , k] ,

where x (k + 1) is the state vector, u (k) is the control
input, v (k) is the process noise, and f [·, ·, ·, ·] is the discrete
time state transition equation, z (k + 1) is the observation
vector, w (k + 1) the observation noise vector and h [·, ·, ·, ·]
the discrete time observation equation. The noise vectors
v (k) and w (k + 1) are assumed to zero-mean and uncor-
related with covariances Q (k) and R (k + 1) respectively.
The validity of this assumption will be considered later.



The purpose of the estimator is to generate a consistent
estimate of x (i). Using the notation from [10], the estimate
of x (i) using all observations up to time j is x̂ (i | j) with
covariance P (i | j). Let x̃ (i | j) = x (i) − x̂ (i | j). The
estimate is consistent if

P (i | j) − E
[

x̃ (i | j) x̃T (i | j)
]

≥ 0

where ≥ 0 means that the difference between the two
matrices is positive semidefinite. In other words, the filter
should never under estimate the mean squared error in the
estimate.

B. Kalman Filter

The KF utilizes two steps: prediction followed by update.
In the prediction step, the estimate at time step k is

projected to the current time k + 1,

x̂ (k + 1 | k) = f [x̂ (k | k) ,u (k) ,0, k] (1)
P (k + 1 | k) = ΦF (k + 1)P (k | k)ΦF (k + 1)

+ Q (k) , (2)

where ΦF (k + 1) is the (linearized) transformation matrix.
The update step combines the measurement with the

prediction using a minimum mean squared error linear
update rule,

x̂ (k + 1 | k + 1) = x̂ (k + 1 | k) + W (k + 1) ν(k + 1)
(3)

P (k + 1 | k + 1) = X (k + 1)P (k + 1 | k)XT (k + 1)

+ W (k + 1)R (k + 1)WT (k + 1)

where

C (k + 1) = P (k + 1 | k) ∇
Th (4)

S (k + 1) = ∇
ThC (k + 1) + R (k + 1) (5)

W (k + 1) = C (k + 1)S−1 (k + 1) (6)
X (k + 1) = I − W (k + 1) ∇h (7)
ν(k + 1) = z (k + 1) − h [x̂ (k + 1 | k) ,u (k) ,0, k] .

Given that the prediction is consistent and R (k + 1) is
a conservative estimate of the observation noise, the update
produced by the filter is guaranteed to be consistent [11].
Therefore, assuming a conservative estimate for the obser-
vation noise can be determined1, the problem becomes one
of determining a consistent covariance prediction.

When the process noise is independent, the prediction
covariance is given by (2). However the process noise
is rarely independent because almost any system model
contains modeling errors. These modeling errors manifest
themselves as time correlations in the process noise [12]. To
ensure that the filter remains consistent, the usual approach
is to tune (inflate) Q (k) until the filter becomes consis-
tent. However, if the structure of the process noise model

1For the tracking systems described here this is, in practice, a nontrivial
problem because the accuracy of a tracker is often depended on the current
configuration and location of a tracking sensor. For this paper we used the
manufacturer’s specifications.

does not approximate the structure of the time correlations
very accurately, substantial performance penalties can be
accrued [12]. Another approach is to investigate the use of
robust prediction algorithms.

C. Split Covariance Addition

Suppose that the error in the estimate, x̃ (k | k), can be
decomposed into two terms

x̃ (k | k) = x̃I (k | k) + x̃C (k | k) .

The first term corresponds to errors which are known to
be independent. The second corresponds to errors which
contain time correlations. In the case of head tracking, the
first error component corresponds to the integrated effects
of observation noises and independent process noise terms.
The second component accounts for the correlated process
noise terms.

The covariance of x̂ (k | k) is

P (k | k) = PC (k | k) + PI (k | k) .

Assuming that the process noise can similarly be decom-
posed into independent and correlated terms

v (k) = vI (k) + vC (k)

with covariances QI (k) and QC (k) respectively, the Split
Covariance Addition (SCA) algorithm is

PI (k + 1 | k) = ΦF (k + 1)PI (k | k)ΦT
F (k + 1)

+ QI (k)

PC (k + 1 | k) = ΦF (k + 1)PC (k | k)ΦT
F (k + 1) /ω

+ QC (k) /(1 − ω)

where the parameter ω ∈ (0, 1) is chosen to minimize some
measure of uncertainty in P (k + 1 | k). In [8] it was proved
that if the prior estimate is consistent

P (k | k) − E
[

x̃ (k | k) x̃T (k | k)
]

≥ 0

PC (k | k) − E
[

x̃C (k | k) x̃T
C (k | k)

]

≥ 0

and the process noise is consistent

QI (k) − E
[

vI (k)vT
I (k)

]

≥ 0

QC (k) − E
[

vC (k)vT
C (k)

]

≥ 0

then the estimate

P (k + 1 | k) − E
[

x̃ (k + 1 | k) x̃T (k + 1 | k)
]

≥ 0

PC (k + 1 | k) − E
[

x̃C (k + 1 | k) x̃T
C (k + 1 | k)

]

≥ 0

will be consistent irrespective of the correlation between
x̃C (k | k) and vC (k + 1).

The update can be decomposed so that correlated and
independent terms are maintained. Replacing (4) by

C (k + 1) = (PI (k + 1 | k) + PC (k + 1 | k)) ∇
Th,



S (k + 1) and W (k + 1) are calculated using (5) and (6).
The updated mean is given by the standard EKF update
equation (3) and the updated covariances are

PI (k + 1 | k + 1) = X (k + 1)PI (k + 1 | k)XT (k + 1)

+ W (k + 1)R (k + 1)WT (k + 1)
(8)

PC (k + 1 | k + 1) = X (k + 1)PC (k + 1 | k)XT (k + 1)
(9)

Although the robustness of the SCA algorithm has been
proved theoretically [8], no experiments have been carried
out to examine its performance in a real, practical system.
We now explore the impact of these algorithms in an
empirical evaluation.

III. EMPIRICAL STUDY

A. Experimental Setup

Fig. 1. The HiBallTMTracking System. The tracker consists of a set of
small, high speed cameras. The room is instrumented with a set of precisely
surveyed rails. Each rail contains a set of infrared LEDs which are fired
in a predetermined sequence.

This study compared the performance of four implemen-
tations of the SCA algorithm (described in Subsection III-C)
against a KF. The algorithms were tested using data sets that
were originally acquired for an empirical study, conducted
by the University of North Carolina, into the effectiveness
of latency and stress in a virtual environment [13]. Users
were required to wear an opaque head mounted display
(they could only see a computer generated world) and were
asked to stand at what was apparently a long drop. As users
became more stressed by the environment, this affected the
nature of their head movements. The data was collected
by the HiBall Tracking SystemTM, whose components are
shown in Figure 1. The system is composed of a set of
small, high speed cameras which are aligned in a self
contained housing and are affixed to the user’s head [14].
A set of LEDs are placed into the environment and their
positions are surveyed. The LEDs are flashed at high speed
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Fig. 2. The training set recorded from the tracker. The tracker returns an
average of 160 quaternion measurements per second.

in a specific known sequence and, providing the camera can
see enough LEDs, the position and orientation of the tracker
can be calculated directly through triangulation.

A typical data set collected from this tracker is shown in
Fig. 2. This figure shows the nature of head motion: long
periods of time in which no activity occurred, followed by
rapid and sudden bursts of activity.

B. Filter Implementations

The problem is to estimate the orientation of a user’s
head in a virtual or augmented reality environment. Because
this motion is unconstrained and is in 3D, orientation is
represented using quaternions [15]. Because the system
needs to predict head orientation several time steps into
the future, the angular velocity of the user’s head is to be
estimated as well. Therefore, the state space consists of

x (k + 1) =
[

qx qy qz qw ωx ωy ωz

]T
(10)

where (qx, qy, qz, qw) is the quaternion and (ωx, ωy, ωz) are
the body-fixed angular results.

Assuming the angular velocity is constant and process
noise is injected into the angular acceleration, the nominal
continuous time process model is

ẋ(k+1) = F (k + 1)x (k + 1)+G (k + 1)v (k + 1) (11)

where

F (k + 1) =
1
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Implementation Independent terms Metric
1 No Determinant
2 Yes Determinant
3 No Trace
4 Yes Trace

TABLE I
THE CANDIDATE IMPLEMENTATIONS OF SCA WHICH WERE STUDIED.

G (k + 1) =

2
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4

0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1
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7

7

7

5

. (13)

v (k + 1) = (vx, vy, vz)
T are the angular acceleration noise

terms. These equations were integrated using a fourth order
Runge-Kutta numerical scheme. Although it is likely that
the noise terms will be different about each axis, for this
study we assumed that all noise terms were the same and
so

Pvv (k + 1) = φI3

where φ is a positive scalar and I3 is the 3 × 3 identity
matrix.

The HiBall returns a direct measurement of the orienta-
tion quaternion at an update rate of about 160Hz. Therefore,
the observation model is linear and is of the form

z (k + 1) =









qx

qy

qz

qw









.

¿From product specifications and studying the logged
data from the still behavior of the tracker, the observation
covariance was estimated to be

R (tc) = φRI4

where φR = 9.5 × 10−6.
After the update, the quaternion part of the estimate was

renormalised by scaling it by the reciprocal of its norm.

C. The Algorithms Studied

Four different implementations of the SCA algorithm
were implemented. These are listed in Table I.

The first parameter which was varied was the measure of
P (k + 1 | k) which was minimized. Two measures were
studied — the trace and the determinant. The reason why
this parameter was varied was that the computational cost
for each varies significantly. The value of ω which mini-
mizes the trace is

ω =

√
A√

A +
√

B
,

where

A = trace
[

ΦF (k + 1)PC (k | k)ΦT
F (k + 1)

]

and
B = trace [QC (k)] .

However, no closed form solution exists to calculate the
value of ω which minimizes the determinant, and numerical
schemes must be used instead. Because the SCA equations
are convex, numerical schemes such as Newton-Raphson
can be used. For the studies presented here we use the
fminbnd function in MatlabTM.

The second parameter which was varied was whether
the independent terms were maintained or not. The SCA
algorithm propagates two covariance matrices, and this sig-
nificantly increases the computational costs. If it is assumed
that the independent terms are 0, only a single covariance
matrix needs to be propagated. However, the disadvantage
of this approach is that observation noise errors are assumed
to be correlated and substantial performance costs might be
incurred.

D. Filter Restarting

To provide gating against bad measurements which oc-
casionally arise from the tracker, a normalized innovation
test was used. The normalized innovation is defined to be

q(k) = ν
T (k + 1)S−1 (k + 1)ν(k + 1). (14)

If the innovation is a white, zero-mean Gaussian sequence,
the probability distribution of q(k) is a χ2 distribution
whose number of degrees of freedom is equal to the
dimensions of ν(k + 1) [10]. Even if the distribution of
q(k) is not χ2 distributed, the value of the mean provides an
important guide to the performance of the filter. If the value
is substantially greater than the mean, it implies that the
filter is being over confident: the estimate on the innovation
covariance is smaller than the actual covariance. Conversely,
if it is much smaller than the mean then the filter is being
conservative.

A threshold of 40 was used. If q(k) at timestep k was
greater than this value, the measurement was skipped and
the estimate was set to be the prediction. If the filter
did not gate for 10 successive measurements, the filter
was reinitialized. The pose was taken from the current
measurement, the angular velocity components were set to
0 and the covariance matrix was set to a diagonal matrix
whose entries are (1, 1, 1, 1, 100, 100, 100).

E. Filter Tuning

Because the data was empirically collected, there is no
truth data which can be used to tune the filter. Therefore,
the filters were tuned against a representative data set and a
normalized innovation test was used to validate that the filter
is correct [10]. Given the filter restarting scheme described
in Subsection III-D, φC and φI were adjusted until the
mean value of the normalized innovation, calculated over
25s–35s of the training set shown in Fig. 2, was less than
4.02. Table II lists the tuned parameters for the KF and the
four SCA implementations. This table shows that although



Algorithm φC φI

KF 0.0 0.7
SCA1 0.03 0
SCA2 0.002 0.6
SCA3 0.03 0
SCA4 0.002 0.6

TABLE II
THE TUNED PROCESS NOISE PARAMETERS FOR THE FIVE FILTERS FOR

RUN 1. VERY SIMILAR RESULTS (WITHIN 2%) WERE OBSERVED WITH

THE OTHER FOUR RUNS.

there are substantial differences in the noise values needed
for the KF, the SCA with independent terms and the SCA
without independent terms, the choice of the metric (trace
or determinant) did not have a significant difference.

IV. RESULTS

All four filters were tested against 5 datasets drawn at
random from the complete dataset. Figs. 3 and 4 shows the
performance of the KF in one typical run2. Fig. 3 shows
the normalized innovation of the gated measurements, while
Fig. 4 shows time histories of the state estimates and the
time histories of the standard deviations (square root of
diagonals on covariance histories). To provide the orien-
tation estimate with some physical meaning, the orientation
estimates were converted from quaternions to Euler angles.
The graphs only show the yaw and estimates for orientation
and ωx for angular velocity. The results for the other states
are similar. It should be noted that between approximately
65s and 95s, the sensor did not see a sufficient number
of LEDs to generate a position solution. Therefore, during
this time interval no data was available which causes the
“jump” in the curves. This type of difficulty is not atypical
for sensors which rely on line-of-sight and thus should
be included in any study of the performance of filtering
algorithms. After about 225s the sensor was held more or
less stationary.

The normalized innovation illustrates the nature of head
movement: the first 225s indicate there is a significant
amount of motion. This is followed by 125s during which
the user’s head is held more or less stationary. These results
are confirmed in Fig. 4 which shows rapid changes in the
yaw angle and ωx. However, the orientation and angular
velocity estimates remain fairly constant. (The occasional
“spiking” occurs due to the occasional drop out of mea-
surements.)

Table III gives the average standard deviation of the
estimate for each filter over run 1. As can be seen, the
orientation estimates for each filter are extremely close.
This is partially due to the fact that the HiBall measures
orientation directly and so this estimate will dominate the
covariance term. However, it can be seen that the KF has the

2On the scale of the graphs, the results from the SCA filters are
indistinguishable from those of the KF. For clarity and space reasons we
only show the results for the KF.
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Fig. 4. Covariance histories and state estimates for run 1 using the KF.

KF SCA1 SCA2 SCA3 SCA4

θ 0.22067 0.22593 0.21729 0.22683 0.21728
φ 0.16740 0.18734 0.16804 0.18987 0.17230
ψ 0.22062 0.22587 0.21724 0.22678 0.21723
ωx 9.9589 8.6395 9.5411 8.5721 9.5404
ωy 9.9589 8.6395 9.5411 8.5721 9.5404
ωz 9.9589 8.6395 9.5411 8.5721 9.5404

TABLE III
AVERAGE STANDARD DEVIATION OF ESTIMATES.



KF SCA1 SCA2 SCA3 SCA4

Run 1 29 20 30 24 30
Run 2 34 33 37 34 37
Run 3 14 13 15 13 15
Run 4 16 15 16 16 16
Run 5 7 7 8 7 8

TABLE IV
FILTER RESTART COUNTS.

smallest orientation estimate of all the filters and so has a
slightly more accurate overall estimate of orientation. Much
greater variation is seen in the angular velocity estimates.
The angular velocity standard deviations are the same for
all axes. The values for all SCA filters are smaller than
those for the KF. Because the filter is acting consistently,
this suggests that the SCA filters are compensating for
some unmodelled correlations. The results also suggest that
the forms of SCA which do not maintain the independent
terms (SCA1 and SCA3) perform better than those which
do (SCA2 and SCA4). One possible explanation is that
the observation noise sequence is not truly independent
for the HiBall. There are several reasons. First, the HiBall
tracker internally maintains its own filtering and estimation
algorithms. These access data at a much higher rate (1-
2kHz) than the data which is output from the tracker and
could be introducing time correlated terms. Furthermore,
errors in surveying LED positions can lead to consistent
time correlated error terms. The results also show that
SCA2, which is computationally the cheapest implementa-
tion of SCA (do not propagate independent terms; minimize
trace using the closed form equation) also has the best
performance.

The robustness of the SCA implementations was explored
by examining their restart counts. Table IV lists the restart
counts for all the different filters across all the runs. Apart
from SCA4, all the other SCA algorithms restart less
frequently than the KF. Furthermore, SCA1 consistently
restarts the least frequently.

These results suggest that SCA1 is the most successful
form of the SCA algorithm for the experimental scenario.
It restarts less frequently than the KF and has an angular
velocity estimate whose variance is, on average, smaller
than that of the KF. However, these improvements in per-
formance are tempered by a slight degradation in orientation
accuracy.

V. CONCLUSION

This paper studied the problem of developing filters for
human body tracking and, in particular, the problem of
estimating the orientation of a head. We examined the
performance of four implementations of a robust prediction
algorithm (Split Covariance Addition) compared with a
Kalman Filter. The results suggest that one implementation
of SCA can provide a more robust filter which estimates
angular velocity more accurately than a KF. However,

this improvement comes at the cost of a slightly worse
orientation estimate.

Although these results suggest that the advantages of
SCA are marginal, we believe that they are sufficiently en-
couraging to warrant further study. We shall be investigating
how SCA affects the performance of a bank of filters.
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