
Translating English to Reward Functions
James MacGlashan∗, Monica Babeş-Vroman+, Marie desJardins#, Michael Littman∗

Smaranda Muresan§ , Shawn Squire#

∗ Computer Science Department, Brown University
+ Computer Science Department, Rutgers University

Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County
§ Department of Computer Science, Columbia University

Abstract

For intelligent agents and robots to be useful to the general
public, people will need to able to communicate the tasks
they want the agents to complete without having any tech-
nical knowledge or programming ability. Communicating
tasks to agents via natural language is an especially appeal-
ing way to accomplish this goal. Similarly, providing agents
with demonstrations of what they should do given a natural
language command is an appealing low-effort way to train
agents. In this work, we present a novel generative task
model, in which tasks are defined by MDP reward functions.
This generative task model can be combined with different
language models to produce a complete system that can learn
the meaning of individual words from demonstrations. Be-
cause these meanings are grounded in reward functions, goals
can be executed that require complex multiple-step behavior.
We present two language models that can be used with our
task model and empirically validate them on a dataset with
natural language commands gathered from a user study.

1 Introduction
For robots and other intelligent agents to be useful to the
general public, they need to be able to autonomously carry
out complex tasks. However, it is equally important for hu-
mans to be able to communicate a desired complex task to an
agent, ideally using natural language instructions instead of
a formal machine-oriented task representation. We describe
an approach for an agent to map natural language commands
into task descriptions and execute them. Specifically, we
learn mappings from training data that consist of pairs of
natural language commands and demonstrations of the com-
mand being executed. Learning command interpretations
from demonstrations is useful because it requires little or
no knowledge of the internal task representations, thereby
allowing training datasets to be created by users with a lim-
ited technical background.

This work provides two main contributions: (1) a genera-
tive model of tasks and behavior that can be used to weakly
supervise a semantic language model and (2) an investiga-
tion of multiple language models for use with the task model
and that do not require any background grammar knowl-
edge. The task model represents task descriptions as abstract
Markov decision process reward functions that are defined
using propositional features of the world. Defining tasks as

abstract reward functions is useful because reward functions
can induce complex multi-step behavior without having to
specify the steps of that behavior. As a result, the natu-
ral language commands can be quite general. For instance,
“bring me a cup of coffee” would give rise to a reward func-
tion that motivates the agent to choose steps for getting the
coffee and bringing it to the user, without the user specify-
ing any of those details in the command. Since tasks are
represented with reward functions, the demonstrations can
provide weak supervision to the language model by using
inverse reinforcement learning (Abbeel and Ng 2004) to in-
fer the probability that each possible reward function was
the intended one.

We investigate two language models: a Bag-of-
Words model and the IBM Model 2 machine translation
model (Brown et al. 1990; 1993). Neither of these mod-
els require or use any background grammatical knowledge.
While we suspect that language models that incorporate
grammar models might yield higher performance, the addi-
tional requirement of a grammar model would likely make
it more difficult to adapt this approach to new applications.

We empirically validate our approach on a simulated
“Cleanup World” domain (based on the game of Sokoban);
natural language commands for the domain were gathered
from Amazon Mechanical Turk users. A typical task is to
take a star block into an orange painted room; one data in-
stance for this task is the command “go into tan room and
push star into orange room” with a sequence of states and
actions demonstrating the completion of the task. Note that
this demonstration consists of many primitive movement ac-
tions, but the provided command does not describe each ac-
tion that the agent needs to take, only the high-level goal.
Using this dataset, we show that the Bag-of-Words model
is effective but for only certain kinds of simple commands,
and that IBM Model 2 is capable of learning the meaning of
commands that specify multiple constraints.

2 Background
To represent tasks and perform planning, we make use of the
Object-oriented Markov Decision Process (OO-MDP) for-
malism (Diuk, Cohen, and Littman 2008). OO-MDPs ex-
tend the conventional MDP formalism by providing a rich
representation of states. MDPs are defined as a four-tuple:
(S, A, T , R), where S is a set of states of the world; A is a

set of actions that the agent can take; T describes the tran-
sition dynamics, which specify the probability of the agent
transitioning to each state given the current state and the ac-
tion taken; andR is a reward function specifying the reward
received by the agent for each transition. MDPs may also
have terminal states that cause action to cease once they are
reached. Terminal states may indicate a task execution fail-
ure or may correspond to goal conditions.

OO-MDPs add to the MDP formalism a set of attributes
X ; a set of object classes C, each class of which (c ∈ C)
has an associated subset of attributes (Xc ⊆ X); and a set
of propositional functions P . States in an OO-MDP are de-
fined as a set of object instances, each of which belongs to
an object class and has a value assignment to each of the
attributes associated with the object class. The value assign-
ment of each object instance defines the object’s state. An
MDP’s state (s ∈ S) is fully defined by the collective states
(attribute values) of the object instances. The propositional
functions (P) operate on the object instance states to provide
additional high-level information about the MDP’s state. For
instance, consider a propositional function called touching
that takes two object instances of class BLOCK as parameters
(touching(BLOCK, BLOCK)). When touching is applied to
block object instances b1 and b2, it will evaluate to true if the
value of the position attributes of b1 and b2 are adjacent and
false otherwise. Propositional functions can be evaluated in
this way on any combination of object instances that satisfy
the class type of the function’s parameters.

In the original OO-MDP work, the high-level information
provided by propositional functions was used to model and
learn the transition dynamics of the MDP. In this work, we
use propositional functions to define factored task descrip-
tions that can map to and from natural language commands.

3 The Task Model
We assume that any task that a person may request the agent
to perform can be represented as a reward function and cor-
responding terminal states (if it is a terminating task) in an
OO-MDP. For brevity, we will refer to a reward function
and set of terminal states as a task. Everything about the
OO-MDP, except the task, is assumed to be known by the
agent; the task, however, must be inferred from the natural
language command given to the agent. Once the agent has
inferred the task, it can plan and carry out the task using any
“off-the-shelf” MDP planning algorithm. Our learning pro-
cess uses a generative model in which action-level behav-
ior and commands are generated from tasks and the current
state. The generative model (shown in Figure 1) consists of
an input current state (S), a set of lifted tasks (L), a set of
grounded tasks (T), a set of object binding constraints (C),
a set of behavior trajectories (B), and a language model that
produces natural language commands and is dependent on
the lifted task and binding constraints.

A lifted task is a reward function that is defined in terms of
logical expressions of OO-MDP propositional functions, but
with the parameters of the propositional functions left as free
variables. Leaving the parameters as free variables makes
lifted tasks define classes of tasks that could be executed
by the agent. For example, consider an OO-MDP that can

S L

Language Model

T B

C

Figure 1: The generative task model, with arrows indicating
conditional probabilities.

contain various block objects in different rooms. A reward
function for a task to take a block to a room could be:

R(s, a, s′) =
{

1 if blockInRooms′
(?b, ?r)

0 otherwise
, (1)

where s′ is the state to which the agent transitions when it
takes action a in state s, blockInRooms′

indicates an eval-
uation of the propositional function blockInRoom in state
s′, and ?b and ?r are two different free variables. Note that
because the parameters of a propositional function are typed
to specific object classes, the free variables are also typed.
In this case, any object assigned to ?b must be a BLOCK ob-
ject and any value assigned to ?r must be a ROOM object. For
this goal-directed task, the terminal states are the states that
yield a reward of 1.

The set of possible lifted tasks is specified by the de-
signer. The prior probability distribution over lifted tasks,
given a current state, is a uniform distribution over the sub-
set of lifted tasks that are permissible in the input state. A
lifted task is permissible in a state if the state has at least
one unique object instance belonging to the class for each of
the free variables. In the previous example, that means there
must be at least one BLOCK object and one ROOM object.

A grounded task depends on the input state and lifted task
and is defined by an object assignment to the free variables
in the lifted task. The prior probability distribution over the
set of grounded tasks is uniform over the set of possible ob-
ject assignments for the lifted task, given the input state. If
the lifted task is a goal-directed task, then the prior probabil-
ity distribution is uniform over the set of object assignments
that do not cause the goal to be satisfied in the input state.

A behavior trajectory is a sequence of state–action pairs
that the agent can experience from an input state and is con-
ditionally dependent on the grounded task and input state.
The conditional probability of the behavior, given the task,
is formulated by treating each action selection in each state
of the trajectory as an independent event and by defining the
action-selection probability distribution as a Boltzmann dis-
tribution over the optimal Q-values for the task (similar to
the likelihood of a trajectory in maximum likelihood inverse
reinforcement learning (Babeş-Vroman et al. 2011)). For-
mally, the probability of any behavior trajectory b (of length
N) given task t is defined as

Pr(b|t) =
N∏
i

πt(si, ai), (2)

where (si, ai) is the ith state–action pair in behavior trajec-
tory b, and πt(si, ai) is the Boltzmann policy distribution
(the probability of taking action ai in state si). Given the
optimal Q-values for an MDP, the Boltzmann policy distri-
bution is defined as

π(s, a) =
e
Q(s,a)
τ∑

a′ e
Q(s,a′)

τ

, (3)

where τ is a temperature parameter. Higher temperatures
make the model less sensitive to suboptimal actions taken in
the demonstration, but less discriminative between different
tasks. Lower temperature values are more discriminative,
but are also more sensitive to error when the demonstration
contains suboptimal actions.

If the task is a terminating goal-directed task, this con-
ditional probability formalism may inappropriately assign
equal probability to a trajectory under two different tasks
if the optimal policy for one is a subset of the other. For ex-
ample, consider a home in which going to the dining room
requires going through the living room. A demonstration of
a task for going to the living room will be assigned the same
probability under both the living room and dining room task,
because the policy for the states in the demonstration would
be identical. To address this limitation, we augment the
MDP action set to include a special terminating action that
must be executed for the agent to end the task and receive
the goal reward. The demonstration is then augmented to in-
clude the agent executing the terminate action at the end. In
our previous example, a demonstration of going to the liv-
ing room would not produce equal probability for the dining
room task because it would be suboptimal for the agent to
terminate the task before it accomplishes its goal.

If all an agent could directly infer from a command was
the lifted task, it would be impossible for the agent to de-
termine which of the possible grounded tasks for an input
state was the intended task. The inclusion of object bind-
ing constraints that natural language can reference enables
the agent to resolve this ambiguity. In the task model, ob-
ject binding constraints are dependent on the grounded task,
lifted task, and input state, and consist of logical expressions
for a given object assignment that are true in the input state.
For instance, imagine a state with a box block (b0), a sphere
block (b1), and three rooms (r0, r1, r2) that were painted
different colors (red, green, and blue). If the intended task
was to take b1 into room r0, a natural way to describe the
task without knowing the agent’s internal identifiers for each
block and room would be to say “take the spherical block to
the red room.” In such a command, the qualifiers “spheri-
cal” and “red” specify binding constraints that disambiguate
which object assignment to use. These binding constraints
are specified as qualifications to the free variables in the
lifted task: β = isSphere(?b) ∧ isRed(?r). Constraints
are specified using the free variables of the lifted task to keep
them invariant of the identifiers in the input state.

The conditional probability distribution of object con-
straints given a grounded task, lifted task, and input state,
is uniform across the set of permissible object constraints.
An object constraint is permissible if it is a logical expres-
sion that is true in the initial state for the object assignment

specified in the grounded task and if the logical expression is
limited to the variables introduced in the lifted task, or vari-
ables that can be related to variables in the lifted task. For in-
stance, the previously specified binding constraint is permis-
sible because the grounded task assigns lifted task variables
?b to b1 and ?r to r0, and the expression isSphere(b1) ∧
isRed(r0) is true in the initial state. In contrast, the con-
straint isSphere(?b) ∧ isBlue(?r) is not permissible be-
cause it is not true for the given object assignment, nor is
the constraint isSphere(?b) ∧ isBlue(?r2), because ?r2
is not a free variable in the lifted task, and is not related to
any of the free variables in the lifted task. However, if b1 is
in room r1, which is green, in the input state, then the con-
straint isRed(?r)∧blockInRoom(?b, ?r2)∧isGreen(?r2)
would be permissible, because the variable ?r2 is related to
variable ?b from the lifted task, and the statement is true in
the input state when r1 is assigned to ?r2. Such relational
extensions allow the object constraints to model natural lan-
guage commands like “take the block in the green room to
the red room.”

The task model presented above can be combined with
any language model as long as its probability distributions
can be made dependent in some way on the lifted task and
object binding constraints. The notation Pr(e|l, c) is used
to represent the probability of a natural language command
e given lifted task l and object binding constraints c; this
probability is assumed to be defined by the specific language
model used. Given the language model, we have a complete
generative model from tasks to behavior and language, and
can perform learning from a dataset of demonstrations and
natural language command pairs using any parameter in-
ference algorithm, such as Expectation Maximization (EM)
(Dempster, Laird, and Rubin 1977). The agent can then infer
the most likely task given a natural language command, plan
behavior to complete it, and execute the plan. Specifically,
the probability of task t given natural language command e
and input state s is:

Pr(t|e, s) ∝
∑

l

Pr(l|s) Pr(t|s, l)
∑

c

Pr(c|s, l, t) Pr(e|l, c).

(4)

4 Language Models
We investigated two different grammar-free language mod-
els for use with our task model: a Bag-of-Words model and
IBM Model 2, a word-based machine-translation model. In
this section, we describe each model and how it integrates
with our task model.

Bag-of-Words
The Bag-of-Words (BoW) language model is similar to
the topic modeling approach used by McCallum (1999), in
which words are distributed according to a mixture of top-
ics and a document is generated by selecting a topic with
some mixture weight, generating a word from the topic’s
word distribution, and then repeating the process. In our
BoW model (Figure 2), we replace the role of topics with
semantic components of the lifted task and object binding

L

C

M V W

N

Figure 2: The Bag-of-Words model.

constraints, generating words as a mixture model of those
semantic components.

Random variable M is assigned a frequency vector of the
semantic components that appear in the lifted task and object
binding constraints, consisting of the names of propositional
functions and the object class names of the parameters of
the propositional functions; a special constant referred to by
the symbol ‘#’ is also always assumed to appear once. For
instance, for the lifted task in Equation 1 and object binding
constraint isRed(?r), the corresponding value assigned to
variable M would be:

〈# = 1, blockInRoom = 1, isRed = 1, BLOCK = 1, ROOM = 2〉.

Normalizing the frequency of each semantic component de-
fines the conditional probability that a semantic component
will be selected (Pr(v|m)); any semantic component not in
the semantic component frequency vectorm is assigned zero
probability. For a command of length n, a semantic compo-
nent will be selected n times, each time generating a natural
language word according to a multinomial word distribution
for each semantic component. Therefore, the conditional
probability of any natural language command e is:

Pr(e|m) =
∏
w∈e

[∑
v

Pr(v|m)θvw

]K(w,e)

, (5)

where θvw is a parameter specifying the conditional prob-
ability that the natural language word w is generated given
semantic component v, and K(w, e) is the number of times
that word w appears in command e.

For this model, the parameters θ can be learned using EM.
At each iteration, the parameters are updated using the for-
mula θvw = N̂(v,w)

N̂(v)
, where N̂(x) is the expected number of

times that x appears in some dataset. For a dataset consist-
ing of pairs of demonstration behavior and natural language
commands (D = {(b1, e1)...(b|D|, e|D|)}), these values are
computed as follows:

N̂(v, w) =
X
i

K(w, ei)
P
m Pr(v|m)θvw Pr(ei − w|m)U(m, bi|si)P

m Pr(ei|m)U(m, bi|si)
(6)

N̂(v) =
X
i

P
uK(u, ei)

P
m Pr(v|m)θvu Pr(ei − u|m)U(m, bi|si)P
i

P
m Pr(ei|m)U(m, bi|si)

,

(7)

where Pr(ei − w|m) is the probability of the command ei

given the semantic component frequency vector m if one
occurrence of the word w were removed from the command
ei, and

U(m, b|s) =
X
l,t,c

Pr(l|s) Pr(t|l, s) Pr(b|s, t) Pr(c|s, l, t) Pr(m|l, c). (8)

IBM Model 2
IBM Model 2 (Brown et al. 1990; 1993) is a word-based
statistical machine-translation model. In statistical machine
translation, the task is to translate a sentence from a source
language f (e.g., French) to a target language e (e.g., En-
glish). Our task corresponds to the problem of translating
from an English command e into its corresponding machine-
language command m.

We adapt IBM Model 2 to our commands model by using
the lifted task and object binding constraints to deterministi-
cally generate a machine-language commandm, then gener-
ating the natural language command e in the standard IBM
Model 2 fashion. Each semantic component of the lifted
task is added to the machine-language command in the or-
der that they appear, and then the same is done for the bind-
ing constraints. For instance, the lifted task in Equation 1
and object binding constraint isRed(?r) would generate the
machine-language command “# blockInRoom block room
isRed room.” The probability of a natural language com-
mand given the machine-language command is defined as:

Pr(e|m) = η(ne|nm)
X
a

neY
j

q(aj |j, nm, ne)r(ej |maj), (9)

where η(ne|nm) is the parameter specifying the probabil-
ity that a machine-language command of length nmwould
generate a natural language command of length ne; a is a
possible alignment from natural language words to machine-
language words; q(aj |j, nm, ne) is the alignment parame-
ter specifying the probability that the natural language word
in position j would be aligned with the machine-language
word in position aj for a machine-language command of
length nm and natural language command of length ne; and
r(ej |maj) is the translation parameter specifying the proba-
bility that natural language word ej would be generated from
machine-language wordmaj . The number of alignments (a)
is typically very large, so in practice we estimate the value
using sampling.

The probability of any possible machine-language com-
mand can be computed from the demonstrations in the data:

Pr(m|s, b) =

P
l,t,c Pr(l|s) Pr(t|s, l) Pr(b|s, t) Pr(c|s, l, t) Pr(m|l, c)P

l,t Pr(l|s) Pr(t|s, l) Pr(b|s, t)
. (10)

We use a modified EM algorithm in which each natural lan-
guage command in the dataset is paired with all machine-
language commands with non-zero probability given the be-
havior trajectory, and the counts computed by the EM algo-
rithm are weighted by that probability. The resulting weakly
supervised learning algorithm is shown as pseudocode in the
the supplementary document. The method re-estimates the
q and r parameters iteratively. In each iteration, it loops
through each non-zero probability machine-language com-
mand for each data instance in the dataset. For each of those
machine-language commands, it matches each natural lan-
guage word with each machine-language word (including
the constant word), updating the relevant expected counts
for the q and r parameters by a value δ, where δ repre-
sents the machine-language-command-weighted probability
that a given natural language word in a given position of
the natural language command would have been generated
by a given machine-language word in a given position of a
machine-language command. Formally:

δ(i, j, u,m) = Pr(m|si, bi)
q(u|j, nm, ni)r(ej |mu)P
v q(v|j, nm, ni)r(ej |mv)

. (11)

After the expected counts have been estimated for the whole
dataset, the q and r parameters are updated according to
them and the process repeats. Note that this algorithm does
not update the η parameter, which specifies the probability
that a natural language command of certain length is gen-
erated by a machine-language command of a certain length.
Because this parameter does not depend on the q or r param-
eters it is set once according to:

η(ne|nm) =
∑

i I(ei, ne)
∑

m I(m,nm) Pr(m|si, bi)∑
i

∑
m I(m,nm) Pr(m|si, bi)

,

(12)
where I(x, y) is an indicator function that returns one when
the length of command x is y and zero otherwise.

5 Experimental Results
To empirically validate our approach, we collected natu-
ral language commands from users on Amazon Mechani-
cal Turk (AMT) for a domain we created called Cleanup
World. Cleanup World (like Sokoban) is a 2D grid world
of various rooms connected by open doors. Rooms can
also contain items that can be moved around. The agent
moves using north-south-east-west actions. Moving into
a location containing an item causes the item to move in
the direction the agent is moving, as long as a wall or
other item is not in its path. Cleanup World is repre-
sented as an OO-MDP consisting of four object classes:
AGENT, ITEM, ROOM, and DOORWAY. The agent is defined
by x and y position attributes. Items are defined by po-
sition attributes, a color attribute (which can be orange,
teal, tan, yellow, or magenta), and a type attribute (star,
moon, box, circle). The room and door objects are de-
fined by attributes describing their rectangular bounding
box (top, left, bottom, right), and the room object also
has a color attribute. The propositional functions defined
for the OO-MDP include agentInRoom(AGENT, ROOM), and
itemInRoom(ITEM, ROOM), as well as propositional func-
tions to indicate the color and type of rooms and items (e.g.,
roomIsOrange(ROOM), itemIsStar(ITEM)).

We considered two different lifted tasks: the agent going
to a specific room and the agent moving a block to a specific
room. For these tasks, the behavior parameter τ was set to
0.005. To collect natural language instructions for different
grounded versions of these tasks, we presented Turkers on
AMT animated images showing either the agent moving to
a room of a specific color or moving a star block to a room
of a specific color. An example image from the animation is
shown in Figure 3. We chose to use ambiguous colors for the
rooms in our visual representation to elicit different verbal-
izations for the different colors. To prevent contamination
of the commands we received, we never provided users with
any example commands.

After removing labels that did not follow the instructions
or which did not describe the task in any capacity, we ob-
tained a dataset of 240 instances. The goal of our work is
to be able to give autonomous agents high-level commands
that leave the details of how to complete the task as a prob-
lem for the agent to solve. However, most of the natural
language commands we received included details of the path

Figure 3: An example task to take a star to a room shown to
users on AMT. The left frame shows the initial state and the
path to the star; the right frame shows the path from there to
the end state. (In the actual study, users were shown a single
animated image without arrows.)

the agent followed, rather than only describing the task goal.
Although this data is interesting because it tests our model’s
performance on language that it wasn’t intended to model,
a dataset that better reflects the problem we were trying to
solve is also useful for comparison. Therefore, we created
a simplified version of this dataset that omits the text that is
extraneous to the task description. The average command
lengths (in words) were 13.57 and 8.87 in the original and
simplified datasets, respectively.

Performance was measured using leave-one-out (LOO)
cross validation; a prediction was considered correct if the
most likely grounded task inferred from a natural language
command was the actual grounded task.

The LOO accuracy for each language model on each vari-
ant of the dataset is shown in Table 1. Both the BoW model
and IBM Model 2 (IBM2) performed well on the simpli-
fied dataset. Although BoW had a slightly higher accuracy,
the differences were not found to be statistically significant
(p > 0.5 in a chi-squared test). The performance of both
models was lower on the original full dataset than on the
simplified dataset, which was expected since the original
dataset had language that our task model was not designed
to reflect. However, IBM2’s performance only dropped
by 7.15% (which was not a statistically significant drop;
p > 0.07), whereas BoW dropped by 30.75% (which was
a statistically significant drop; p < 10−11). The difference
in performance between the models on the original dataset
was highly statistically significant (p < 0.00001). IBM2’s
superior performance to BoW on the original dataset was ex-
pected, because the original dataset often included instruc-
tions with many qualifiers. For instance, users described the
agent’s progress through various rooms and often remarked
on the color of that room. For the BoW model, having mul-
tiple colors specified in the command made it impossible
to disambiguate which color was associated with each se-
mantic component, since the BoW model does not reason
over any structure of the sentence. In contrast, in IBM2, the
word position influences its association with each semantic
word, which enabled IBM2 to pull out the parts of the text
that were relevant to the task description. These results in-
dicate that while BoW is effective for simple commands in
which the words themselves are fully representative of the

Simplified Dataset Original Dataset
BoW 83.75% 53.00%
IBM2 81.25% 74.10%

Table 1: LOO accuracy for the AMT experiments.

task, IBM2 should be preferred for commands in which the
structure of the sentence matters.

To demonstrate that IBM2 successfully learned the mean-
ing of English words, we extracted IBM2’s word parame-
ters after it had finished training. The most likely English
words generated from the semantic word “agentInRoom”
(which was associated with the lifted “go to room” task),
were “walk,” “through,” “move,” “go,” and “from.” “From”
and “through” occurred because in “go to room” tasks, users
often described from which room to leave and often com-
manded the robot to go through a door to the goal room. For
example, one of the commands provided was “walk through
doorway from orange room to beige room.”

Since the color of rooms was typically used to describe
the goal room of both lifted tasks, the words associated with
it are especially relevant. The “roomIsOrange” semantic
word was mostly likely to generate the words “red” and “or-
ange;” “roomIsTan” was most likely to generate the words
“tan” and “beige;” and “roomIsTeal” was most likely to gen-
erate “green” and “blue.”

6 Related Work
Our work relates to the broad class of methods for grounded
language learning that aim to learn word meanings from
a situated context. Instead of using annotated training
data consisting of sentences and their corresponding se-
mantic representations, (Kate and Mooney 2006; Wong
and Mooney 2007; Zettlemoyer and Collins 2005; 2009),
most of these approaches leverage non-linguistic informa-
tion from a situated context as their primary source of super-
vision.

These approaches have been applied to various tasks, the
one closest to ours being interpreting verbal commands in
the context of navigational instructions (Vogel and Juraf-
sky 2010; Chen and Mooney 2011; Grubb et al. 2011),
robot manipulation (Duvallet, Kollar, and Stentz 2013;
Tellex et al. 2014), and puzzle solving and software con-
trol (Branavan, Zettlemoyer, and Barzilay 2010). Rein-
forcement learning has been applied to train a policy to fol-
low natural language instructions for software control and
map navigation (Vogel and Jurafsky 2010). However, our
goal is to move away from low-level instructions that cor-
respond directly to actions in the environment to high-level
task descriptions expressed using complex language. Un-
like previous approaches that learn the meanings of words
from pairs of natural language instructions and demonstra-
tions of corresponding high level actions (Tellex et al. 2014;
Duvallet, Kollar, and Stentz 2013), we learn mappings
of natural language instructions to task descriptions repre-
sented as MDP reward functions. In addition, our gener-
ative model allows an investigation of multiple language

models that can be used with the task model. Besides the
generally used Bag-of-Words model (Branavan et al. 2009;
Vogel and Jurafsky 2010), we showed that a word-based
statistical machine translation model provides better results.
The idea of using statistical machine translation approaches
for semantic parsing was introduced by Wong and Mooney
(2007) (in a supervised learning setting). In future work,
we plan to move beyond word-based SMT models such as
IBM Model 2 to grammar-based SMT models such as Syn-
chronous Context-Free Grammars (Wu 1997).

7 Conclusions and Future Work
We presented a novel generative task model that expresses
tasks as factored MDP reward functions and terminal states,
and to which natural language commands can be mapped.
Mapping natural language commands to MDP tasks is a
powerful approach because it allows people to provide
agents with high-level commands without specifying the de-
tails of how to complete the tasks. This generative task
model is flexible and can be combined with different lan-
guage models. We also presented two grammar–free lan-
guage models that can be combined with our task model: a
Bag-of-Words mixture model and a variant of IBM Model 2
that treats semantic inference as a machine-translation prob-
lem. These models were empirically tested on a dataset in
which commands were provided by users of the Amazon
Mechanical Turk. We found that when commands are sim-
ple and can be fully represented by the words that are present
in the command, both the BoW model and IBM Model 2 are
effective at learning the meaning of words. However, when
the meaning of the commands depends on the structure of
the sentences, IBM Model 2 is more effective than BoW.

In the future, we will extend this approach to operate on
a wider variety of task types. For instance, logical quanti-
fiers such as “for all” and “there exists” can be used with
the OO-MDP propositional functions to define more expres-
sive tasks and can be incorporated into our language models
by treating quantifiers as another semantic component (for
the BoW model) or as a machine-language word (for IBM
Model 2). In complex environments (especially in robotics
applications), planning for a task can be difficult and expen-
sive, so another future direction is to incorporate into our
model the ability for a command to specify subtasks, which
would make the overall planning problem more tractable.
Finally, while we chose to use grammar-free language mod-
els because they require little background knowledge and
can be easily trained from simple datasets of commands and
demonstration, one could also combine a grammar-based
model with our task model. Comparing the performance of
grammar-based language models to our current grammar-
free models will give important insights into when each ap-
proach may be appropriate.

References
Abbeel, P., and Ng, A. Y. 2004. Apprenticeship learning
via inverse reinforcement learning. In Proceedings of the
International Conference on Machine Learning.

Babeş-Vroman, M.; Marivate, V.; Subramanian, K.; and
Littman, M. 2011. Apprenticeship learning about multi-
ple intentions. In Proceedings of the Twenty Eighth Interna-
tional Conference on Machine Learning (ICML 2011).
Branavan, S. R. K.; Chen, H.; Zettlemoyer, L. S.; and Barzi-
lay, R. 2009. Reinforcement learning for mapping instruc-
tions to actions. In Proceedings of the Joint Conference of
the 47th Annual Meeting of the ACL and the 4th Interna-
tional Joint Conference on Natural Language Processing of
the AFNLP: Volume 1 - Volume 1, ACL ’09.
Branavan, S.; Zettlemoyer, L. S.; and Barzilay, R. 2010.
Reading between the lines: Learning to map high-level in-
structions to commands. In Association for Computational
Linguistics (ACL 2010).
Brown, P. F.; Cocke, J.; Pietra, S. A. D.; Pietra, V. J. D.;
Jelinek, F.; Lafferty, J. D.; Mercer, R. L.; and Roossin, P. S.
1990. A statistical approach to machine translation. Comput.
Linguist. 16(2):79–85.
Brown, P. F.; Pietra, V. J. D.; Pietra, S. A. D.; and Mercer,
R. L. 1993. The mathematics of statistical machine trans-
lation: Parameter estimation. Comput. Linguist. 19(2):263–
311.
Chen, D. L., and Mooney, R. J. 2011. Learning to interpret
natural language navigation instructions from observations.
In Proceedings of the 25th AAAI Conference on Artificial
Intelligence (AAAI-2011)., 859–865.
Dempster, A. P.; Laird, N. M.; and Rubin, D. B. 1977. Maxi-
mum likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society 39(1):1–38.
Diuk, C.; Cohen, A.; and Littman, M. 2008. An object-
oriented representation for efficient reinforcement learning.
In Proceedings of the Twenty-Fifth International Conference
on Machine Learning (ICML-08).
Duvallet, F.; Kollar, T.; and Stentz, A. T. 2013. Imitation
learning for natural language direction following through
unknown environments. In IEEE International Conference
on Robotics and Automation (ICRA).
Grubb, A.; Duvallet, F.; Tellex, S.; Kollar, T.; Roy, N.;
Stentz, A.; and Bagnel, J. A. 2011. Imitation learning for
natural language direction following. In Proceedings of the
ICML Workshop on New Developments in Imitation Learn-
ing.
Kate, R. J., and Mooney, R. J. 2006. Using string-kernels for
learning semantic parsers. In Proceedings of the 21st Inter-
national Conference on Computational Linguistics and the
44th annual meeting of the Association for Computational
Linguistics, ACL-44.
McCallum, A. 1999. Multi-label text classification with a
mixture model trained by em. In AAAI’99 Workshop on Text
Learning, 1–7.
Tellex, S.; Thaker, P.; Joseph, J.; and Roy, N. 2014. Learn-
ing perceptually grounded word meanings from unaligned
parallel data. Machine Learning 94(2):205–232.
Vogel, A., and Jurafsky, D. 2010. Learning to follow nav-
igational directions. In Association for Computational Lin-
guistics (ACL 2010).

Wong, Y. W., and Mooney, R. 2007. Learning synchronous
grammars for semantic parsing with lambda calculus. In
Proceedings of the 45th Annual Meeting of the Association
for Computational Linguistics (ACL-2007).
Wu, D. 1997. Stochastic inversion transduction grammars
and bilingual parsing of parallel corpora. Computational
Linguistics 23(3):377–403.
Zettlemoyer, L. S., and Collins, M. 2005. Learning to
map sentences to logical form: Structured classification with
probabilistic categorial grammars. In Proceedings of UAI-
05.
Zettlemoyer, L., and Collins, M. 2009. Learning context-
dependent mappings from sentences to logical form. In Pro-
ceedings of the Association for Computational Linguistics
(ACL’09).

A Weakly Supervised IBM Model 2 Learning

Algorithm 1 Weakly Supervised IBM Model 2 Learning
Input: Dataset D = {(ei, ni, bi, si)} where each instance

tuple is an english command, command length, demon-
stration, and input state, respectively. ei

j is the jth word
of command ei.
for s = 1 to S do . Run EM for S iterations

c(...)← 0 . Set all counts to 0
for i = 1 to |D| do

for m ∈M do . Each machine command
for j = 1 to ni do

for u = 0 to nm do
c(mu, e

(i)
j) += δ(i, j, u,m)

c(mu) += δ(i, j, u,m)
c(u|j, nm, ni) += δ(i, j, u,m)
c(j, nm, ni) += δ(i, j, u,m)

end for
end for

end for
end for
r(ej |mu) := c(mu,ej)

c(mu)

q(u|j, k, n) := c(u|j,nm,ni)
c(j,nm,ni)

end for

B Amazon Mechanical Turk Datasets
In this section we present the AMT datasets that were used,
both the original (Table 2) and the simplified version (Table
3). Note that the actual datasets were paris of english com-
mands and trajectories. Since we cannot easily provide the
trajectories for the commands, we instead list what the over-
all task description was using the OO-MDP propositional
functions, similar what our task model would infer from the
trajectory.

The Original AMT Dataset

cross path from green room to or-
ange room.

agentInRoom(?a, ?r) ∧ roomIsOrange(?r)

enter room with orange carpet. agentInRoom(?a, ?r) ∧ roomIsOrange(?r)
go from room with green floor to
one with orange floor

agentInRoom(?a, ?r) ∧ roomIsOrange(?r)

go from teal room to orange room agentInRoom(?a, ?r) ∧ roomIsOrange(?r)
go from teal room to red room agentInRoom(?a, ?r) ∧ roomIsOrange(?r)
go through door into red room. agentInRoom(?a, ?r) ∧ roomIsOrange(?r)
go through door leading into orange
room and stop.

agentInRoom(?a, ?r) ∧ roomIsOrange(?r)

go through right door. agentInRoom(?a, ?r) ∧ roomIsOrange(?r)
go through second door on left. agentInRoom(?a, ?r) ∧ roomIsOrange(?r)
go to orange block through space on
right side of blue block

agentInRoom(?a, ?r) ∧ roomIsOrange(?r)

move from blue color to red color agentInRoom(?a, ?r) ∧ roomIsOrange(?r)
move from blue to orange, without
going into tan.

agentInRoom(?a, ?r) ∧ roomIsOrange(?r)

go forward and to right into orange
room.

agentInRoom(?a, ?r) ∧ roomIsOrange(?r)

move from green tile to orange tile. agentInRoom(?a, ?r) ∧ roomIsOrange(?r)
move from green to orange agentInRoom(?a, ?r) ∧ roomIsOrange(?r)
move from blue area by going up 4
times to peach area

agentInRoom(?a, ?r) ∧ roomIsOrange(?r)

move from blue room to orange
room.

agentInRoom(?a, ?r) ∧ roomIsOrange(?r)

move from green area to orange
area.

agentInRoom(?a, ?r) ∧ roomIsOrange(?r)

move from green area to orange
area.

agentInRoom(?a, ?r) ∧ roomIsOrange(?r)

move from green-floored room to
orange-floored room.

agentInRoom(?a, ?r) ∧ roomIsOrange(?r)

move in beige area first n go into or-
ange area

agentInRoom(?a, ?r) ∧ roomIsOrange(?r)

proceed from blue room directly to
orange room, and don’t forget to
smile !

agentInRoom(?a, ?r) ∧ roomIsOrange(?r)

start around middle left hand side
of green-floored room. go through
doorway to orange-floored room.
stop just inside orange-floored
room.

agentInRoom(?a, ?r) ∧ roomIsOrange(?r)

go from blue to orange diagonally
upward.

agentInRoom(?a, ?r) ∧ roomIsOrange(?r)

start at green and go to pink agentInRoom(?a, ?r) ∧ roomIsOrange(?r)
start at right of blue rectangle, move
diagonally towards right door, stand
in threshold, n move through door
into peach square and stand outside
door

agentInRoom(?a, ?r) ∧ roomIsOrange(?r)

start from blue retangle and transfer
to orange one.

agentInRoom(?a, ?r) ∧ roomIsOrange(?r)

start in blue room and go through
door to orange room

agentInRoom(?a, ?r) ∧ roomIsOrange(?r)

start in blue section, go up and to
right, and n through door to orange
section.

agentInRoom(?a, ?r) ∧ roomIsOrange(?r)

start in green room and move into
orange space.

agentInRoom(?a, ?r) ∧ roomIsOrange(?r)

start in greenish room. walk into or-
ange room. go just past doorway.
don’t go all way to middle of room.
n stop.

agentInRoom(?a, ?r) ∧ roomIsOrange(?r)

start on blue area n go into orange
area

agentInRoom(?a, ?r) ∧ roomIsOrange(?r)

start on green spot and move to or-
ange spot.

agentInRoom(?a, ?r) ∧ roomIsOrange(?r)

start on turquoise rectangle and n
walk up to orangey rectangle.

agentInRoom(?a, ?r) ∧ roomIsOrange(?r)

go from blue room to orange room. agentInRoom(?a, ?r) ∧ roomIsOrange(?r)
go from bluish green room to or-
ange room.

agentInRoom(?a, ?r) ∧ roomIsOrange(?r)

go from cyan room at bottom, to
top right orange room. do not go
through flesh colored room.

agentInRoom(?a, ?r) ∧ roomIsOrange(?r)

go from green room into orange
room using doorway

agentInRoom(?a, ?r) ∧ roomIsOrange(?r)

go from green room to orange room agentInRoom(?a, ?r) ∧ roomIsOrange(?r)
go from green room to orange room agentInRoom(?a, ?r) ∧ roomIsOrange(?r)
walk from orange colored room
where you start at to left into beige
colored room.

agentInRoom(?a, ?r) ∧ roomIsTan(?r)

walk from orange room to brown
room, in anor words take door on
right to brown room.

agentInRoom(?a, ?r) ∧ roomIsTan(?r)

start in red section and go through
door to tan section.

agentInRoom(?a, ?r) ∧ roomIsTan(?r)

go from orange room to olive room agentInRoom(?a, ?r) ∧ roomIsTan(?r)
take a couple steps into tan room
and stop.

agentInRoom(?a, ?r) ∧ roomIsTan(?r)

go through left door agentInRoom(?a, ?r) ∧ roomIsTan(?r)
please walk to white background
area to left, from orange back-
ground area you are presently stay-
ing at.

agentInRoom(?a, ?r) ∧ roomIsTan(?r)

walk from orange room to left
through entryway to tan room

agentInRoom(?a, ?r) ∧ roomIsTan(?r)

walk from orange room into beige
room

agentInRoom(?a, ?r) ∧ roomIsTan(?r)

move from orange to yellow agentInRoom(?a, ?r) ∧ roomIsTan(?r)
walk from orange square to beige
square by walking a straight line to
left.

agentInRoom(?a, ?r) ∧ roomIsTan(?r)

start at orange and go to beige. agentInRoom(?a, ?r) ∧ roomIsTan(?r)
you would start in bottom left of
orange room. you would n walk
slightly into tan room. you would
not go into green room.

agentInRoom(?a, ?r) ∧ roomIsTan(?r)

walk into tan room agentInRoom(?a, ?r) ∧ roomIsTan(?r)
re is a doorway to left of you and
below you. take doorway to left.
floor should be a pale peach color.

agentInRoom(?a, ?r) ∧ roomIsTan(?r)

walk straight into tan room. agentInRoom(?a, ?r) ∧ roomIsTan(?r)

go in orange room n walk left to
beige room

agentInRoom(?a, ?r) ∧ roomIsTan(?r)

move from orange area into tan
area.

agentInRoom(?a, ?r) ∧ roomIsTan(?r)

walk from orange room to yellow
room

agentInRoom(?a, ?r) ∧ roomIsTan(?r)

start in orange room walk left
through door a few steps into tan
room

agentInRoom(?a, ?r) ∧ roomIsTan(?r)

move from orange to tan agentInRoom(?a, ?r) ∧ roomIsTan(?r)
start in orange-floored room. go
through doorway to beige-floored
room. stop when you are just a little
bit inside.

agentInRoom(?a, ?r) ∧ roomIsTan(?r)

from where you stand, take three
steps towards and into yellow room.

agentInRoom(?a, ?r) ∧ roomIsTan(?r)

walk through door in longer side
of room, possibly to your left, and
stand in tan room.

agentInRoom(?a, ?r) ∧ roomIsTan(?r)

walk through doorway from orange
room to beige room.

agentInRoom(?a, ?r) ∧ roomIsTan(?r)

move from orange room to beige
room.

agentInRoom(?a, ?r) ∧ roomIsTan(?r)

go through door into white room. agentInRoom(?a, ?r) ∧ roomIsTan(?r)
walk from red room to beige room. agentInRoom(?a, ?r) ∧ roomIsTan(?r)
start in orange room. walk into
beige room. n stop.

agentInRoom(?a, ?r) ∧ roomIsTan(?r)

walk from orange area to brown
area.

agentInRoom(?a, ?r) ∧ roomIsTan(?r)

move from orange to tan agentInRoom(?a, ?r) ∧ roomIsTan(?r)
from pink to whlite agentInRoom(?a, ?r) ∧ roomIsTan(?r)
go from orange room to skin
coloured room

agentInRoom(?a, ?r) ∧ roomIsTan(?r)

walk into beige room agentInRoom(?a, ?r) ∧ roomIsTan(?r)
from orange to salmon agentInRoom(?a, ?r) ∧ roomIsTan(?r)
in orange rectangle facing door,
walk straight until you are inside
tan rectangle.

agentInRoom(?a, ?r) ∧ roomIsTan(?r)

walk on orange n beige tile to your
left.

agentInRoom(?a, ?r) ∧ roomIsTan(?r)

start on orange and move to beige agentInRoom(?a, ?r) ∧ roomIsTan(?r)
move straight to white color agentInRoom(?a, ?r) ∧ roomIsTan(?r)
go west from orange to cream agentInRoom(?a, ?r) ∧ roomIsTan(?r)
brown to grey agentInRoom(?a, ?r) ∧ roomIsTeal(?r)
by walking from yellow to green agentInRoom(?a, ?r) ∧ roomIsTeal(?r)
go from flesh colored room down to
cyan room. do not cut through or-
ange room.

agentInRoom(?a, ?r) ∧ roomIsTeal(?r)

go from olive room to green room agentInRoom(?a, ?r) ∧ roomIsTeal(?r)
go from white room to blue room.
door is on bottom.

agentInRoom(?a, ?r) ∧ roomIsTeal(?r)

go through door below on left agentInRoom(?a, ?r) ∧ roomIsTeal(?r)
go through door into blue room and
stop.

agentInRoom(?a, ?r) ∧ roomIsTeal(?r)

go through door on right into blue
room.

agentInRoom(?a, ?r) ∧ roomIsTeal(?r)

go through door on south wall. agentInRoom(?a, ?r) ∧ roomIsTeal(?r)

go through door straight ahead and
enter room with green floor.

agentInRoom(?a, ?r) ∧ roomIsTeal(?r)

go to yellow color first and n green agentInRoom(?a, ?r) ∧ roomIsTeal(?r)
in tan rectangle, face door that
leads into blue rectangle. walk
straight, taking shortest path that
leads through door into blue rectan-
gle.

agentInRoom(?a, ?r) ∧ roomIsTeal(?r)

creme n green agentInRoom(?a, ?r) ∧ roomIsTeal(?r)
move diagonaly from beige block to
deep blue block

agentInRoom(?a, ?r) ∧ roomIsTeal(?r)

move down diagonally from tan
area to green area.

agentInRoom(?a, ?r) ∧ roomIsTeal(?r)

move downwards to next box agentInRoom(?a, ?r) ∧ roomIsTeal(?r)
move from cream tile to green tile. agentInRoom(?a, ?r) ∧ roomIsTeal(?r)
move from tan to blue agentInRoom(?a, ?r) ∧ roomIsTeal(?r)
move from cream-floored room to
green-floored room.

agentInRoom(?a, ?r) ∧ roomIsTeal(?r)

move from white to blue color agentInRoom(?a, ?r) ∧ roomIsTeal(?r)
move from yellow to green agentInRoom(?a, ?r) ∧ roomIsTeal(?r)
move south through first passage-
way in wall below you. once you go
through passage, look down, floor
should be blue.

agentInRoom(?a, ?r) ∧ roomIsTeal(?r)

move to lower rectangle agentInRoom(?a, ?r) ∧ roomIsTeal(?r)
go diagonally towards south-east
from cream to blue

agentInRoom(?a, ?r) ∧ roomIsTeal(?r)

please go from beige area to green
area without passing through or-
ange area

agentInRoom(?a, ?r) ∧ roomIsTeal(?r)

please walk through doorway into
bluegreen room.

agentInRoom(?a, ?r) ∧ roomIsTeal(?r)

start at beige and go to green. agentInRoom(?a, ?r) ∧ roomIsTeal(?r)
start from beige place, n go to green
place.

agentInRoom(?a, ?r) ∧ roomIsTeal(?r)

start from beige retangle and tran-
fser to blue retangle.

agentInRoom(?a, ?r) ∧ roomIsTeal(?r)

start in beige area and move into
green area and stop.

agentInRoom(?a, ?r) ∧ roomIsTeal(?r)

start in beige room. walk into
greenish room. go just past door-
way. don’t go all way to middle of
room. n stop.

agentInRoom(?a, ?r) ∧ roomIsTeal(?r)

start in beige square and n move
downwards through space into blue
square and stop.

agentInRoom(?a, ?r) ∧ roomIsTeal(?r)

start in tan room and n go through
door into blue room.

agentInRoom(?a, ?r) ∧ roomIsTeal(?r)

start in tan section, and n go down
through door to blue section.

agentInRoom(?a, ?r) ∧ roomIsTeal(?r)

go forward and to left into blue
room

agentInRoom(?a, ?r) ∧ roomIsTeal(?r)

go from brown to green agentInRoom(?a, ?r) ∧ roomIsTeal(?r)
go from beige area to green one agentInRoom(?a, ?r) ∧ roomIsTeal(?r)
go from beige carpeted room to teal
carpeted room.

agentInRoom(?a, ?r) ∧ roomIsTeal(?r)

go from beige room directly into
blue room

agentInRoom(?a, ?r) ∧ roomIsTeal(?r)

go from blue room to tan room and
n stop.

agentInRoom(?a, ?r) ∧ roomIsTeal(?r)

enter flesh colored room from cyan
room and push star into orange
room. be sure not to go into orange
room yourself, just star.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

exit room with blue floor through
left door, and enter room with white
/ cream floor. you will see a large
gold star near a door in right hand
wall. push star through that door. it
should enter a room with a red floor.
do not enter room yourself once you
have pushed star into it.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

go through door into tan room and
push star just inside orange room
and stop.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

go through door on left into white
room, round up star and push it into
red room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

go through far left door into white
room. get star and move it through
door into red room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

go through left door and carry ob-
ject into or room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

go through left opening and get star,
push to right through opening, but
stop. do not enter.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

go through left opening into beige
room and left of star, and push it
straight into red room

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

go thru left door into tan room and
push star into orange room

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

go to ’beige’ room, and push star
into ’red’ room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

go up from green room through en-
try to tan room and approach star.
push star right through entry to or-
ange room

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

in blue rectangle, face door that
leads into tan rectangle. walk
straight into tan rectangle and stop
to left of star, on opposite side of
star as orange rectangle. n, push
star into orange rectangle to point
that star is in orange but you are still
in tan.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

facing doors, walk into beige room (
which is door on left side, if you’re
facing doors). when you see star,
push it through or door (orange
room) but do not step into room !

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

move from green tile to cream tile
and push star to orange tile.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

move from blue room to tan room.
move star into orange room without
setting foot into orange room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

move from blue space to tan space
and push star into red space.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

move on from blue color to white
where way is, and n go along with
star to reach orange.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

move star from blue section to grey.
n move it into orage section.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

move up from green area to left side
of star in tan area. push star into
orange area.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

push star from olive room to orange
room

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

push star into orange section in least
moves possible.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

push star to brown color box blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

start around middle of green-
floored room. go towards doorway
to beige-floored room. push star di-
rectly into orange-floored room, but
do not enter.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

from blue room, walk into tan room
up and to left. push star into orange
room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

start from blue retangle and transfer
to beige one. while doing this, drag
star to ornge box ; while you’re still
in beige retangle.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

start in blue room, go into tan room
and push star into orange room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

start in blue section, go up to tan
and push star into orange / red sec-
tion.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

start in greenish room. go into beige
room. pick up star. take it to door-
way to orange room. keep your
body in beige room, but put star just
inside orange room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

start on blue area n go into tan area
till you get star in orange area

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

start on right hand side of blue
square and move up and to left
in a diagonal direction, into beige
square. next, go to right, pushing
star until it passes into red square
and n stop while still in beige one.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

start with blue.... go to left to
beige.... put star in front of you....
move him to orange.... dont cross
over to orange..... just star

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

starting in green room, walk into or-
ange room and push star into beige
room without actually entering it.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

take doorway on your left. when
you enter room re should be a big
star. push star through doorway to
your right. you do not have to com-
pletely enter that room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

walk from blue room to beige room.
push star from beige room into pink
room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

from green-floored room, take star
from cream-floored room to orange
room, but do not enter orange room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

go forward and left into beige room,
take star and put it in orange room
while remaining in beige room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

go from blue room to beige room.
move star into orange room without
going into it yourself.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

go into beige room and push star
into orange room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

go into white room throught door
on left and push star into red room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

go through center opening into
beige enclosure and get behind star
and push it into opening of orange
enclosure

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

bring star to beige room blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

enter green room, pick up star and
go to doorway to tan room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

go from orange room to blue room,
get star and take it into light room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

go from orange room to blue room,
pick up star, and move it into cream
colored room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

go from orange room to green
room, pick up gold star, and walk
it into beige room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

go from orange room, n to green
room, n pick up star, and bring it to
tan room

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

go get that star in blue room and
bring it back to orange room by
beige room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

go get star and bring it to peach col-
ored section.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

go into blue room and pick up star
n carry it into beige room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

go into blue room, pick up star, and
take star just through door to tan
room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

go into green room (hallway ?),
take star re, and go to beige room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

go into green room and bring star
into tan room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

exit door to left, enter room with
teal floor, walk around room to star
and take that star to or room with
cream floor.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

go into green room and get star, n
take star to cream room

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

go into green room and push star
into white room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

go straight down and through open
door. go all way to left of star. push
star up and a little to right through
door. stop when you are just inside
door.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

go straight, enter green room, turn
right, pick up star, and push it into
yellow room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

go to blue room and bring star to
door of tan room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

go to blue room and move star to
orange room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

go to grey room and move star to
orange room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

leave orange room and enter
turquoise one. grab star and stand
in doorway of turquoise and cream
colored rooms while still holding
star.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

leave red-floored room and enter
blue-floored room. approach star
and push it through doorway of tan-
floored room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

leave room you’re in, go to green
room, get star, and go to beige room
with star

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

exit orange colored room and enter
teal room. pick up star and carry it
to doorway of white room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

move from peach block to blue
block, grab star and move it just
through entrance of tan block.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

move from red area to turquoise
area, pick up star, and move it into
tan area.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

move from tangerine space to teal
space, n push star into beige space.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

move into blue room. take star into
tan room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

move into blue room. push star into
white room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

move star up from blue area to tan
area through opening between those
two colors.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

move through rooms clockwise,
push star through door into tan
room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

move to star and n bump it into tan-
colored area.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

pick star inside blue room and bring
it directly to beige room

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

proceed to green room. grab star
and push it just past door to yellow
room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

exit red room into blue room. turn
right. go forward and pick up star.
take star out into yellow room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

from orange, move south into green
room. position yourself to bottom
left of yellow star to grab it, n move
north into doorway of tan room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

get star from green room and bring
it to beige room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

go down to blue-green block, get
star and take star to beige block
above.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

go down towards opening at bottom
of reddish box, go through open-
ing. n go to left towards star, going
around it and pushing it upwards to-
wards opening to tan section. push
star all way through door, and stop
in doorway between teal and tan
sections.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

go from orange room to blue room
where you push star into beige
room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

enter room to west and puch star
into room to south

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

from orange room, walk into tan
room on left. push star into blue
room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

go from orange spot to beige spot
push star in to green spot but do not
enter green spot stay in beige spot

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

go into beige room and push star
into green room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

go into beige room from orange
room. put star in center of beige
room into teal room

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

go move star into bottom box blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

go out exit to your left and push
star straight out of exit to dark blue
room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

go through door, take star, and put
it in blue room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

go through left door and knock star
down through door below

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

go to beige room and push star into
blue room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

go to left n push star to door of blue
room

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

go to top right room, and push star
down to cyan room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

from orange room, walk to tan room
and push star into teal room without
walking into teal room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

in orange rectangle, face door that
leads into tan rectangle. walk
straight through door until you are
above star, in direction opposite
blue rectangle. n, push star down,
towards blue rectangle, until star
goes into blue but you are still
standing in tan.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

leave orange room and go into beige
room. push star into teal room with-
out crossing doorway into room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

move from orange tile to cream tile
and push star to green tile.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

move from orange to tan, push star
into blue without entering blue

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

move from right to left from red
into beige. approach star from right
so you end up just above it. push
star directly down until star reaches
blue.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

move from orange area to yellow
area and push star onto green area

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

move from orange to above star, n
push it down into green.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

move happy in a straight line from
red room on top right, through door,
to beige room on top left, so that
happy is positioned directly above
star. use happy to push star down-
wards just until star crosses through
door into red room on bottom.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

move into white room. get star and
take it into blue room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

move out of orange room through
opening in left and go into tan
room. move behind star and n push
star down through opening into blue
room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

from orange-floored room, take star
from cream-floored room to green
room, but do not enter green room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

move star from beige room to blue
room

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

push star from olive room to green
room

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

push star through door on left, n
door directly below

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

shift to your right box and move star
down to next box

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

start at orange, move to tan - bring
star to green.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

start in orange box, go into peach
box, n push star into blue box.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

start in orange room. go into beige
room. pick up star. take it to door-
way of greenish room. put star just
inside greenish room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

start in orange-floored room. go
through doorway to beige-floored
room. push star directly down
through to green-floored room. do
not enter green-floored room ; stop
just at doorway.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

start in red section. go through
door to right and go into red section.
push star down into blue section.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

starting in orange walk left and
slightly up, into tan just above star
and stop. push star straight down
from tan into green and stop just as
star passes through door.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

go forward into orange room, take
star and put it in blue room while
you remain in beige room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

go from orange to cream towards
star diagonally north - west direc-
tion and push star downwards south
till blue

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

go from orange area into beige area
and push star to blue area.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

go from orange room to cream
room. go up to star. push it into
green room, but do not actually en-
ter green room. stop at doorway.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

go from orange room to skin
coloured room and n push star
to teal room whilst still in skin
coloured room

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

go from orange room to star in
beige room. move star into blue
room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

Table 2: The original AMT Dataset.

Simplified Dataset

cross path to orange room. agentInRoom(?a, ?r) ∧ roomIsOrange(?r)
enter room with orange carpet. agentInRoom(?a, ?r) ∧ roomIsOrange(?r)
go to one with orange floor agentInRoom(?a, ?r) ∧ roomIsOrange(?r)
go to orange room agentInRoom(?a, ?r) ∧ roomIsOrange(?r)
go to red room agentInRoom(?a, ?r) ∧ roomIsOrange(?r)
go through door into red room. agentInRoom(?a, ?r) ∧ roomIsOrange(?r)
go through door leading into orange
room and stop.

agentInRoom(?a, ?r) ∧ roomIsOrange(?r)

go through right door. agentInRoom(?a, ?r) ∧ roomIsOrange(?r)
go through second door on left. agentInRoom(?a, ?r) ∧ roomIsOrange(?r)
go to orange block through space agentInRoom(?a, ?r) ∧ roomIsOrange(?r)
move to red color agentInRoom(?a, ?r) ∧ roomIsOrange(?r)
move to orange, without going into
tan.

agentInRoom(?a, ?r) ∧ roomIsOrange(?r)

go forward and to right into orange
room.

agentInRoom(?a, ?r) ∧ roomIsOrange(?r)

move to orange tile. agentInRoom(?a, ?r) ∧ roomIsOrange(?r)
move to orange agentInRoom(?a, ?r) ∧ roomIsOrange(?r)
move by going up 4 times to peach
area

agentInRoom(?a, ?r) ∧ roomIsOrange(?r)

move to orange room. agentInRoom(?a, ?r) ∧ roomIsOrange(?r)
move to orange area. agentInRoom(?a, ?r) ∧ roomIsOrange(?r)
move to orange area. agentInRoom(?a, ?r) ∧ roomIsOrange(?r)
move to orange-floored room. agentInRoom(?a, ?r) ∧ roomIsOrange(?r)
go into orange area agentInRoom(?a, ?r) ∧ roomIsOrange(?r)
proceed to orange room, and don’t
forget to smile !

agentInRoom(?a, ?r) ∧ roomIsOrange(?r)

go through doorway to orange-
floored room. stop just inside
orange-floored room.

agentInRoom(?a, ?r) ∧ roomIsOrange(?r)

go to orange diagonally upward. agentInRoom(?a, ?r) ∧ roomIsOrange(?r)
go to pink agentInRoom(?a, ?r) ∧ roomIsOrange(?r)
move diagonally towards right
door, stand in threshold, n move
through door into peach square and
stand outside door

agentInRoom(?a, ?r) ∧ roomIsOrange(?r)

transfer to orange one. agentInRoom(?a, ?r) ∧ roomIsOrange(?r)
go through door to orange room agentInRoom(?a, ?r) ∧ roomIsOrange(?r)
go up and to right, and n through
door to orange section.

agentInRoom(?a, ?r) ∧ roomIsOrange(?r)

move into orange space. agentInRoom(?a, ?r) ∧ roomIsOrange(?r)
walk into orange room. go just past
doorway. don’t go all way to middle
of room. n stop.

agentInRoom(?a, ?r) ∧ roomIsOrange(?r)

go into orange area agentInRoom(?a, ?r) ∧ roomIsOrange(?r)
move to orange spot. agentInRoom(?a, ?r) ∧ roomIsOrange(?r)
walk up to orangey rectangle. agentInRoom(?a, ?r) ∧ roomIsOrange(?r)
go to orange room. agentInRoom(?a, ?r) ∧ roomIsOrange(?r)
go to orange room. agentInRoom(?a, ?r) ∧ roomIsOrange(?r)
go to top right orange room. do not
go through flesh colored room.

agentInRoom(?a, ?r) ∧ roomIsOrange(?r)

go into orange room using doorway agentInRoom(?a, ?r) ∧ roomIsOrange(?r)
go to orange room agentInRoom(?a, ?r) ∧ roomIsOrange(?r)
go to orange room agentInRoom(?a, ?r) ∧ roomIsOrange(?r)
walk to left into beige colored
room.

agentInRoom(?a, ?r) ∧ roomIsTan(?r)

walk to brown room, in anor words
take door on right to brown room.

agentInRoom(?a, ?r) ∧ roomIsTan(?r)

go through door to tan section. agentInRoom(?a, ?r) ∧ roomIsTan(?r)
go to olive room agentInRoom(?a, ?r) ∧ roomIsTan(?r)
take a couple steps into tan room
and stop.

agentInRoom(?a, ?r) ∧ roomIsTan(?r)

go through left door agentInRoom(?a, ?r) ∧ roomIsTan(?r)
please walk to white background
area to left.

agentInRoom(?a, ?r) ∧ roomIsTan(?r)

walk to left through entryway to tan
room

agentInRoom(?a, ?r) ∧ roomIsTan(?r)

walk into beige room agentInRoom(?a, ?r) ∧ roomIsTan(?r)
move to yellow agentInRoom(?a, ?r) ∧ roomIsTan(?r)

walk to beige square by walking a
straight line to left.

agentInRoom(?a, ?r) ∧ roomIsTan(?r)

go to beige. agentInRoom(?a, ?r) ∧ roomIsTan(?r)
you would n walk slightly into tan
room.

agentInRoom(?a, ?r) ∧ roomIsTan(?r)

walk into tan room agentInRoom(?a, ?r) ∧ roomIsTan(?r)
re is a doorway to left of you and
below you. take doorway to left.
floor should be a pale peach color.

agentInRoom(?a, ?r) ∧ roomIsTan(?r)

walk straight into tan room. agentInRoom(?a, ?r) ∧ roomIsTan(?r)
walk left to beige room agentInRoom(?a, ?r) ∧ roomIsTan(?r)
move into tan area. agentInRoom(?a, ?r) ∧ roomIsTan(?r)
walk to yellow room agentInRoom(?a, ?r) ∧ roomIsTan(?r)
walk left through door a few steps
into tan room

agentInRoom(?a, ?r) ∧ roomIsTan(?r)

move to tan agentInRoom(?a, ?r) ∧ roomIsTan(?r)
go through doorway to beige-
floored room. stop when you are
just a little bit inside.

agentInRoom(?a, ?r) ∧ roomIsTan(?r)

from where you stand, take three
steps towards and into yellow room.

agentInRoom(?a, ?r) ∧ roomIsTan(?r)

walk through door in longer side
of room, possibly to your left, and
stand in tan room.

agentInRoom(?a, ?r) ∧ roomIsTan(?r)

walk through doorway to beige
room.

agentInRoom(?a, ?r) ∧ roomIsTan(?r)

move to beige room. agentInRoom(?a, ?r) ∧ roomIsTan(?r)
go through door into white room. agentInRoom(?a, ?r) ∧ roomIsTan(?r)
walk to beige room. agentInRoom(?a, ?r) ∧ roomIsTan(?r)
walk into beige room. n stop. agentInRoom(?a, ?r) ∧ roomIsTan(?r)
walk to brown area. agentInRoom(?a, ?r) ∧ roomIsTan(?r)
move to tan agentInRoom(?a, ?r) ∧ roomIsTan(?r)
from to white agentInRoom(?a, ?r) ∧ roomIsTan(?r)
go to skin coloured room agentInRoom(?a, ?r) ∧ roomIsTan(?r)
walk into beige room agentInRoom(?a, ?r) ∧ roomIsTan(?r)
to salmon agentInRoom(?a, ?r) ∧ roomIsTan(?r)
walk straight until you are inside
tan rectangle.

agentInRoom(?a, ?r) ∧ roomIsTan(?r)

walk on orange n beige tile to your
left.

agentInRoom(?a, ?r) ∧ roomIsTan(?r)

move to beige agentInRoom(?a, ?r) ∧ roomIsTan(?r)
move straight to white color agentInRoom(?a, ?r) ∧ roomIsTan(?r)
go west to cream agentInRoom(?a, ?r) ∧ roomIsTan(?r)
to grey agentInRoom(?a, ?r) ∧ roomIsTeal(?r)
by walking to green agentInRoom(?a, ?r) ∧ roomIsTeal(?r)
go down to cyan room. agentInRoom(?a, ?r) ∧ roomIsTeal(?r)
go to green room agentInRoom(?a, ?r) ∧ roomIsTeal(?r)
go to blue room. door is on bottom. agentInRoom(?a, ?r) ∧ roomIsTeal(?r)
go through door below on left agentInRoom(?a, ?r) ∧ roomIsTeal(?r)
go through door into blue room and
stop.

agentInRoom(?a, ?r) ∧ roomIsTeal(?r)

go through door on right into blue
room.

agentInRoom(?a, ?r) ∧ roomIsTeal(?r)

go through door on south wall. agentInRoom(?a, ?r) ∧ roomIsTeal(?r)
go through door straight ahead and
enter room with green floor.

agentInRoom(?a, ?r) ∧ roomIsTeal(?r)

go to green agentInRoom(?a, ?r) ∧ roomIsTeal(?r)
face door that leads into blue rect-
angle. walk straight, taking short-
est path that leads through door into
blue rectangle.

agentInRoom(?a, ?r) ∧ roomIsTeal(?r)

creme n green agentInRoom(?a, ?r) ∧ roomIsTeal(?r)
move diagonaly to deep blue block agentInRoom(?a, ?r) ∧ roomIsTeal(?r)
move down diagonally to green
area.

agentInRoom(?a, ?r) ∧ roomIsTeal(?r)

move downwards to next box agentInRoom(?a, ?r) ∧ roomIsTeal(?r)
move to green tile. agentInRoom(?a, ?r) ∧ roomIsTeal(?r)
move to blue agentInRoom(?a, ?r) ∧ roomIsTeal(?r)
move to green-floored room. agentInRoom(?a, ?r) ∧ roomIsTeal(?r)
move to blue color agentInRoom(?a, ?r) ∧ roomIsTeal(?r)
move to green agentInRoom(?a, ?r) ∧ roomIsTeal(?r)
move south through first passage-
way in wall below you. once you go
through passage, look down, floor
should be blue.

agentInRoom(?a, ?r) ∧ roomIsTeal(?r)

move to lower rectangle agentInRoom(?a, ?r) ∧ roomIsTeal(?r)
go diagonally towards south-east to
blue

agentInRoom(?a, ?r) ∧ roomIsTeal(?r)

please go to green area agentInRoom(?a, ?r) ∧ roomIsTeal(?r)
please walk through doorway into
bluegreen room.

agentInRoom(?a, ?r) ∧ roomIsTeal(?r)

go to green. agentInRoom(?a, ?r) ∧ roomIsTeal(?r)
go to green place. agentInRoom(?a, ?r) ∧ roomIsTeal(?r)
tranfser to blue retangle. agentInRoom(?a, ?r) ∧ roomIsTeal(?r)
move into green area and stop. agentInRoom(?a, ?r) ∧ roomIsTeal(?r)
walk into greenish room. go just
past doorway. don’t go all way to
middle of room. n stop.

agentInRoom(?a, ?r) ∧ roomIsTeal(?r)

move downwards through space
into blue square and stop.

agentInRoom(?a, ?r) ∧ roomIsTeal(?r)

go through door into blue room. agentInRoom(?a, ?r) ∧ roomIsTeal(?r)
go down through door to blue sec-
tion.

agentInRoom(?a, ?r) ∧ roomIsTeal(?r)

go forward and to left into blue
room

agentInRoom(?a, ?r) ∧ roomIsTeal(?r)

go to green agentInRoom(?a, ?r) ∧ roomIsTeal(?r)
go to green one agentInRoom(?a, ?r) ∧ roomIsTeal(?r)
go to teal carpeted room. agentInRoom(?a, ?r) ∧ roomIsTeal(?r)
go directly into blue room agentInRoom(?a, ?r) ∧ roomIsTeal(?r)
go to tan room and n stop. agentInRoom(?a, ?r) ∧ roomIsTeal(?r)
enter flesh colored room and push
star into orange room. be sure not to
go into orange room yourself, just
star.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

exit through left door. you will see
a large gold star near a door in right
hand wall. push star through that
door. it should enter a room with
a red floor. do not enter room your-
self once you have pushed star into
it.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

go through door and push star just
inside orange room and stop.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

go through door on left, round up
star and push it into red room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

go through far left door. get star and
move it through door into red room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

go through left door and carry ob-
ject into or room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

go through left opening and get star,
push to right through opening, but
stop. do not enter.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

go through left opening and left of
star, and push it straight into red
room

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

go thru left door and push star into
orange room

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

push star into red room. blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

approach star. push star right
through entry to orange room

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

walk straight and stop to left of star,
on opposite side of star as orange
rectangle. n, push star into orange
rectangle to point that star is in or-
ange but you are still in tan.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

facing doors, walk into room (
which is door on left side, if you’re
facing doors). when you see star,
push it through or door (orange
room) but do not step into room !

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

push star to orange tile. blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

move star into orange room without
setting foot into orange room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

push star into red space. blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

go along with star to reach orange. blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

move star into orange section. blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

push star into orange area. blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

push star to orange room blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

push star into orange section in least
moves possible.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

push star to brown color box blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

push star directly into orange-
floored room, but do not enter.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

push star into orange room. blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

drag star to orange box ; while
you’re still in beige rectangle.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

push star into orange room. blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

push star into orange / red section. blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

pick up star. take it to doorway to
orange room. keep your body in
beige room, but put star just inside
orange room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

go till you get star in orange area blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

go to right, pushing star until it
passes into red square.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

put star in front of you.... move him
to orange.... dont cross over to or-
ange..... just star

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

push star into beige room without
actually entering it.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

take doorway on your left. when
you enter room re should be a big
star. push star through doorway to
your right. you do not have to com-
pletely enter that room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

push star into pink room. blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

take star to orange room, but do not
enter orange room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

go forward and left, take star and
put it in orange room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

move star into orange room without
going into it yourself.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

push star into orange room. blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

go into throught door on left and
push star into red room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

go through center opening and get
behind star and push it into opening
of orange enclosure

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsOrange(?r)

bring star to beige room blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

pick up star and go to doorway to
tan room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

get star and take it into light room. blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

pick up star, and move it into cream
colored room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

pick up gold star, and walk it into
beige room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

pick up star, and bring it to tan room blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

go get that star and bring it back to
orange room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

go get star and bring it to peach col-
ored section.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

pick up star n carry it into beige
room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

pick up star, and take star just
through door to tan room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

take star re, and go to beige room. blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

bring star into tan room. blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

exit door to left, walk around room
to star and take that star to or room
with cream floor.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

get star, n take star to cream room blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

push star into white room. blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

go straight down and through open
door. go all way to left of star. push
star up and a little to right through
door. stop when you are just inside
door.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

go straight, turn right, pick up star,
and push it into yellow room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

bring star to door of tan room. blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

move star to orange room. blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

move star to orange room. blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

grab star and stand in doorway of
turquoise and cream colored rooms
while still holding star.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

approach star and push it through
doorway of tan-floored room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

leave room you’re in, get star, and
go to beige room with star

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

pick up star and carry it to doorway
of white room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

grab star and move it just through
entrance of tan block.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

pick up star, and move it into tan
area.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

push star into beige space. blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

take star into tan room. blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

push star into white room. blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

move star up to tan area through
opening between those two colors.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

move through rooms clockwise,
push star through door into tan
room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

move to star and n bump it into tan-
colored area.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

pick star and bring it directly to
beige room

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

grab star and push it just past door
to yellow room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

go forward and pick up star. take
star out into yellow room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

position yourself to bottom left of
yellow star to grab it, n move north
into doorway of tan room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

get star and bring it to beige room. blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

get star and take star to beige block
above.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

go through opening. n go to left
towards star, going around it and
pushing it upwards towards open-
ing to tan section. push star all way
through door, and stop in doorway
between sections.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

push star into beige room. blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTan(?r)

enter room to west and push star
into room to south

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

push star into blue room. blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

push star in to green spot but do not
enter green spot

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

push star into green room. blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

put star into teal room blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

go move star into bottom box blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

go out exit to your left and push
star straight out of exit to dark blue
room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

go through door, take star, and put
it in blue room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

go through left door and knock star
down through door below

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

push star into blue room. blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

go to left n push star to door of blue
room

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

go to top right room, and push star
down to cyan room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

push star into teal room without
walking into teal room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

walk straight through door until you
are above star, push star down, to-
wards blue rectangle, until star goes
into blue.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

push star into teal room without
crossing doorway into room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

push star to green tile. blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

push star into blue without entering
blue

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

approach star from right so you end
up just above it. push star directly
down until star reaches blue.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

push star onto green area blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

move to above star, n push it down
into green.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

move happy so that happy is po-
sitioned directly above star. use
happy to push star downwards just
until star crosses through door into
red room on bottom.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

get star and take it into blue room. blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

move behind star and n push star
down through opening into blue
room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

take star to green room, but do not
enter green room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

move star to blue room blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

push star to green room blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

push star through door on left, n
door directly below

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

shift to your right box and move star
down to next box

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

bring star to green. blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

push star into blue box. blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

pick up star. put star just inside
greenish room.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

push star directly down through to
green-floored room. do not enter
green-floored room ; stop just at
doorway.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

go through door to right. push star
down into blue section.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

walk left and slightly up, just above
star and stop. push star straight
down into green and stop just as star
passes through door.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

take star and put it in blue room. blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

push star downwards south till blue blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

push star to blue area. blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

go up to star. push it into green
room, but do not actually enter
green room. stop at doorway.

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

push star to teal room whilst still in
skin coloured room

blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

go to star. move star into blue room. blockInRoom(?b, ?r) ∧ itemIsStar(?b) ∧
roomIsTeal(?r)

Table 3: The simplified AMT Dataset.

