
Interactive Visual Clustering

Marie desJardins James MacGlashan
Department of CS&EE

Univ. of Maryland Baltimore County
Baltimore, MD 21250 USA

+1-410-455-3967
{mariedj, jmac1}@umbc.edu

Julia Ferraioli
Bryn Mawr College

101 North Merion Ave.
Bryn Mawr, PA 19010

+1-610-526-5358
jferraio@brynmawr.edu

ABSTRACT
Interactive Visual Clustering (IVC) is a novel method that al-
lows a user to explore relational data sets interactively, in or-
der to produce a clustering that satisfies their objectives. IVC
combines spring-embedded graph layout with user interac-
tion and constrained clustering. Experimental results on sev-
eral synthetic and real-world data sets show that IVC yields
better clustering performance than alternative methods.

ACM Classification: I2.6 [Artificial Intelligence]: Learn-
ing. H5.2 [Information interfaces and presentation]: Graphi-
cal user interfaces.

General terms: Algorithms, experimentation.

Keywords: Clustering, constraints, interaction.

MOTIVATION
The goal of this research is to develop interactive clustering
methods, which allow a user to partition a data set into clus-
ters that are appropriate for their interests. Traditional auto-
mated clustering partitions data into clusters with high intra-
cluster similarity and low inter-cluster similarity. However,
the “best” clusters may also depend on the user’s goals. For
example, given a collection of student data, an admissions
officer may be looking for patterns in student performance,
whereas a registrar might want to track enrollment patterns.

Constrained clustering allows users to provide partial knowl-
edge about the nature of the clusters, typically in the form of
pairwise constraints on cluster membership. Ideally, the user
would provide a few initial constraints to “seed” the clusters,
then add constraints as necessary to adjust and improve the
resulting clusters. However, identifying useful constraints
can be difficult, particularly in high-dimensional domains.

In some domains, there may be other relational information
in addition to the pairwise constraints. These relations are
generally weaker than constraints: they do not strictly im-
ply shared cluster membership, although they may indicate a
cluster correlation. Most clustering algorithms take into ac-
count either attribute or relational information, but not both.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IUI’07, January 28–31, 2007, Honolulu, Hawaii, USA.
Copyright 2007 ACM 1-59593-481-2/07/0001 ...$5.00.

Our goal is to allow a user to explore a large relational data
set interactively, in order to produce a clustering that satisfies
their objectives. We present a novel approach called Inter-
active Visual Clustering (IVC). In IVC, the relational data
is initially displayed using a spring-embedded graph layout.
The user can then move groups of instances together in order
to form initial clusters. A constrained clustering algorithm
is applied to combine the attribute information with the con-
straints implied by the instances that have been moved. The
resulting clusters are then used to generate additional graph
edges, leading to a new layout in which instances are relo-
cated closer to the clusters to which they appear to belong.
The user can then identify instances that are “misplaced” and
move these instances into the correct clusters.

We show experimentally, using several synthetic and real-
world data sets, that IVC converges to a target clustering
significantly faster than either manual adjustment, spring-
embedded layout alone, or clustering alone.

BACKGROUND
Our work incorporates force-directed graph layout and the
PCK-Means [1] constrained clustering method.

We use a type of force-directed layout called spring embed-
ding [3], as implemented in the Prefuse graph visualization
system [9]. In spring embedding, nodes in a graph act on
each other with two kinds of simulated forces: a node repul-
sion force emitted from each node and an attractive spring
force that “pulls” along the edges between the nodes. The
spring-embedded layout is determined iteratively, by com-
puting and summing all of the forces on each node, then
moving the nodes incrementally in the direction of the net
resulting force. This “settling” process is repeated until the
layout reaches an equilibrium.

Constrained clustering allows users to provide additional in-
formation about the nature of the clusters, typically in the
form of pairwise constraints, indicating that two points should
be in the same cluster (must-link constraints), or should be
in different clusters (cannot-link). A popular standard clus-
tering technique is the K-means algorithm [7], which itera-
tively assigns points to the nearest cluster, then recomputes
cluster centroids, until a stable clustering is reached. Basu
and Mooney [1] extended K-means to use a weighted penalty
function for constraint violations. PCK-Means searches for
the cluster assignment that maximizes cluster coherence while
minimizing the penalty for constraint violations.

361

Figure 1: Overlapping Circles data set: (a) Initial display. The circled instances will be moved first. (b) After two instances
have been moved. (c) After 14 instances have been moved.

APPROACH
Our visual clustering paradigm consists of four steps: (1) ini-
tialize the display (using Prefuse’s spring embedding); (2) in-
terpret user actions; (3) perform constrained clustering (using
PCK-Means); and (4) update the display.

Interpreting User Actions. When the user moves an in-
stance, it is “pinned” in place. The constrained clustering
process begins after the user has moved two instances. To
generate the constraints, the screen distance between each
pair of moved instances is computed. If the instances are at
least δ units apart (where δ is a user-adjustable parameter),
they are considered to be in different clusters, and a cannot-
link constraint is added between them. If they are less than ε
units apart (where the parameter ε ≤ δ), then they are con-
sidered to be in the same cluster, and a must-link constraint is
added. If the screen distance is greater than ε but less than δ,
the situation is ambiguous, and no constraints are generated.1

PCK-Means is then run on the data, using the constraints, and
a new clustering is produced. Note that the distance metric
for PCK-Means is Euclidean distance in the attribute space,
not the screen distance used to generate constraints.

Updating the Display. After clustering, the display is up-
dated to reflect the groupings inherent in the new clustering.
We adapt an approach described by Brockenauer and Cor-
nelson [2] for visualizing clusters in graphs. First, a new
“dummy” node is generated to represent the center of each
cluster. Next, a cluster edge is added between this cluster
center and each instance assigned to that cluster. The re-
lational edges use Prefuse’s default spring constant (2.0 ×
10−5). Cluster edges are set to have a spring constant equal
to twice the default (4.0× 10−5). The spring-embedded lay-
out is then invoked on the combined graph. (Only the re-
lational edges are shown to the user, and the cluster center
nodes are not drawn.)

Simulating the User. We have not yet run formal experi-
ments on human users. For the experiments reported here,
we simulate user behavior using one of two heuristics for in-
stance selection: Random and Farthest-First. The Random
instance method selects a random instance to move at each
step. Farthest-First selects the instance that is farthest (on
the screen) from its correct cluster. The intuition behind the
latter heuristic is that the user will be most likely to notice
anomalous instances — that is, instances that appear farthest
1In our experiments, ε is set to 227 pixels, and δ is set to 450 pixels.

from where they should be. For both node heuristics, we use
predefined locations (near the screen corners) for the cluster
centers. In the experiments with force-directed layout, after
each instance is moved, the layout is allowed to “settle” to an
equilibrium before the next instance is moved.

System Operation. Figure 1(a) shows the initial display
of the synthetic Overlapping Circles data set (described in
“Data Sets,” below). For the purpose of illustrating the pro-
cess, the colors of the nodes and numeric labels indicate the
“true” (target) cluster membership. To simplify the displays,
the relational edges are not shown. Notice that nodes from
all of the clusters are interspersed in the display. The circled
nodes in Figure 1(a) are the first two nodes chosen by the
user. The resulting display is shown in Figure 1(b). Here, the
upper left and lower right clusters (where the first two nodes
were placed) are starting to become apparent. As more nodes
are moved, the clusters gradually become more distinct. Fig-
ure 1(c) shows the display after 14 nodes have been moved.
At this point, as seen in the results in Figure 2(a), most of
the instances are grouped correctly into their target clusters.
Visually, the clusters are very distinct, with only a few nodes
scattered between the clusters.

METHODOLOGY
We compared five approaches: Manual Baseline, Layout
Baseline, Layout+FF, Clustering Baseline, and Interactive
Visual Clustering. The “Layout” methods and IVC use force-
directed layout; in the others, only the nodes explicitly moved
by the user are repositioned. The “Clustering” approaches
apply constrained clustering after each instance is moved,
and use the new cluster edges in the layout. The Layout+FF
and Interactive Visual Clustering methods use the Farthest-
First heuristic to select which node to move next; the other
methods use the Random heuristic.

We hypothesize that the Farthest-First instance heuristic will
improve performance faster than moving random instances;
clustering will improve performance faster than without clus-
tering; and force-directed layout will improve performance
faster than manual layout.

To measure clustering performance, we use the Adjusted
Rand Index (ARI). The ARI evaluates how close a given clus-
tering is to the “correct” or target clustering, by comparing
the proportion of clustering matches (i.e., pairs of instances
that are grouped together in both the learned and the target
clustering, or grouped separately in both the learned and the

362

Figure 2: (a) Results on the Overlapping Circles data set. (b) Results on the Iris data set.

target clustering) to the expected number of matches [4]. An
ARI of 1 means that all instances are correctly clustered.
In the results, clustering performance is always shown as a
function of the number of instances moved. Both the layout
and the cluster assignments use a random initialization step,
so we show average performance over 20 runs.

Data Sets
We used five data sets, as described below. We tested several
methods of edge generation for the synthetic and Iris data
sets. Space does not permit us to describe these methods in
detail; the results are given for the version of each data set
that yielded the best performance for each method.

Circles. The synthetic Circles data set includes 120 in-
stances in two distinct clusters, generated by positioning cir-
cles of radius 50 at [50,50] and [150,150] on the (x, y) plane.
Fifty points are randomly selected from inside each circle,
and assigned to the corresponding cluster. Twenty additional
“outlier” instances are generated by randomly sampling be-
tween the bounding circles. These outliers are then assigned
to the nearest cluster.

Overlapping Circles. The synthetic Overlapping Circles
data set includes 100 instances in four overlapping clusters.
This data is generated by creating random points from a
uniform distribution within the radius of four overlapping
circles—corresponding to the four clusters—whose centers
lie on another circle’s radius at each 45-degree mark.

Iris. The Iris data set is a widely used classification database
from the UC Irvine Machine Learning Repository [8]. The
original data set consists of 150 instances; we chose 33 in-
stances randomly from each of the three clusters. Each in-
stance is described by four numeric attributes. The clusters
correspond to three different species of irises. This data set
is known to be a difficult one for most clustering algorithms,
because two of the classes are linearly separable from each
other, but the third is not.

Amino Acid Indices. The amino acid data set is a subset
of the AAIndex Version 6.0 database [5], which consists of
494 indices, each of which measures a chemical property of
amino acids. Each instance in the AAIndex database has
twenty attributes, corresponding to the values of this index
for each of the twenty amino acids in the standard genetic

code. Tomii and Kanehisa [10] identified six clusters of in-
dices in AAIndex. We use 100 indices, selected randomly
from two of the clusters (A (measures of alpha and turn
propensities) and H (hydrophobicity)). Edges in this data set
were determined by measuring the correlations between the
instances, then finding a minimum spanning tree.

Amino Acid. In this data set, the attributes and instances
are inverted from the Amino Acid Index data set. The Amino
Acid data set includes twenty instances—one for each amino
acid—whose attributes are twenty-five of the 100 indices
from the Amino Acid data set. Since many of the indices are
variations of the same basic measurement, we asked a do-
main expert to select 25 indices that measured relatively in-
dependent properties. Edges were added to the data set based
on three properties of amino acids: acidic side chains, ba-
sic side chains, and cyclic hydrocarbons. Edges were placed
between pairs of instances that share one or more of these
properties. The target clustering has three clusters, also man-
ually identified by our domain expert: polar (asymmetrical
electron charge on the side chain), non-polar (symmetrical
electron charge), and both (long side chains with both polar
and non-polar regions).

RESULTS AND DISCUSSION
Overall, our experimental results support our claim—that In-
teractive Visual Clustering provides improved clustering per-
formance, compared to the alternative approaches we tested.
However, the Amino Acid Index data set does not yield the
expected results, highlighting some of the open challenges.

Circles. The results on this data set (omitted for space) are
as predicted. Manually moving the instances shows the slow-
est improvement as a function of the number of instances
moved; the Layout Baseline shows significant improvement;
Layout+FF is still better; and IVC performs the best. How-
ever, the clustering baseline yields nearly identical perfor-
mance to IVC. This is not surprising: the instances are well
separated, making this a fairly easy clustering problem.

Overlapping Circles. Figure 2(a) shows the experimental
results for the Overlapping Circles data set. Again, the meth-
ods perform as expected, with IVC outperforming the other
methods. In this case, IVC does provide a noticeable im-
provement beyond the Clustering Baseline, indicating that

363

Figure 3: Results on the Amino Acid data set.
the Farthest-First heuristic is helpful in identifying important
instances for repairing the clustering.

Iris. As seen in Figure 2(b), IVC also yields the best per-
formance of any of the methods we tested on the Iris data
set. The improvement provided by IVC is significant: after
only 10 instances, with IVC, the clusters are nearly perfect,
with an ARI close to 1.0. The next-best method (Clustering
Baseline) has only reached an ARI of 0.75 at this point.

Amino Acid Indices. In the Amino Acid Indices data set
(omitted for space), clustering does not help, and actually ap-
pears to hinder performance. The best performance is given
by Layout + FF. IVC is only slightly better than the Cluster-
ing Baseline and the Layout Baseline. IVC also shows much
more variability than the other methods: it appears that for
this data set, slight variations in the layout (resulting in dif-
ferent selected nodes) yield significantly different clusters.
Also, the clusters in this data set are not well separated in
Euclidean space. Therefore, the underlying assumptions of
the clustering method are violated. This observation led us
to develop the alternative (Amino Acid) data set.

Amino Acid. The results for the Amino Acid data set are
shown in Figure 3. IVC outperforms most of the other meth-
ods, but the Layout + FF approach is comparable. The lat-
ter method slightly outperforms IVC when only a few nodes
have been moved, but IVC is slightly better for more nodes;
however, these differences are not statistically significant.
The Clustering Baseline and Layout Baseline perform about
equally, both outperforming the Manual Baseline.

We conclude that force-directed layout and Farthest-First
help the user to find the desired clustering. However, the
clustering itself does not provide an additional benefit. Again,
in this data set, the Euclidean distances between instances are
not strongly related to the true clustering.

RELATED WORK
Lesh et al. [6] also present an interactive clustering method
that used force-directed layout. However, their underlying
clustering method is purely graph-based, not attribute-based.
Also, rather than using constrained clustering, their approach
uses the modified clusters produced by the user as seeds for
local heuristic search. Their results do show that similar in-
teractive approaches may be useful even for much larger data
sets than we have studied. In the constrained clustering lit-

erature, there has been some work on active (automatic) se-
lection of constraints, but we are not aware of any previous
work on interactive methods for enabling the user to select
appropriate constraints more effectively.

FUTURE WORK AND CONCLUSIONS
We have shown that IVC can improve clustering performance
by integrating force-directed layout with user interaction and
constrained clustering. IVC is only the first step towards a
more user-centered, relational approach to clustering. We
are currently designing a user study to test the hypothesis
that users will be able to identify anomalous (misplaced) in-
stances in the display, and therefore converge more quickly
to the correct clustering than without force-directed layout.
We are also developing relational constrained clustering al-
gorithms, which cluster the data in attribute space and rela-
tional space simultaneously.

ACKNOWLEDGEMENTS
Thanks to Adam Anthony, Blaz Bulka, Donald MacGlashan,
and Penny Rheingans for their assistance and inputs. This
work was partially supported by NSF award #0325329 and
#00000923, and by the Distributed Mentor Project (DMP)
of the Computing Research Association’s Committee on the
Status of Women in Computing Research (CRA-W).

REFERENCES
1. S. Basu, A. Banerjee, and R. Mooney. Active semi-

supervision for pairwise constrained clustering. In Pro-
ceedings of the 2004 SIAM International Conference on
Data Mining, pages 333–344, April 2004.

2. R. Brockenauer and S. Cornelsen. Drawing clusters and
hierarchies. In Michael Kaufmann and Dorothea Wag-
ner, editors, Drawing Graphs: Methods and Models,
pages 193–227. Springer, 2001.

3. P. Eades. A heuristic for graph drawing. Congressus
Numerantium, 42:149–160, 1984.

4. L. Hubert and P. Arabie. Comparing partitions. Journal
of Classification, 2:193–218, 1988.

5. S. Kawashima and M. Kanehisa. AAindex: Amino acid
index database. Nuc. Acids Res., 28(1):374, 2000.

6. N. Lesh, J. Marks, and M. Patrignani. Interactive par-
titioning. In International Symposium on Graph Draw-
ing, pages 31–36, 2000.

7. J. B. MacQueen. Some methods for classification and
analysis of multivariate observations. In Proceedings of
the Fifth Symposium on Math, Statistics, and Probabil-
ity, volume 1, pages 281–297, 1967.

8. D.J. Newman, S. Hettich, C.L. Blake, and C.J. Merz.
UCI repository of machine learning databases, 1998.

9. prefuse.org. Prefuse: Interactive information visualiza-
tion toolkit, 2006.

10. K. Tomii and M. Kanehisa. Analysis of amino acid in-
dices and mutation matrices for sequence comparison
and structure prediction of proteins. Protein Engineer-
ing, 9:27–36, 1996.

364

