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Abstract
We present Confidence-based Feature Acquisition (CFA), a novel
supervised learning method for acquiring missing feature values
when there is missing data at both training and test time. Pre-
vious work has considered the cases of missing data at training
time (e.g., Active Feature Acquisition, AFA [8]), or at test time
(e.g., Cost-Sensitive Naive Bayes, CSNB [2]), but not both. At
training time, CFA constructs a cascaded ensemble of classifiers,
starting with the zero-cost features and adding a single feature for
each successive model. For each model, CFA selects a subset of
training instances for which the added feature should be acquired.
At test time, the set of models is applied sequentially (as a cas-
cade), stopping when a user-supplied confidence threshold is met.
We compare CFA to AFA, CSNB, and several other baselines, and
find that CFA’s accuracy is at least as high as the other methods,
while incurring significantly lower feature acquisition costs.

1 Introduction
In classification problems, there are often missing data (fea-
ture values) in the training set, the test set, or both. In some
situations, the missing features may be available at a cost.
Examples range from medical diagnosis tasks, where fea-
tures are test results that have varying costs, to Mars rover ex-
ploration, where features come from instruments with vary-
ing power and bandwidth costs. Determining which feature
values to acquire is sometimes referred to as the feature ac-
quisition problem. Previous work in this area has focused on
acquiring either missing training data, or missing test data,
but not both (see Section 2). We address the more gen-
eral problem of feature acquisition in the case where there
is missing data in both the training and the test set. Gener-
ally speaking, one can achieve higher classification perfor-
mance by paying the cost of acquiring additional features.
We do not assume that we know in advance how many in-
stances will be classified by the model (i.e., its “live time”),
so we cannot explicitly trade off total cost at training time
against total cost at test time. Rather, our goal is to minimize
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the total acquisition cost (at training and test time) needed
to achieve a desired level of expected per-instance predictive
performance. Note that this scenario is applicable in a setting
in which total training and test costs are expected to be rea-
sonably well balanced. If they are not, alternative strategies
may be preferred: for a model with an extremely short live
time (few test items), full acquisition of the test features may
be desirable, while for a model with an extremely long live
time (many test items), full acquisition of the training fea-
tures, and selective acquisition of test features, may be most
effective.

We present Confidence-based Feature Acquisition
(CFA), a confidence-based ensemble approach to minimiz-
ing the total acquisition cost for problems in which instances
have missing features. A user-supplied confidence thresh-
old parameter is used to determine the target performance
level. The method can be applied using any classifier that
provides a confidence value on its predictions. As is typical
in machine learning research [11], we employ the posterior
probability as a confidence value. The width of a confidence
interval, or another metric, could also be used as a measure
of confidence without modifying the underlying CFA algo-
rithm.

In CFA, we train a succession of models, M0 . . . Mf ,
such that M0 uses only the “free” (zero-cost) features, and
Mi additionally incorporates costly features F1 through Fi.
Model Mi is trained only on instances that cannot be clas-
sified with sufficient confidence by model Mi−1. Therefore,
values for feature Fi are acquired only for the instances that
require it. At test time, each test instance is successively
classified by M0, M1, M2 . . . until its classification is suffi-
ciently confident (i.e., until the confidence of the prediction
reaches the confidence threshold). Again, features are ac-
quired for the new instance only as required.

In this paper, we report on the observed cost-accuracy
tradeoff for several data sets. We compare our Confidence-
based Feature Acquisition (CFA) approach to existing meth-
ods that can only acquire missing data during training
(Active Feature Acquisition [8]) or during testing (Cost-
Sensitive Naive Bayes [2]). We show that CFA achieves
predictive accuracy equal to or greater than both methods
and several other baselines, while incurring significantly less
cost. In addition, CFA is not dependent on the kind of



base classifier used; we show results using CFA with Naive
Bayes, J48 decision trees, and support vector machines as
the base classifiers. CFA performs well across a range of
base classifiers, but no single base classifier dominates per-
formance (i.e., provides the highest accuracy or the lowest
cost). This suggests that the flexibility to use CFA with dif-
ferent base classifiers is a benefit of the algorithm, since dif-
ferent classifiers will provide the best performance in differ-
ent domains.

2 Related Work
Existing methods for minimizing both misclassification cost
and the cost of acquiring feature values can be characterized
by whether missing instance values can be acquired during
training, testing, or both phases. An incomplete instance has
one or more missing feature values; a complete instance has
no missing values.

Feature Acquisition During Training. In some cases,
the training instances are incomplete, and the goal is to min-
imize the cost of acquiring feature values for some of these
instances in order to build a classifier that operates on com-
plete data at test time. Zheng and Padmanabhan [18] present
two approaches for solving this problem: AVID (Acquisi-
tion based on Variance of Imputed Data) and GODA (Goal-
Oriented Data Acquisition). AVID imputes the missing val-
ues and then acquires the values about which it is least cer-
tain. GODA decides which missing values to acquire by im-
puting the missing values, training a classifier using the orig-
inal and imputed data, and then acquiring all missing feature
values for misclassified instances. After acquiring missing
values, AVID and GODA are trained only on the complete
training instances.

In contrast with the single-pass acquisition methods of
AVID and GODA, Active Feature Acquisition (AFA) incre-
mentally acquires missing values to improve performance,
at increasing cost. The initial classifier is trained on a fully
imputed version of the original data set. AFA may request
all feature values for a batch of m misclassified training in-
stances [8] (like GODA) or may define a utility function and
select m individual missing feature values to query in order
to maximize the resulting utility [9, 10]. The latter approach
is significantly more expensive computationally, since it re-
quires training one classifier per feature to predict the miss-
ing values and then estimating the accuracy improvement
that would be obtained by re-training with a single missing
value filled in. A more recent version of AFA [12] uses sub-
sampling to reduce the computational cost.

Each of these methods was evaluated in terms of the
tradeoff between acquisition cost during training and mis-
classification cost during testing.

Feature Acquisition During Testing. In other cases,
the goal is to train a model from complete data and minimize
the cost of classifying new, incomplete instances. Greiner

et al. [5] described classifiers that can request feature values
at test time as “active” classifiers and provided a PAC-style
analysis of learning an optimal active classifier, given a fixed
budget. Cost-sensitive decision trees [7] and naive Bayes
models (CSNB [2]) have been proposed that minimize acqui-
sition and misclassification costs incurred at test time. The
training data may contain incomplete instances, but they are
treated as permanently incomplete; no acquisition of these
values is considered. CSNB incorporates a misclassification
cost matrix to aid in trading off acquisition costs against the
cost of classification errors. CSNB was evaluated in terms
of total cost (acquisition and misclassification) as a function
of the percentage of missing values in the test set. This ap-
proach can be extended to also account for delay costs, which
can make batch feature acquisition desirable [13].

An alternative approach is to model the feature acqui-
sition process as a sequence of decisions either to acquire
a feature value or to output a classification (and terminate),
using an HMM [6]. In this work, a corresponding POMDP
was trained on randomly generated sequences and their as-
sociated costs, then tested on incomplete data.

Feature Acquisition During Training and Testing.
To our knowledge, no work has considered the fully general-
ized problem of deciding which feature values to acquire in
both phases. We present Confidence-based Feature Acqui-
sition (CFA), the first method to directly apply to problems
in which features can be acquired during training and test-
ing. Note that because it may not be known at training time
how many test instances will need to be classified, it is dif-
ficult or impossible to explicitly compute a tradeoff between
training-time FA cost, test-time FA cost, and test-time mis-
classification cost. Therefore, the goal in our scenario is to
achieve a target level of accuracy (specified in terms of clas-
sification confidence) at minimum cost.

Estimating Confidence Levels. Our approach relies on
the use of confidence values at both training and test time
to determine which instances have uncertain predictions;
additional feature values are acquired for these instances.
However, it is well known that most classifiers do not provide
reliable confidence values.

As long as the provided confidence values increase
monotonically with the “true” confidence values, the perfor-
mance of CFA should not be affected significantly, since the
least confident instances will still be the first ones selected
for feature acquisition. However, the decision of when to
stop acquiring features (i.e., when the target confidence level
has been reached) will be skewed by the inaccurate predic-
tions. This skew would be mitigated by more accurate con-
fidence values. Niculescu-Mizil and Caruana [11] presented
several calibration techniques that can be used to rescale the
confidence values provided by different classification tech-
niques, to make them more accurate. In future work, we
intend to study whether the use of these calibration tech-



niques does improve CFA’s ability to achieve a target con-
fidence value, and, in the case of non-monotonic confidence
error, whether calibration improves the overall accuracy of
the model.

3 Confidence-Based Feature Acquisition
We assume that there is a non-empty subset of the features
that are “free”; that is, every instance in the data set include
these features initially, for zero cost. The other features are
initially not known for any of the instances in the training
or the test set. We also assume that the feature acquisition
(FA) cost associated with each feature is known in advance,
and that the FA cost for a given feature is the same for
all instances. Finally, we assume that the base classifiers
produce not only a classification but also a confidence value.

The Confidence-based Feature Acquisition (CFA) ap-
proach trains an ensemble of classifiers that use successively
larger subsets of the features to classify instances. The train-
ing phase is similar to that of boosting ensembles such as
AdaBoost [3], in which each new classifier is created to clas-
sify instances that are misclassified by the current ensem-
ble. However, AdaBoost was not designed to accommodate
feature acquisition; therefore, it trains each new classifier
on a reweighted version of the entire data set, which has a
fixed dimensionality. In contrast, CFA trains the new clas-
sifier, with a higher dimensionality, only on those instances
for which the new feature was acquired. Further, boosting
permits all classifiers to vote on a new instance, but the clas-
sifiers in a CFA ensemble are applied in a cascade fashion,
as in Cascade Generalization [4]. A classifier that requires
the acquisition of a new feature is applied only if the test in-
stance could not be classified with sufficient confidence by
the preceding classifier. Using a cascade approach means
that as features are acquired, only the model that uses all
of the features acquired to that point is used for predictions.
Intuitively, this should increase the prediction quality of the
selected model (since it uses more information than earlier
models). An alternative approach would be to use a standard
voting-based ensemble with all models acquired to date, as
discussed in Section 5.

The CFA approach has some similarities with the “atten-
tional cascade” approach used by Viola and Jones to classify
images [14]. Like CFA, the attentional cascade constructs a
series of classifiers that are ordered by increasing complex-
ity. However, the cost of feature acquisition is not incorpo-
rated into the training process. In addition, instead of training
on items that were labeled with low confidence by previous
classifiers, the attentional cascade is tailored for positive de-
tection tasks and uses the series of classifiers as a filter. Items
that receive a negative label at any point in the cascade are
discarded at that point. Only the positively labeled candi-
dates proceed on to the next classifier, and the reliability of
the label is not considered. Therefore, instead of selecting

Algorithm 1 CFA-train(D, y, C, F )
1: Inputs: training data D, labels y, confidence C, cost-

ranked list of features F
2: Output: set of trained models {Mi}
3: M0 = train(D, y)
4: (ŷ0, c0) = M0(D) // Predictions and confidences
5: D1 = select-subset(D, c0, C)
6: if D1 = {} then
7: Return {M0} // Done!
8: end if
9: for f = 1 to |F | do

10: Acquire Ff for d ∈ Df // F indexed 1 to |F |
11: Mf = train(Df , yf )
12: (ŷf , cf ) = Mf (Df )
13: Df+1 = select-subset(Df , cf , C)
14: if Df+1 = {} then
15: Return {M0 . . . M|f |} // Done!
16: end if
17: end for
18: Return {M0 . . . M|F |} // No more features

features based on acquisition cost and classification confi-
dence, the attentional cascade selects features to achieve the
desired detection and false positive rates (as measured on a
validation set). We mention it here for its conceptual simi-
larities, but do not include it in our experiments since it was
designed to solve a different problem.

3.1 CFA Training. CFA uses two algorithms: CFA-train
and CFA-predict. CFA-train (Algorithm 1) takes in a training
data set D initially described by a set of zero-cost features,
the data set’s labels y, the desired training confidence C, and
a list of non-zero-cost features F that is ranked by increasing
cost. The cheapest-first heuristic intuitively should build a
low-cost ensemble, but is greedy and may not result in an
optimal feature set. In particular, if some of the inexpensive
features are irrelevant to the class, then effort will be wasted
at both training and test time. On the other hand, since these
irrelevant features are necessarily cheaper than later features,
the wasted effort on average should be small relative to the
total cost. In Section 5 we discuss some alternative heuristics
for feature selection, using background knowledge or partial
acquisition.

CFA’s output is a series of trained models {Mi}. The
algorithm first constructs the base classifier M0 using only
the zero-cost features. Next, the select-subset subroutine
(line 5) selects the instances, D1, that are used to construct
the next model, M1.

In standard CFA, D1 will contain all instances with clas-
sification confidences c0 less than the target confidence C.
In effect, we are evaluating the predictive quality of M0 and
selecting those instances about which M0 is insufficiently



Algorithm 2 CFA-predict(d, M, C)
1: Inputs: data instance with d all free features, trained

cascade M = {Mi}, confidence threshold C
2: Output: prediction ŷ with confidence c
3: (ŷ0, c0) = M0(d) // Prediction and confidence
4: if co ≥ C then
5: Return ŷ0, c0 // Done!
6: end if
7: for f = 1 to |M | do
8: Acquire Ff for d
9: (ŷf , cf ) = Mf (d)

10: if cf ≥ C then
11: Return ŷf , cf // Done!
12: end if
13: end for
14: Return ŷ|M |, c|M | // No more models

certain. (An alternative approach to model evaluation and
instance selection within the ensemble, Error-based Feature
Acquisition, is discussed in Section 3.3.) If no instances are
returned, then training is complete and the current ensem-
ble is returned. Otherwise, CFA loops over the features in
F (lines 9-17). Each iteration acquires a new feature value
for all instances in the selected subset Df and trains a new
model Mf . The model is applied to the training data, and
a new subset is selected for the next iteration. The training
phase ends when the next subset is empty (line 15) or when
all features have been used (line 18).

3.2 CFA Testing. Costs are also minimized, with respect
to confidence threshold C, when making predictions for
new instances. Algorithm 2 describes CFA-predict, which
successively classifies a new instance d using M0, M1, . . .
until either the confidence threshold is achieved (line 11) or
there are no more models to apply (line 14). Note that the
loop in lines 7–13 depends on the number of trained models,
not the number of features, since not all features may have
been used during training to create models.

3.3 Error-based Feature Acquisition. The confidence
values returned by a model Mf are not necessarily reflec-
tive of the model’s true ability to make accurate predictions.
A model may return confidence values that either underes-
timate or overestimate its ability to make accurate predic-
tions. At test time, confidence values are the only available
estimate of the model’s performance. However, at training
time, the true error is available. Therefore, it seems intuitive
that perhaps using this additional information would improve
performance of the learned cascade model. The Error-based
Feature Acquisition (EFA) variant of CFA was designed to
take advantage of this “true confidence” knowledge at train-
ing time. Specifically, in step 5 of Algorithm 1, select-subset

ignores the confidences and instead returns the subset of in-
stances that are misclassified by the current ensemble.

4 Experimental Results
We show results on the Protein data set used by Xing et
al. [17] and two additional data sets from the UCI Machine
Learning Repository [1]: the Pima Indian Diabetes and Liver
Disorders data sets. These data sets are moderately sized,
both in terms of number of instances and number of features.
We chose to work with such data sets because they are typical
of the kind of scenario for which CFA was designed.

The Protein data set contains 20 numeric features and a
class label that can take one of six values. The Protein data
set does not include feature acquisition costs, so it permits
us to evaluate CFA in a case where costs are unknown. In
this case, we arbitrarily assign zero cost to the first feature
and unit cost to the rest. (Since CFA obtains feature values
in order of cost, ties are resolved by choosing the feature that
appears earlier in the data set. ) This data set contains 116
instances. Because Protein has more features than do the
other data sets, there may be more potential for significant
cost savings in reducing the number of feature values that
are obtained.

The Pima data set is a medical diagnosis data set that
describes female patients who are at least 21 years old and
are of Pima Indian heritage. There are eight numeric features
to describe each patient and a binary class label (which is 1
if the patient has diabetes, and 0 otherwise). The data set
also includes acquisition costs in Canadian dollars for each
feature. These costs were determined by the Ontario Health
Insurance Program fee schedule; they represent the cost of
obtaining each feature value individually. The eight features
and their associated costs are listed in Table 1. Note that
several of the features in the Pima data set have equal (unit)
cost. As with the Protein data set, ties for feature selection
order are broken by the order in which the features appear
in the data set. Also, since there are no zero-cost features
in this domain, we start by acquiring the first of the cheapest
features (“Times pregnant”) for all training instances in order
to learn M0. The rest of the learning process then proceeds
as usual. This data set was chosen because it has real-world
costs associated with the features, and contains a reasonably
large number of instances (768), reducing the possibility of
overfitting in the later models in the ensemble, which are
based on a subset of the training data.

The Liver Disorders medical diagnosis data set was
provided by BUPA Medical Research, Ltd. This data set
contains six numeric features and one binary class label.
The features and their associated costs are listed in Table 2.
As with the Pima data set, the costs are determined by the
Ontario Health Insurance Program fee schedule, and ties for
feature selection order are broken by the order in which the
features appear in the data set. The data set contains 345



Table 1: Pima Data Set Feature Acquisition Costs

Times pregnant 1.0
Diastolic blood pressure 1.0
Triceps skin fold thickness 1.0
Body mass index 1.0
Diabetes pedigree function 1.0
Age 1.0
Glucose concentration 17.61
2-hour serum insulin 22.78

Table 2: Liver Disorders Feature Acquisition Costs

No. alcoholic drinks/day 0.0
Mean corpuscular volume 7.27
Alkaline phosphate 7.27
Alamine aminotransferase 7.27
Aspartate aminotransferase 7.27
Gamma-glutamyl transpeptidase 9.86

instances.

4.1 Methodology. In all of our CFA experiments, we be-
gan with a training set that contained only the zero-cost
(free) features and built parsimoniously from there. Train-
ing and test feature values were acquired only when needed
to achieve the specified confidence threshold.

We measured performance in terms of total feature ac-
quisition cost and classification accuracy on held-out test
sets, with 10-fold cross-validation. The code was imple-
mented in Weka [15] and relies on the provided implementa-
tions of Naive Bayes, decision trees (J48), and support vec-
tor machines (SVMs). For Naive Bayes, unless otherwise
indicated, we did not discretize numeric features for CFA.
Instead, we used Weka’s default procedure, which models
the observed values for each feature with a Gaussian distri-
bution.

We compared the empirical performance of CFA and
EFA (the error-based variant of CFA presented in Sub-
section 3.3) to feature acquisition methods that can ac-
quire features only at training (Cost-Sensitive Naive Bayes,
CSNB [2]) or only at testing (Active Feature Acquisition,
AFA [8]). CSNB can accommodate individual missing val-
ues in the training data by computing probabilities over only
the existing values. However, if a feature is missing values
for all training instances, it cannot be used at all by CSNB.
Since there is no information about the utility of such a fea-
ture in the training data, it will never be acquired during test-
ing. Therefore, CSNB in our setting first acquires all of the
training feature values and operates on complete data to build

its model. It then selectively acquires values at test time ac-
cording to the regular CSNB process. Because this causes
CSNB to incur a large initial acquisition cost, we also report
the test-time costs separately. CSNB requires that numeric
features be discretized, so we also provide results for a dis-
cretized version of CFA to help determine whether perfor-
mance differences arise from avoiding discretization or from
the CFA cascade approach itself.

AFA was designed to acquire features for batches of
m instances at a time. AFA uses the new feature values
to re-train a single classifier, rather than generating a new
classifier for a cascade as CFA does. We used a batch size of
m = 10, as was used in the original AFA experiments [8].
This version of AFA requests feature values for misclassified
items during training (similar in motivation to EFA, except
that all missing values are acquired for each misclassified
item, rather than incrementally obtaining one feature value at
each iteration). Later versions of AFA refined this selection
strategy to instead estimate the utility of acquiring a given
missing value, to avoid acquiring values for misclassified
items that are not expected to be useful in improving overall
performance [12]. We intend to evaluate CFA against this
variant of AFA in future work.

Since the true labels are not known on the test data,
AFA cannot determine when to acquire feature values when
making new predictions and therefore must incur the full
acquisition cost for each test item. Similarly to our test-
cost comparison with CSNB, we could compare AFA to CFA
in terms of training-time costs only. However, with 10-fold
cross-validation, we train on 90% of the data and test on only
10% of it, so the total cost exhibits the same trends as the
training costs, and we do not show those results separately.

Neither CSNB nor AFA have stopping criteria based on
confidence. CSNB trades off acquisition cost against mis-
classification cost to decide when to stop, and AFA does
not specify its stopping criterion (an accuracy threshold is
one suggestion). To enable a comparison between CFA and
these methods, we modified them to use the same confidence
threshold, stopping when the posterior probability of the cur-
rent example’s classification meets or exceeds that threshold.
Because the number of features acquired under this threshold
method monotonically increases with the threshold parame-
ter, it enables a direct comparison of CSNB to CFA as they
acquire more features.

We also tested four baseline approaches:

• RFA (Random Feature Acquisition): This randomized
baseline allows us to evaluate the benefits of CFA’s
method for selecting the instances with which to train
the next classifier. It is identical to CFA except that
select-subset chooses random instances from the pre-
vious model’s training data, instead of using the con-
fidence threshold. It creates a cascade containing the
same number of classifiers, each trained with the same
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Figure 2: Feature acquisition costs (lower y-axis values are better) for Protein (10-fold cross-validation).
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Figure 1: Test accuracy for Protein, as a function of confi-
dence threshold (10-fold cross validation).

number of instances, as those used by CFA, and at pre-
diction time it uses the same confidence threshold.

• Disc CFA (Discretized CFA): This method exists only
to provide a direct comparison to CSNB, which must
discretize numeric input features. Disc CFA therefore
always uses Naive Bayes as its base classifier.

• Single All: This is a single classifier that uses all of the
training instances with all possible features acquired (at
both training and test time). It therefore provides an

upper limit on the accuracy achievable with a single
classifier, at maximal FA cost.

• Cascade All: This baseline differs from CFA in that
each successive classifier uses the entire training set,
rather than a subset of the previous classifier’s training
set. It provides an upper limit on the accuracy achiev-
able with a cascade ensemble, at maximal FA cost.

4.2 Results and Discussion. Figures 1 through 6 show the
experimental results for applying the seven feature acquisi-
tion methods described in Section 4.1 (CFA, RFA, CSNB,
AFA, Single All, and Cascade All) to the Protein, Pima, and
Liver Disorders data sets, respectively. (EFA is discussed
separately, in Section 4.3.) Each of these experiments used
Naive Bayes as the base classifier. In Section 4.4, we give
results for CFA using other base classifiers.

Protein. Figure 1 shows how accuracy varied as the
confidence threshold parameter was increased. Single All
provides an upper bound on single-classifier accuracy, after
acquiring all features, and therefore is unaffected by the
confidence threshold. CFA generally outperformed the other
methods at low confidence thresholds, except Cascade All,
which incurred the maximum (training) FA cost by acquiring
all possible values. This difference in accuracy may be in
part because the confidence estimates are not always reliable,
leading to errors both in model construction at training time
and in model application at test time. At confidence levels
greater than 0.7, AFA outperformed CFA (but at higher cost,
as we will see), and RFA performed similarly to CFA. CFA
consistently outperformed CSNB, but Disc CFA was almost
identical to CSNB, indicating that most of the difference in
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(b) Test cost only

Figure 4: Feature acquisition costs (lower y-axis values are better) for Pima (10-fold cross-validation).
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Figure 3: Test accuracy for Pima, as a function of confidence
threshold (10-fold cross validation).

accuracy was due to the ability to discretize the features. For
this data set, the accuracy differences between CFA and RFA
were not statistically significant, but the differences between
CFA and all other methods were statistically significant.
This indicates that CFA was effective at determining how
many instances to acquire new features for—but that which
instances are acquired was less important (especially since
all features had the same cost).

However, the other critical factor in evaluating these
methods was the FA cost they incurred (see Figure 2). CFA

(and RFA) consistently incurred the lowest cost due to their
selective (and parsimonious) acquisition of feature values.
In contrast, Single All acquired all feature values during
training and testing and therefore had the highest total cost.
Cascade All and CSNB acquired all values for all items
during training but could stop early during testing if the item
being classified was sufficiently confident. Therefore, their
total costs were also very high, but a separation was seen in
the test costs (Figure 2(b)); Cascade All was significantly
cheaper than CSNB in test cost, while achieving higher
accuracy. AFA instead acquired all values at test time
(maximum cost in Figure 2(b)) but was able to reduce its
training costs and ultimately its total cost was below that of
CSNB (Figure 2(a)). However, it was still far more expensive
than CFA. As above, Disc CFA and CSNB had similar
accuracy results, but as shown in Figure 2(a), Disc CFA
incurred far less total cost than CSNB. In general, the fact
that CFA does not require discretization (and can use base
classifiers other than Naive Bayes) means that it can be
applied to a wider range of data sets more naturally than can
CSNB. CFA and RFA were an order of magnitude cheaper
(in total cost) than CSNB, except at confidence thresholds
greater than 0.9.

Pima. The results for the Pima domain were similar to
those found with Protein, but the accuracy differences be-
tween methods were less pronounced (Figure 3). Most of
the differences were not statistically significant, except be-
tween Cascade All and Single All. We again found that CFA
and RFA incured significantly less total cost than CSNB or
Cascade All (Figure 4(a)). Here, AFA was competitive with
CFA in terms of accuracy and total cost. In contrast, in
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Figure 6: Feature acquisition costs (lower y-axis values are better) for Liver Disorders (10-fold cross-validation).
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Figure 5: Test accuracy for Liver Disorders, as a function of
confidence threshold (10-fold cross validation).

terms of test cost only (Figure 4(b)), CSNB provided ap-
proximately the same degree of accuracy and cost as CFA,
while AFA incurred maximal FA cost. CFA therefore pro-
vides (as expected) a balance between those two extremes.
If the “live time” of the model were expected to be long,
then CFA would be a good choice to minimize test cost.

Liver Disorders. The Liver Disorder accuracy results
are shown in Figure 5. The first notable difference in
these results is that CFA and CSNB both outperformed
Single All at all confidence values except 1.0. This indicates

that the data set can benefit from feature selection; it is
in fact advantageous not to acquire all of the features in
order to make decisions. However, making use of this fact
requires good selection of the feature values (and for which
items) to acquire, and so for the first time we see a clear
separation between CFA and RFA. CFA outperformed RFA
(and Cascade All) in the confidence range [0.80–0.95] (the
differences were statistically significant, with p < 0.01
except at confidence 0.80, where p = 0.04). This is a direct
measurement of CFA’s superior selection of feature values to
acquire.

Disc CFA performed identically to CSNB, while regu-
lar (non-discretized) CFA outperformed CSNB in the confi-
dence threshold range [0.85–0.95], with significance test re-
sults of p = 0.05, 0.08, 0.09 for confidence 0.85, 0.90, and
0.95 respectively. AFA performed poorly in this domain: its
accuracy was significantly below any of the CFA variants for
confidence thresholds above 0.6.

In terms of FA cost (Figure 6), we found that CFA and
RFA again had the lowest costs, except for confidence levels
[0.6–0.7], in which AFA had a lower total cost. But as above,
its accuracy performance was much lower in this range (the
lowest of any method).

4.3 Error-Based Feature Acquisition. EFA, the error-
based selection method, performed surprisingly poorly in
terms of accuracy. In all domains, EFA had much lower
accuracy than any of the other methods except AFA, for any
given cost level or confidence threshold. AFA did perform
more poorly than EFA for low confidence/cost values, but
always outperformed EFA as the confidence threshold (and
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Figure 7: Test accuracy results for CFA using different base classifiers.
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Figure 8: Total feature acquisition cost results for CFA using different base classifiers.

associated cost). We have omitted the EFA results from the
results graphs to improve readability, and because it was
always dominated in performance by some other method.

However, because EFA is an intuitively reasonable ap-
proach to feature acquisition, we also analyze its behavior in
more depth. EFA is much less expensive than the other meth-
ods, primarily because it simply chooses fewer instances for
which to acquire additional features. The intuition behind
EFA is that using all available information at training time
should improve performance. However, the result is that the
“decision points” in the cascade are created using informa-
tion that is not available at test time. As a result, at test time,
the model is unable to make good decisions about which in-
stances to acquire additional feature values for. Furthermore,
including only instances that are misclassified in the succes-
sive ensembles leads to significant overfitting, so the accu-
racy actually decreases as the user’s confidence threshold is

increased.

4.4 Alternative Base Classifiers. CFA is not limited to a
single type of base classifier, but is instead a general meta-
method that can incorporate any base classifier that outputs
posterior probabilities. In addition to the Naive Bayes results
already presented, we also experimented with using J48
(decision trees) and support vector machines (SVMs) as the
base classifiers. Figures 7 and 8 show the accuracy and total
FA cost incurred by all three base classifiers when employed
by CFA. While all three methods yield good performance,
we found that no single base classifier always performed the
best.

For Protein and Pima, CFA with Naive Bayes or SVMs
achieved about the same accuracy, and both were superior
to CFA-J48. For Liver Disorders, CFA-J48 was instead the
strongest performer in terms of accuracy; CFA-SVM was



second best, and CFA-Naive Bayes was the worst. (Note that
in this domain, as shown in Figure 5, even CFA-Naive Bayes
provided much better accuracy than the baseline methods.)
The costs are similar for all three classifiers, although SVMs
are consistently slightly worse (more expensive) than the
other methods.

The base classifiers work in different hypothesis spaces,
produce different posterior estimates, and therefore acquire
features for different items (and different numbers of items),
given the same confidence threshold. The difference in per-
formance indicates that, for real applications, testing a vari-
ety of base classifiers is important. This result additionally
demonstrates that the ability of CFA to incorporate different
base classifiers is a useful property of the method.

5 Conclusions and Future Work
We have described Confidence-based Feature Acquisition
(CFA), the first method that can selectively acquire missing
feature values during training and testing. It selects values to
acquire so as to meet a user-specified level of performance
(confidence), minimizing the cost needed to reach that goal.
Our study of CFA on different data sets, in different cost set-
tings, shows that when feature acquisition is possible during
both training and testing, it is advantageous to do so. The Ac-
tive Feature Acquisition (AFA) method [8] acquires values
only when training, while the Cost-Sensitive Naive Bayes
(CSNB) approach [2] acquires values only at test time. AFA
and CSNB in a sense provide “ablated” versions of CFA,
since they each acquire values either only during training
(AFA) or only during testing (CSNB), while CFA acquires
values during both. Consistently, we found that CFA had
the lowest overall cost, while achieving accuracy compara-
ble to (or in excess of) the other methods. CFA was also
equal to or better than random selection of features to ac-
quire (RFA) in terms of accuracy, and significantly better
than EFA (error-based selection). Therefore, the confidence
values that CFA relies upon provide a good decision criterion
for acquiring additional information. However, as discussed
in Section 2, in the case of inaccurate confidence values, re-
calibration techniques might help to improve CFA’s perfor-
mance [11]. In comparison to baselines that acquire all val-
ues, CFA achieved the same accuracy or better, at a fraction
of the cost.

CFA is independent of the base classifier used. We
experimented with using Naive Bayes, J48 decision trees,
and support vector machines as the base classifiers for CFA.
We did not find that any single base classifier was always
the best (nor did we expect to, given the No Free Lunch
theorem [16]), but the results provide evidence that CFA is
not restricted to any single base classifier’s capabilities.

CFA as described here uses a cascade classifier, in which
each model is trained with more features, and predictions are
made only with the last applicable classifier. An alternative

would be to use a weighted ensemble, in which all applicable
models are allowed to “vote,” with weights that might be
determined by their confidence, by the amount of training
data, or in some other way. We have not yet explored these
variations, but plan to experiment with alternative ensembles
in future work.

CFA currently adopts a greedy approach to feature
selection, always choosing the cheapest unused feature to
add to the next successive model to be trained. Batch
effects, in which acquiring multiple features at once is
cheaper than incrementally acquiring them, occur in many
domains and could be exploited to further reduce costs,
as in Sequential Batch Testing [13]. Furthermore, there
may be ways to identify the most informative next feature
based on the distribution of instances in the selected subset.
One possibility would be to acquire all of the features for
a randomly selected subset of the training instances, and
use this “complete data” subset to perform feature selection
that would be used to guide the feature acquisition process.
Background information about the relevance of different
features could be used in a similar way. We are also
interested in interactive applications, in which the system
could train a model and provide feedback to the user when
the current set of features is inadequate, in the form of a
request for additional features. In scientific investigations,
this iterative (active) process could be of great assistance in
better understanding the nature of a new domain.

Finally, we are also exploring ways to automatically
learn optimal per-model confidence thresholds. Although
the user specifies the desired target confidence, individual
models in the cascade ensemble may benefit from using dif-
ferent thresholds, since each model is solving a slightly dif-
ferent sub-problem. Initial tests have shown that the number
of features used in a classifier can result in increased poste-
rior probabilities for instances that are correctly classified, as
well as instances that are misclassified. This suggests that a
dynamic threshold per model may behave more consistently
than a single threshold for all models.
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