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Abstract

We present skill bootstrapping, a proposed
new research direction for agent learning and
planning that allows an agent to start with
low-level primitive actions, and develop skills
that can be used for higher-level planning.
Skills are developed over the course of solv-
ing many different problems in a domain,
using reinforcement learning techniques to
complement the benefits and disadvantages
of heuristic-search planning. We describe
the overall architecture of the proposed ap-
proach, discuss how it relates to other work,
and give motivating examples for why this
approach would be successful.

1. Introduction

Many of the existing techniques for controlling goal-
directed agent behavior fall into two primary ap-
proaches: heuristic-search planning (HSP) and rein-
forcement learning (RL). Each has its advantages and
disadvantages. For instance, heuristic-search planning
does not traditionally learn from previous experience,
and can only be applied in domains for which a com-
plete domain model exists. On the other hand, rein-
forcement learning often performs poorly in new situ-
ations until it has gained enough experience to learn
an effective policy, and it is difficult to scale RL up to
large, complex domains.

Both RL and HSP also face difficulties in domains
that require long action sequences. Heuristic-search
state-space planning is intractable in such domains,
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because of the very large search spaces, and reinforce-
ment learning may require exponentially many execu-
tion trace to converge.

In order to address both the unique and the shared
problems of HSP and RL, we propose a new research
direction called skill bootstrapping (SB). The goal of SB
is to provide an integrated learning and planning ar-
chitecture that can improve its performance over time
in complex domains. An SB agent starts with a basic
set of primitive actions (and their preconditions and
effects) as its model of the world. Over the course of
solving numerous problems by applying HSP to the
primitive actions, SB identifies recurring subgoals, for
which it uses RL to create skills that can be applied
within the HSP process to solve these subgoals more
efficiently. The skills behave as partial policies that
can be used reactively, without lengthy deliberative
reasoning.

Once a new skill is learned, it becomes available for use
by the planner along with the other primitive actions,
allowing for more compact plans. Additionally, just as
future plans can use learned skills, future skills may
be built upon lower-level skills. Over the course of
the agent’s experience, this will eventually result in a
hierarchy of skills that support high-level reasoning.

The proposed SB approach is still in its very early
stages, so all of the design issues have not been solved.
We present here our preliminary ideas about how to
create SB; we use the present tense throughout the
paper, but wish to emphasize that this is proposed re-
search, for which no implementation yet exists. We
will detail the architecture of the proposed SB frame-
work, discuss possible test domains and how the SB
architecture would handle them, describe how SB re-
lates to other current research, and discuss the next
critical research steps that will be taken.
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Figure 1. The SB architecture has three primary components: Planning, Memory, and Skill Learning. The planning
component takes a set of actions and a goal, and uses heuristic search to find a plan that achieves the goal. Successful
plans are stored in a plan library which is monitored by a skill identifier to find sets of plans that share common types of
goals. These sets of plans are used to learn a parametrized skill that accomplishes that goal type. Learned skills augment
the action set, and can then be used by the heuristic search planner. This process is applied repeatedly, resulting in a
hierarchy of skills.

2. SB Approach

The SB architecture consists of three primary compo-
nents: planning, memory, and skill learning (Figure 1).

The heuristic-search planning component takes as in-
put the current goal to be achieved and a list of avail-
able actions. In a newly created SB agent, the planner
simply uses a heuristic to guide a state-space search
for the goal. The resulting plan is sent to the mem-
ory component, where the plan is stored and indexed
in a plan library. A skill identifier monitors the plan
library to find common types of goals for which large
numbers of plans have been indexed. We say com-
mon type because goal states need not be identical,
but must only share similar properties. For instance,
picking up block A is not the same goal as picking up
block B, but it is the same type of goal. These goal
similarities can be determined using the organization
of the plan library, similar to techniques used by case-
based planning algorithms such as CHEF (Hammond,
1989).

Once a common goal type with sufficient relevant plans

has been detected, a new skill is created to achieve that
goal. Skill learning uses the traces stored in the plan
library to create a policy for the skill. In other words,
each plan retrieved from the plan library is rerun and
the Q-values of the state-action pairs in the plan are
learned by the RL process (see Section 2.2). (The re-
ward value received at each state is set to 0 for all
non-goal states and 1 for the goal state.)

Since learned skills become part of plans that are
stored in the plan library, over time, skills will be de-
veloped that utilize other skills. This property is desir-
able because the resulting hierarchies of skills permit
efficient planning and execution without a lengthy de-
liberative reasoning process.

The execution process, and possible replanning that
may occur if a skill fails, are discussed next, in Sec-
tion 2.1.

2.1. Plan execution and replanning

After producing a plan, the sequence of actions is exe-
cuted by the execution modules. Primitive actions are
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simply applied. Skills, however, require some execu-
tion monitoring, since their outcomes are not known
with complete certainty. Specifically, when a skill is
executed from a given state (real, or in the search’s
model), an ε-greedy policy is used. The ε-greedy pol-
icy is followed until the subgoal associated with the
skill has been achieved, at which point control is re-
turned to the top-level planning and execution process.
RL updating is applied to this new planning trace, so
that performance can be improved even after a skill is
first learned.

If at any point a skill becomes “stuck” and cannot
reach its goal state, then the skill is terminated and
the planner replans the current subgoal from the cur-
rent state. Such execution failures may be detected
either through cycles in the execution, unusually long
execution, or perhaps by associating certainty values
with each skill that estimate how often each state has
been explored in the past.

2.2. Skill learning

The purpose of a skill is to learn how to accomplish a
type of goal, independent of the specific problem for-
mulation. Additionally, it would often be useful to
invoke a skill multiple times within the same prob-
lem, but parametrized to different contexts. To re-
spect these properties, a converted representation of
the world state must be provided as part of the input
to the learning algorithm. This converted representa-
tion would be used both when a skill is initially learned
and when it is invoked by future plans.

Consider the previous example of forming a skill for
picking up a block. In this case, we may use plans
that resulted in picking up Block A and plans that re-
sulted in picking up Block B. In order for the skill to
be parameterized—that is, applicable to any kind of
block—the world state representation for this partic-
ular skill must explicitly indicate which block in the
world is the target block. Furthermore, each such ob-
ject may have relevant attributes (such as its position
and size) that should be used when applying the skill.
Therefore, a state representation is created for each
skill using an appropriate vector format that includes
any such parameters.

Even with a skill-specific representation of the world
state, the skill would still need to be invariant across all
possible goals. In the pickup-block example, there may
be a designated position in the state vector that repre-
sents the target block’s position and size, so the learn-
ing must capture a policy that respects differences in
position and size. Traditional look-up table RL tech-
niques would quickly become insufficient in this con-

text. Saving an entry for every possible state that may
be seen in a domain would be intractable, in terms of
both memory usage and learning time. Instead, skill
learning is performed with a TD(λ) function approxi-
mation approach (Sutton, 1988) that allows for com-
pact storage of skills. Function approximation also
enables the learning process to generalize to multiple
states.

There are a number of different techniques for func-
tion approximation with TD(λ). We propose using
function approximation based on an artificial neural
net (ANN), in much the same way that TD-Gammon
does (Tesauro, 1992). TD-Gammon is a well known
implementation of an ANN TD(λ) algorithm, which
learned to play backgammon very successfully, using
only a raw input representation of the board. An ANN
was chosen in TD-Gammon, because ANNs can learn
non-linear functions of the input vectors, which proved
necessary for learning how to effectively play backgam-
mon. Because RL problems do not have a fixed train-
ing set and can continually learn, it was also found that
increasing the number of hidden nodes in the ANN
did not lead to overfitting of the data, as it often does
in supervised learning domains. Instead, performance
monotonically increased with the number of hidden
nodes used in the ANN.

Because of these properties, an ANN makes a good
choice for use with skill learning as well. Since skill
learning will have to be applied to an unknown number
of problems with various levels of complexity, the non-
linearity of an ANN will allow the skill learning to be
robust to even complex problems. Further, because
performance monotonically increases with the number
of hidden nodes, performance can easily be scaled up
as necessary, while minimizing the risk of overfitting.

There are several key differences between TD-
Gammon’s implementation of ANN-based TD(λ) and
our proposed approach for skill learning. The most
obvious is that TD-Gammon played against another
player (a duplicated version of itself) when learning.
For skill learning, there is no other player; instead,
learning is performed through successful plan traces
(either from previously saved plans, or in actual or
simulated execution). Additionally, since a model of
the game was provided in TD-Gammon, the ANN es-
timated the V(s) state values, which represent the ex-
pected utility of each state. During execution, TD-
Gammon would use the model to determine the result-
ing states from applying each valid action, and choose
the state with the highest V(s) value.

An alternative approach is to estimate the Q(s, a)
state-action pair values, similar to Sarsa(λ) function
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approximation (Rummery & Niranjan, 1994), instead
of the V(s) values. Since multiple state-action pairs
can lead to the same state, learning only the V(s) val-
ues, and querying the model for the resulting states,
requires fewer values to be learned. However, the fact
that SB produces a skill hierarchy motivates our deci-
sion to estimate the Q(s, a) values, rather than V(s)
values. Using V(s) values, the planner would handle
skill execution as TD-Gammon did, by examining the
resulting state of each possible action, and choosing
the action with the highest V(s) value. However, be-
cause skills can be nested in the hierarchy, this process
would potentially require significant additional state
space expansion. For example, if skill sk1 is consider-
ing the outcome of each of its possible actions, and one
of those actions is another skill, then that skill actually
has to be executed itself to determine the end state,
even if that skill is not ultimately selected. Not only
does this mean the full execution of each potentially
used skill, but at each time step of execution for each
of the child skills, they must also consider all possible
actions. If the child skills also have nested skills, they
too must be expanded.

Computing the result of a high-level skill therefore re-
quires a large search space expansion, which is exactly
what skills are intended to avoid. By instead learning
the Q(s, a) values, the agent can quickly select the best
action or skill to apply, without having to perform this
state space expansion.

3. Example Domains

In general, the SB architecture is best suited for do-
mains in which an agent may have very low-level action
primitives, and can be trained first with simple prob-
lems, then over time presented with progressively more
complex problems. In such domains, it may be difficult
to design a complete, effective set of planning opera-
tors. The SB approach, however, permits an agent to
construct its own set of HTN-like operators over time.

We present two examples of such domains, and discuss
how the SB architecture might be applied within them:
the taxi domain (Dietterich, 2000) and a chimps-and-
bananas domain inspired by Köhler’s chimpanzee ex-
periments (1925).

3.1. Taxi domain

Dietterich’s taxi domain (2000) is a grid world with
various stations where people can be located, or wish
to go to, and other locations where fuel can be ob-
tained. The ultimate goal is to pick people up and take
them to where they need to go, without running out

of fuel. The taxi has actions for moving to the north,
south, east, or west grid cell, picking up or dropping
off a person at the taxi’s location, and filling up at a
refueling station.

An SB agent might first be given simple problems to
solve, such as driving to a particular location. The
agent will create plans that use the primitive move-
ment actions to move to different locations. Once
the agent has indexed a number of plans that involve
reaching a location, the agent will develop a param-
eterized skill, DriveTo(loc), that allows the agent to
travel to a location, loc.

Once this basic navigation skill has been learned, plan-
ning for taking a person to or from a location be-
comes trivial. For example, if person p needs to be
picked up from location Red and be taken to loca-
tion Green, the top-level plan would consist of the ac-
tions DriveTo(Red), Pickup(p), DriveTo(Green), and
Dropoff(p). After a number of these problems have
been solved, a Transport(p, loc) skill might be devel-
oped for transporting a person. The Transport skill
would be parameterized by the person (with properties
such as their current position) and the location where
they need to travel. All of the problems with this kind
of goal would thus result in single-action plans.

3.2. Köhler’s Chimp-Banana problem

A more complex domain is a recreation of Köhler’s
chimp-banana experiments (1925). In Köhler’s famous
study of chimpanzees’ cognitive ability, one of his ex-
periments involved hanging a banana from the ceiling,
and placing boxes in the room such that a chimp would
have to stack the boxes in order to get to the banana.
This is an interesting problem because it requires plan-
ning, understanding of the world, and a set of physical
skills that chimps would have developed in their lives.

In this domain, we can imagine creating an agent that
has primitive abilities to move its legs, arms, and
hands. The agent could start by being given a task
to pick up a banana that is sitting within its grasp.
The agent would then have to form plans to move its
arm out, and grab the banana with its hand. Various
problems could be given with the banana in slightly
different locations, but still within grasp. This would
eventually lead to skill development for grasping ba-
nanas. The agent could also be presented with prob-
lems of moving to different locations so that it develops
walking skills. Similar skills for climbing or picking up
boxes could also be developed. Eventually, in order
to retrieve a banana from the ceiling, the agent would
have enough skills to form plans that consisted of walk-
ing, climbing, picking up boxes, and grabbing bananas.
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This would result in much higher-level reasoning and
much more compact planning, than if the agent had
to create such a complex plan using only the primitive
actions (i.e., individual body movements).

4. Related Work

The concept of policy control that builds on lower-
level action primitives to achieve a goal is not new to
agent control. In planning fields, this notion is usu-
ally referred to as macro-operators or macro-actions.
Macro-actions are generally constructed as a fixed se-
quence of primitive actions. Botea et al. (2005) present
an algorithm called Macro-FF that examines a plan-
ning domain for potential sequences of actions to cre-
ate macro-actions, and then filters that list based on
heuristics and experience in training problems. New-
ton et al. (2005) use genetic algorithms on training
problems to determine useful sequences of actions for
use as macro-actions in planning. Marvin (Coles &
Smith, 2007) is a learning algorithm that uses macro-
actions to escape heuristic plateaus. Coles et al. (2007)
extended Marvin to allow macro-actions learned in
previous problems of the same domain to be applied to
solve future problems. This large collection of macro-
actions is stored in a macro-action library that is man-
aged and pruned.

Two key commonalities of these approaches is that
macro-actions are a fixed sequence of actions, and that
the list tends to need to be pruned to avoid large col-
lections of macro-actions. The SB approach proposed
here differs in that skills are not fixed sequences of
actions. Instead, they are policy control mechanisms
that vary the action sequence depending on the partic-
ular state of the world. Because skills can vary their
action sequence depending on the situation, a single
skill could effectively represent a collection of macro-
actions as one succinct unit.

Using hierarchies of actions in reinforcement learning
has also been an area of active research. The MaxQ
algorithm (Dietterich, 2000) used a designed hierarchy
of subtasks to efficiently solve more complex problems.
These subtasks are often referred to as temporally ex-
tended actions. More recent work has focused on au-
tomatically identifying the action hierarchy. Jonsson
and Barto (2005) presented the VISA algorithm, which
uses a Dynamic Bayesian Network (DBN) to assist in
construction of the action hierarchy. The HI-MAT al-
gorithm (Mehta et al., 2008) is similar to the VISA
algorithm, but couples a DBN with a successful tra-
jectory of a source reinforcement learning problem to
determine the hierarchy.

With these algorithms, the action hierarchies are fixed
structures that have a defined root structure and are
specific to a single problem. With the SB architecture,
skills form hierarchies, but are not fixed in structure
and can grow over time. Additionally, skills learned in
the SB architecture are not explicitly structured. That
is to say, skills that are referenced by parents skills, do
not have to be invoked by the parent. Rather, any skill
can be independently invoked if it is pertinent to the
problem at hand. This also means that skills can be
shared among different problems, and their structure
does not have to be relearned.

Other work on forming action abstraction comes from
Simsek and Barto (2007). They use the same termi-
nology of skills to represent policies that achieve some
subgoals in a task. To identify skills, they examine the
graph structure of reinforcement learning problems to
identify states that are likely important in the prob-
lem. The SB architecture differs in that instead of
explicit states being used to identify places for skills,
types of goals are identified that may result in differ-
ent states, but states that share similar properties and
may be parameterized. SB also differs in that skills can
be hierarchical, building on the abilities of lower-level
skills.

5. Research Questions and Discussion

The SB architecture proposes a new direction for plan-
ning and reinforcement learning that leads to a number
of important research questions.

The first important question is what kind of heuristic-
search planning algorithm should be used, and how
to handle heuristics. In practice, traditional methods
for computing heuristics and planning may be utilized,
but when skills are introduced, determining how to
handle heuristics may become a problem, since heuris-
tics are often computed as a relaxed version of the
problem. In this case, it might be best to use a approx-
imate postcondition for each skill (namely, the specific
goal that the skill is intended to solve), even though
there may also be other postconditions (side effects)
that result from executing the skill. When expanding
a skill in the actual search space, the side effects can
be determined from the underlying primitive-action
model.

A second question is how to handle any uncertainty in
the model. The model the agent uses may represent
the expected outcome of primitive actions, but during
actual execution, the outcome could be different, and
may prevent the current plan from being executable.
In these cases, one approach to take is to replan to
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the expected outcome of a primitive action. However,
if there is a high variability for a primitive action’s
outcome, this may result in a lot of replanning. Since
RL is effective in uncertain environments, it instead
may be more effective to generate a skill that achieves
the expected outcome.

A third question is how to organize the plan library
so that similar plans may be easily detected. Further,
it may often be useful to extract subgoals from plan
traces in order to develop skills; however, it may then
be unclear which prior actions in the plan were actu-
ally relevant for achieving that subgoal. An expensive
solution would be to replan from the start state ex-
plicitly to the desired subgoal, but this would have to
be done for every such plan. A more practical ap-
proach might be to evaluate all the other plans with
that subgoal to determine what the necessary precon-
ditions were and only take the relevant parts of the
plan traces—but doing so might not be trivial.

A fourth question is how the skill learner can represent
skills that involve a variable number of objects. For
instance, in a blocks world that includes problems with
different numbers of blocks, how can a mapping of the
world state be created that is compatible with these
differences?

Finally, another important question is how to struc-
ture a training regime such that the agent can develop
a set of useful skills. One possible solution is to pro-
vide an expert instructor who can hand design a set of
skills that may potentially be relevant for the agent,
and who would give the agent progressively more diffi-
cult tasks. Another less user-intensive possibility is to
allow the agent to explore the world, and detect com-
mon types of states that occur in exploration. The
agent could then create its own set of goals that rep-
resent these types of states. By starting from many
different random states, the agent could then develop
plans for these goals that would lead to skill develop-
ment in the usual way. The exploration process could
then continue with the new skills augmenting the ex-
ploration.

Although there are significant challenges to overcome,
we believe that the SB architecture represents a novel
new direction that can combine the benefits of both
heuristic-search planning and reinforcement learning.
The SB model provides an effective and adaptable ap-
proach for designing agents that can operate in com-
plex, dynamic environments.
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Köhler, W. (1925). The mentality of apes. London and
New York: K. Paul, Trench, Trubner & Co., Ltd.

Mehta, N., Ray, S., Tadepalli, P., & Dietterich, T.
(2008). Automatic discovery and transfer of MAXQ
hierarchies. Proceedings of the 25th International
Conference on Machine Learning (pp. 648–655).

Newton, M., Levine, J., & Fox, M. (2005). Genet-
ically evolved macro-actions in AI planning prob-
lems. Proceedings of the 24th UK Planning and
Scheduling SIG, 163–172.

Rummery, G., & Niranjan, M. (1994). On-line q-
learning using connectionist systems (Technical Re-
port). University of Cambridge, Department of En-
gineering.

Simsek, O., & Barto, A. (2007). Betweenness central-
ity as a basis for forming skills (Technical Report).
University of Massachusetts, Department of Com-
puter Science.

Sutton, R. (1988). Learning to predict by the methods
of temporal differences. Machine learning, 3, 9–44.

Tesauro, G. (1992). Practical issues in temporal dif-
ference learning. Machine learning, 8, 257–277.


