
Revisiting Reuse in Main Memory Database Systems

Kayhan Dursun
Brown University

Carsten Binnig
Brown University

Ugur Cetintemel
Brown University

Tim Kraska
Brown University

ABSTRACT
Reusing intermediates in databases to speed-up analytical
query processing was studied in prior work. Existing so-
lutions require intermediate results of individual operators
to be materialized using materialization operators. How-
ever, inserting such materialization operations into a query
plan not only incurs additional execution costs but also often
eliminates important cache- and register-locality opportuni-
ties, resulting in even higher performance penalties. This
paper studies a novel reuse model for intermediates, which
caches internal physical data structures materialized during
query processing (due to pipeline breakers) and externalizes
them so that they become reusable for upcoming operations.
We focus on hash tables, the most commonly used internal
data structure in main memory databases to perform join
and aggregation operations. As queries arrive, our reuse-
aware optimizer reasons about the reuse opportunities for
hash tables, employing cost models that take into account
hash table statistics together with the CPU and data move-
ment costs within the cache hierarchy. Experimental results,
based on our prototype implementation, demonstrate per-
formance gains of 2× for typical analytical workloads with
no additional overhead for materializing intermediates.

1. INTRODUCTION
Motivation: Reusing intermediates in databases to speed-

up analytical query processing has been studied in the past
[16, 29, 22, 14, 9, 32]. These solutions typically require in-
termediate results of individual operators be materialized in
memory during query processing to be considered for reuse
in subsequent queries. However, these approaches are not
optimal for modern main memory databases. First, insert-
ing additional materialization operations into a query plan
results in an additional overhead that first needs to be amor-
tized by subsequent queries that can reuse the materialized
intermediates. Second, modern main memory DBMSs are
typically heavily optimized for cache- and register-locality
[17, 26, 23] and therefore attempt to minimize pipeline break-
ers.

To this end, adding additional materialization operations
into a query plan not only adds additional traffic to the
memory bus but, more importantly, also prevents impor-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’17, May 14 - 19, 2017, Chicago, Illinois, USA
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4197-4/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3035918.3035957

tant cache- and register-locality, which results in perfor-
mance penalties. Consequently, the benefits of materia-
lization-based reuse techniques heavily depend on the char-
acteristics of the workload; i.e., how much overlap between
queries of a given workload exists. In the worst case, if the
overlap is low, then the extra cost caused by materializa-
tion operations might even result in an overall performance
degradation for analytical workloads.

The goal of this paper is to revisit ”reuse” in the context
of modern main memory databases [17, 1, 6]. The main idea
is to leverage internal data structures that are already ma-
terialized by pipeline breakers during query execution. This
way, reuse comes for free without any additional execution
costs. Moreover, as we will show in our experiments, result
reuse becomes more robust towards workloads with different
reuse potentials and provides benefits for a wider range of
workloads even if the overlap between queries is not so high.

In this paper, we present a new main memory database
system called HashStash that reuses internal data struc-
tures. The focus of this work is on the most common internal
data structure, hash tables (HTs), as found in hash-join and
hash-aggregate operations. We leave other operators and
data structures (e.g., trees) for future work.

Contributions: To the best of our knowledge this is the
first paper that studies the reuse of internal data structures
for query processing. As a major contribution, we present a
new system called HashStash that extends a classical DBMS
architecture to support the reuse of internal hash tables.
The architecture of HashStash supports two reuse models:

(1) Single-query Reuse: In this re-use model, users or
applications submit a single query to a HashStash-based
DBMS just as in normal DBMSs. However, different from
a classical DBMS, a HashStash-based DBMS identifies the
best reuse-aware plan that leverages existing intermediate
hash tables. To support this model, we extend the DBMS ar-
chitecture by three components: (a) a cache for hash tables
that keeps lineage and statistics information, (b) a reuse-
aware optimizer that uses new operator cost models and enu-
meration strategies to determine which hash tables should
be reused by which operators in order to minimize the total
query runtime, and finally (c) a garbage collector that evicts
hash tables from the cache as needed.

(2) Multi-query Reuse: Many analytical applications to-
day execute multiple queries concurrently to analyze and
report different aspects of the same data set. In order to
support multiple queries that are submitted at the same
time, we leverage the concept of shared plans as introduced
in [11, 10] and extend them in the following directions: (a)
we develop shared reuse-aware plans, i.e., shared plans can
also re-use the hash tables in HashStash and (b) we extend
the optimizer in HashStash to create optimal reuse-aware
shared plans for a given batch of queries.

1275

We evaluate the performance of HashStash under work-
loads with different reuse potentials. Our experiments show
that HashStash outperforms materialization-based reuse for
any of these workloads independent of the reuse potential.

While our results are focused on main memory databases,
the reuse of internal data structures could also be applied in
classical disk-based database systems. In these systems, the
main bottleneck is typically disk I/O and thus effects such
as register- and cache-locality play a less important role.
However, since reuse of internal data structures avoids the
re-execution of sub-plans, we still expect to see performance
gains when applying our techniques in a disk-based database
system. Only in cases where the reuse potential is low, the
additional memory overhead for storing internal data struc-
tures might have a negative impact since the database buffer
then has less space to cache pages from the base tables in
memory, which might cause an overall slowdown.

Outline: The rest of this paper is structured as follows.
Section 2 gives an overview of our suggested HashStash-
based architecture to support single-query and multi-query
reuse. Section 3 and Section 4 then present the details
for each of these reuse cases and discuss novel optimiza-
tion strategies to support them. Afterwards, Section 5 dis-
cusses how garbage collection works in HashStash. Section
6 presents our evaluation of our HashStash prototype. Fi-
nally, Section 7 discusses related work and Section 8 con-
cludes with a summary and outlines potential future work.

2. HASHSTASH OVERVIEW
The main goal of HashStash is to leverage internal hash ta-

bles for reuse that are materialized during query execution.
To achieve this, in HashStash we add the following compo-
nents to a classical DBMS architecture (see Figure 1): (1) a
Reuse-aware Query Optimizer (RQO) that replaces the tra-
ditional (non-reuse-aware) optimizer, and (2) a Hash Table
Manager (HTM) that consists of a cache of hash tables and
a garbage collector. In the following, we discuss each compo-
nent individually and then present an example to illustrate
the main ideas of HashStash.

2.1 Reuse-Aware Query Optimizer
The Reuse-Aware Query Optimizer (RQO) offers two in-

terfaces for compiling and optimizing queries: a query-at-a-
time interface for single-query reuse and a query-batch in-
terface to support multi-query reuse.

Query-at-a-time Interface: This interface accepts a
single query and returns an optimized reuse-aware execu-
tion plan. The main goal of the reuse-aware optimizer is
to decide which hash tables in the cache to reuse such that
the overall query execution time is minimized. In order to
select the best reuse-aware execution plan, the reuse-aware
optimizer enumerates different join orders and decides for
each plan which is the best reuse case based on the hash
tables in the cache. Different from a traditional query opti-
mizer, our reuse-aware optimizer implements two important
extensions: (1) In order to decide which hash table to reuse,
the optimizer leverages the so called reuse-aware cost mod-
els. Different from normal cost models, reuse-aware cost
models additionally take statistics of a candidate hash table
into account in order to estimate the execution costs for the
different reuse cases discussed before. (2) The reuse-aware
optimizer implements benefit-oriented optimizations. The
main intuition is that a plan is preferred over another if it

Figure 1: Additional HashStash Components

creates hash tables that promise more benefits for future
reuse even if the initial execution is slightly more expensive.

Furthermore, the HashStash optimizer supports four dif-
ferent cases for reuse-aware operators: exact-, subsuming-,
partial-, and overlapping-reuse. This is different from the
existing approaches in [16, 29, 22], which only support the
exact-reuse, and the subsuming-reuse cases. The exact case
enables a join or aggregation operator to reuse a cached
hash table which contains exactly the tuples required by the
query. In that case, complete sub-plans might be eliminated
(e.g., the one which build the hash table of a hash-join).
Compared to the case before, the subsumption case is pos-
sible when the reused hash table contains more tuples than
needed. This might lead to false-positives, which need to
be post-filtered by an additional selection. The overlapping
and the partial case are different. Both cases allow the reuse
of a hash table where some tuples are “missing”. These tu-
ples are added by HashStash during query execution. To
support all these different reuse cases the optimizer applies
different rewrites rules during optimization.

Figure 1 shows how the reuse-aware optimizer is inte-
grated into HashStash. First, the optimizer enumerates dif-
ferent join orders and retrieves candidate hash tables for
reuse. Once the optimal reuse-aware plan is found, the op-
timizer sends the information regarding which hash tables
will be reused to the HTM for book-keeping as shown in step
2 (Figure 1). Finally, the optimizer sends the reuse-aware
plan to the executor as shown in step 3 (Figure 1). Once
the plan execution is finished, the DBMS runtime informs
the HTM to release all used reused hash tables as shown in
step 4 (Figure 1), which make them available for garbage
collection for instance. Details about the query-at-a-time
interface are described in Section 3.

Query-Batch Interface: The query-batch interface is
different from the query-at-a-time interface since it accepts
multiple queries submitted as a batch. Different from the
query-at-a-time interface, subsets of queries submitted in
the same batch can share the same execution plan; called
reuse-aware shared plan in the sequel. The main difference
of HashStash than the approach presented in [11] is to in-
tegrate the before-mentioned reuse techniques into shared
plans. In order to find the best reuse-aware shared plan, we
developed a novel reuse-aware multi-query optimizer that
merges individual reuse-aware plans using a dynamic pro-
gramming based approach. Details about the query-batch
interface are described in Section 4.

1276

Figure 2: Reuse Example

2.2 Hash Table Manager
The two components of the Hash Table Manager (HTM)

are the hash table cache and the garbage collector.

Hash Table Cache: The hash table cache manages hash
tables for reuse; it stores pointers to cached hash tables, as
well as lineage information about how each one of them was
created. It also stores statistics to enable the cost-based
hash table selection by the optimizer. For our initial proto-
type, we allow only one query to reuse a hash table in the
cache at a time (except for the query-batch interface). How-
ever, for future work, we also plan to look into sharing the
same hash table between concurrent queries.

Garbage Collector: The main goal of the garbage col-
lector is to decide which hash tables to evict. The cache
triggers the garbage collector when no more memory is avail-
able to admit new hash tables. Therefore, the garbage col-
lector maintains usage information and implements eviction
strategies to decide which hash tables to remove.

2.3 Reuse Example
Figure 2 illustrates a reuse example for a sequence of three

queries from a data exploration session. The initial query
Q1 executes an aggregation over a 3-way join of the tables
Customer, Orders, and Lineitem for all lineitems shipped
after 2015-02-01. For this query no reuse is possible (since
it is the initial one). However it materializes all three hash
tables HT1-HT3 in the cache of HashStash.

The follow-up query Q2 then executes a query that differs
from Q1 only in the filter predicate; i.e., it selects lineit-
ems that shipped after 2015-01-01. In order to execute
Q2, HashStash can reuse hash table HT2 (exact-reuse) and
thus avoids to recompute the join of Customer and Orders.
Moreover, the hash table HT3 produced by the aggrega-
tion of Q1 can also be reused to compute the aggregation
operator in Q2. However, since HT3 does not aggregate
all required lineitems (due to partial-reuse), the base table
Lineitem needs to be re-scanned for the “missing” tuples be-
tween 2015-01-01 and 2015-02-01. These tuples are added
to HT3 by the reuse-aware plan of Q2.

Finally, the last query Q3 is similar to Q2. The only dif-
ference is that it removes the group-by attribute c.age. For
executing Q3, HashStash can directly reuse the hash table
HT3 (exact-reuse). However, due to the removed group-by
attribute, a post-aggregation operator needs to be added.

3. SINGLE-QUERY REUSE
In this section, we describe how to find the best reuse-

aware execution plan for the query-at-a time interface. As
discussed before, finding the best reuse-aware plan is imple-

mented by the optimizer of HashStash. Therefore, we first
give an overview of how the plan enumeration procedure
of our optimizer works and then discuss the cost models of
our reuse-aware hash-join and hash-aggregate operator. Af-
terwards, we present the details on how the matching and
rewriting procedures in HashStash work to enable the differ-
ent reuse-cases (exact, subsuming, partial, and overlapping).
Finally, we discuss some benefit-oriented optimizations that
increase the effect of reuse by spending initially a little more
execution cost to create ”better” hash tables.

3.1 Reuse-aware Plan Enumeration
The plan enumeration algorithm in HashStash can be ap-

plied to complex nested SQL queries. In order to simplify
the presentation, we first show the basic procedure that
only enumerates different join plans for a given SPJ (select-
project-join) query. More complex queries including aggre-
gations and nesting are discussed at the end of this section.

Basic Procedure: Algorithm 1 shows the basic recur-
sive procedure for enumerating different reuse-aware plans
for SPJ queries based on a top-down partitioning search
strategy. This procedure enumerates different partitions
of a given join graph G where the partition function pro-
duces two connected sub-graphs (i.e., no cartesian products
are enumerated). Similar to existing top-down strategies it
memoizes the best plans and avoids that the same parti-
tioning is evaluated twice (line 3). Different from existing
top-down partitioning search strategies such as [8], Algo-
rithm 1 additionally implements the following ideas to sup-
port reuse-aware plans: (1) when partitioning the join graph
into a left and right partition of G, the algorithm enumerates
the different candidate hash tables (including a new empty
hash table) for the right partition Gr and the left parti-
tion Gl that can be reused for building the hash table of a
hash join (line 8 to 16 and 19 to 27). (2) Another difference
from existing top down enumeration algorithms is the ability
to rewrite the respective sub-plan that would reuse a given
candidate hash table (line 9 and 20). This rewrite possibly
eliminates the complete sub-plan (i.e., in the best case G′r
(line 9) and G′l (line 20) might become an identity operation
over the reused hash table if an exact-reuse is possible). We
discuss details of the rewrite procedure for all four different
reuse cases (exact-, subsuming-, overlapping-, and partial-
reuse) later in this section. (3) The last difference is that the
cost estimation (line 13 and 24) uses the cost models for the
reuse-aware join and aggregation operator to estimate the
runtime costs when reusing a given candidate hash table.

Complex Queries: The general idea to support more
complex queries is similar to exciting optimizers. First,
nested queries are unnested using joins if possible. Second, if
unnesting is not possible for the complete query, the enumer-
ation procedure shown before is applied to each query block
individually. In HashStash, query blocks can be in the form
of either SPJ (select-project-join) or SPJA (select-project-
join-aggregation) queries. In order to extend Algorithm 1
for SPJA queries, we only need to iterate over all candidate
hash tables as well as an empty (new) hash table for the
additional aggregation operator in the SPJA block and then
apply the rewrite rules for SPJA queries (cf. Section 3.3).

3.2 Reuse-Aware Operators and Cost Models
In the following, we discuss the reuse-aware join and ag-

gregation as well as their cost models for reuse.

1277

Algorithm 1: Plan Enumeration in HashStash

Input : Join Graph G of SPJ Query Q
Output: Reuse-Aware Execution Plan P

1 Algorithm getBestReusePlan(G)
2 if bestP lans[G] 6= NULL then
3 return bestP lans[G];
4 else
5 foreach partition (Gl, Gr) in G do
6 candHTs← getCandHTs(subPlan(Q,Gr));
7 candHTs← candHTs ∪ createNewHT(Gr);
8 foreach candHT ∈ candHTs do
9 G′

r ← rewritePlan(Gr, candHT);
10 Pl ← getBestReusePlan(Gl);

11 P ′
r ← getBestReusePlan(G′

r);

12 curTree← createPlan(Pl, P
′
r, candHT);

13 if cost(curTree) ≤ cost(bestP lans[G]) then
14 bestP lans[G] = curTree;
15 end

16 end
17 candHTs← getCandHTs(subPlan(Q,Gl));
18 candHTs← candHTs ∪ createNewHT(Gl);
19 foreach candHT ∈ candHTs do
20 G′

l ← rewritePlan(Gl, candHT);

21 P ′
l ← getBestReusePlan(G′

l);
22 Pr ← getBestReusePlan(Gr);

23 curTree← createPlan(Pr, P
′
l , candHT);

24 if cost(curTree) ≤ cost(bestP lans[G]) then
25 bestP lans[G] = curTree;
26 end

27 end

28 end
29 return bestP lans[G];

30 end

3.2.1 Reuse-Aware Hash-Join
A reuse-aware hash-join (RHJ) works similarly to a tradi-

tional hash-join; i.e., the join first builds a hash table from
one of its inputs and then probes into the hash table using
each tuple of the other input. However, an RHJ has two
major differences: (1) in the build phase, the RHJ opera-
tor might need to add the “missing” tuples into the reused
hash table (for overlapping- and partial-reuse), and (2) in
the probe phase, the RHJ operator might need to post-filter
false-positives (for overlapping- and subsuming-reuse); i.e.,
tuples that are stored in a reused hash table but not required
to execute the current join operator. Running the join with-
out post-filtering would produce false-positives during the
probing phase.

For each candidate hash table HT that can be reused to
compute a given join, the optimizer in HashStash needs to
estimate the total runtime costs. In the following, we ex-
plain the details of our cost model.

Cost Model: The main components that determine the
cost of an RHJ are the resize cost cresize, the build cost
cbuild and the probe cost cprobe.

cRHJ = cresize(HT) + cbuild(HT) + cprobe(HT)

Our cost model for the RHJ explicitly considers the cost
for resizing the hash table, cresize. In order to minimize
the cost of resizing in HashStash, we use a hash table that
implements extendible hashing using linked lists for collision
handling. Thus, instead of re-hashing all entries, only the
bucket array needs to get resized and entries can be assigned
to the new buckets lazily.

The costs for building and probing of an RHJ are differ-
ent from a traditional hash-join and depend additionally on
two parameters: (1) the contribution-ratio contr and (2) the
overhead-ratio overh of a candidate hash table HT . The
first parameter, the contribution-ratio contr, defines how

much of the data in the candidate hash table HT already
contributes to the operator if that operator reuses this hash
table; i.e., this data does not need to be added to the hash
table anymore and makes the build phase faster. For ex-
ample, if contr(HT) = 0.5 then only 50% of missing tuples
need to be added to the hash table HT during the build
phase. The second parameter, the overhead-ratio overh,
defines how much unnecessary data is stored in the hash
table; i.e., this data contributes to the total memory foot-
print of the hash table and makes the building and probing
phases slower since the hash table might spill out of the
CPU caches. The overhead-ratio also determines the addi-
tional cost needed to post-filter false positives. For example,
if overh(HT) = 0.7 then 70% of tuples in the hash table are
not required by the RHJ. In the sequel, we discuss how to use
both parameters (contr and overh) to model all of the four
reuse-cases (exact, subsuming, partial, and overlapping).

In the following equations, we show how HashStash esti-
mates the costs of the build phase cbuild(HT) and the probe
phase cprobe(HT) of an RHJ using these two parameters.

cbuild(HT) = |Builder| · (1− contr(HT))︸ ︷︷ ︸
#tuples to insert

· ci(htSize, tWidth)︸ ︷︷ ︸
cost of a single insert

cprobe(HT) = |Prober|︸ ︷︷ ︸
#tuples to probe

· cl(htSize, tWidth)︸ ︷︷ ︸
cost of a single lookup

The build cost cbuild(HT) is determined by the number
of missing tuples that need to be inserted times the cost of
a single insertion ci into the resized hash table. The probe
cost cprobe(HT) is determined by the number of tuples that
need to probe into the hash table times the lookup cost cl
for a single probe into the hash table.

The cost of a single insert/lookup ci and cl depend on
two parameters: (1) the memory footprint of the resized
hash table htSize (shown in the following equation) and (2)
the width of a tuple tWidth stored in the cached hash ta-
ble HT . While the memory footprint htSize determines
if a hash table fits into the CPU caches or not and thus
influences the insert/lookup costs, the tuple width tWidth
determines the number of I/O operations required to trans-
fer a tuple between main memory and CPU caches. Since
the hash table might contain more attributes than needed by
the query (e.g., for post-filtering), the tuple-width tWidth
might actually be larger than a hash table’s tuple-width that
we would create individually for this query.

Moreover, for estimating the build and the probe cost, we
need to be able to estimate the cost of a single insert/lookup
(ci and cl). However, these costs depend on the specific
hash table implementations and other hardware-dependent
parameters; e.g., how prefetching into CPU caches is im-
plemented. Therefore, these costs need to be determined
by a set of micro-benchmarks which calibrate these param-
eters. The details of the micro-benchmark can be found in
the Appendix A.2.

3.2.2 Reuse-Aware Hash-Aggregation
Similar to the reuse-aware hash-join (RHJ), the reuse-

aware hash-aggregate (RHA) can reuse an existing cached
hash table. Similar as for the RHJ, the RHA might also need
to add ”missing” tuples (for overlapping- and partial-reuse)
and post-filter tuples (for overlapping- and subsuming-reuse).
In the following, we discuss the cost model, that estimates
the runtime cost of an RHA for a given hash table.

Cost Model: For a given candidate hash table, the op-
timizer estimates the total runtime costs of a reuse-aware

1278

hash aggregate as shown by the following equation:

cRHA = cresize(HT) + cinsert(HT) + cupdate(HT)

The cost of an RHA consists of three components: (1) the
resize cost cresize, (2) the cost cinsert to insert the initial
tuple for each missing group-by key, and (3) the update costs
cupdate of the aggregated value for the other input tuples.
For example, assume an RHA has 100 missing input tuples
with 10 missing group-by keys. In that case, the RHA needs
to pay 10 times the insert cost and 90 times the update
cost to reuse the given hash table. Similar to the RHJ, the
contribution-ratio contr and the overhead-ratio overh have
an influence on the insert/update costs.

In the following, we take a closer look into defining differ-
ent cost components for a given candidate hash table HT .
The cost component cresize represents the cost to resize the
hash table for the distinct missing group-by keys. Again,
these costs are dependent on the implementation details of
the hash table.

For RHA, we use the same hash table implementation as
for the RHJ operator (i.e., we use the same cost estimates
for resizing). The nature of the aggregation operator defines
the way we estimate the main two cost components. There
is an insert cost when the input tuple represents a group-by
key that doesn’t exist in the hash table. Whereas an update
occurs when a tuple corresponds to a group-by key that was
already inserted into the hash table before. The functions
to estimate the insertion cost cinsert and the update cost
cupdate are shown in the following equations.

cinsert(HT) = |NewKeys| · (1− contr(HT))︸ ︷︷ ︸
#tuples to insert

· ci(htSize, tWidth)︸ ︷︷ ︸
cost of a single insert

cupdate(HT) = (|Input| − |NewKeys)|) · (1− contr(HT))︸ ︷︷ ︸
#tuples to update

·

cu(htSize, tWidth)︸ ︷︷ ︸
cost of a single update

The equations above need an estimate for the insert/up-
date cost (ci, cu) for a input single tuple. These costs again
must be calibrated by a set of micro-benchmarks for a given
hash table implementation and the underlying hardware.
The results can be found in the Appendix A.2.

3.3 Matching and Rewriting
The goal of the matching procedure getCandHTs in Al-

gorithm 1 is to find the candidate hash tables that can be
reused for a given sub-plan; i.e., instead of computing a sub-
plan, we reuse a hash table that was created before to (par-
tially) avoid the computation of the sub-plan. The matching
procedure getCandHTs enumerates all the different candidate
hash tables that are stored in the cache of HashStash and
checks if one of them can be reused.

In the rest of this section, we use the following notation:
C (the cached plan) represents the plan that produced a
cached hash table in HashStash and R (the requesting plan)
represents the input plan of the matching procedure get-

CandHTs rooted by the operator r. If r is a hash-join, R
represents the sub-plan below the join that builds the hash
table (including the join itself but excluding the probing
branch). For a hash-aggregate r, the sub-plan R represents
the operator tree below the aggregation operator including
the aggregation itself.

For finding a matching hash table that can be reused for
R, our hash table manager stores lineage information in a

Figure 3: Match and Rewrite

similar way as described in [22] using a so-called recycle
graph GRec. The idea is that GRec merges the lineage of
all cached hash tables in one graph and represents a union
over all cached plans C. The graph GRec in HashStash thus
consists of nodes that represent operators and edges that
represent the data flow between operators. Moreover, for
each node (i.e., operator) in GRec, we store a flag to rep-
resent if there exists a cached hash table or not; i.e., only
joins and aggregations materialize a hash table and some
hash tables might actually be evicted from the cache by our
garbage collector (see Section 5). Figure 3 shows an exam-
ple of a recycler graph that resulted from two cached plans;
the first plan that produces HT1 contains an aggregation
operator over the Customer table and the second query plan
contains a join operator that builds the hash table HT2 over
the Customer table on the join key cid.

In the following, we intuitively explain how the matching
procedure getCandHTs works and which reuse cases are sup-
ported using the examples in Figure 3. In all reuse cases,
the matching procedure checks if the requesting plan R and
the cached plan C are equivalent (i.e., they do have the
same join graphs) and the cached hash table provides all re-
quired attributes for R. The pseudo code and a more formal
description of our matching procedure can be found in Ap-
pendix A.1. Moreover, for each of the reuse cases we discuss
how to rewrite R to make use of a candidate hash table.
To simplify the presentation in this section, we assume that
the root operator r of R is a join operator and discuss the
aggregation operator in the appendix as well.

Exact-reuse: In this case, R can be directly replaced
by the cached hash table that was created by C. For exam-
ple, Figure 3 (top right) shows the case where the requesting
plan R matches the left path of the recycle graph GRec. The
rewrite rule simply replaces R directly by HT1.

Subsuming-reuse: We also allow that R reuses a hash
table of a cached plan C, if the cached hash table contains
more data than required by R. This is the case if the cached
hash table created by C contains a superset of the tuples
required by R. When reusing this hash table, we have to
post filter after probing to avoid false positives (i.e., tuples
are returned that do not qualify for R). Figure 3 (bottom
left) shows this case. Since the hash table HT2 contains
customers for age ≥ 20 and the requesting plan R requires
only customer with age ≥ 30, all false positives must be post
filtered after probing using the filter predicate σage≥30.

Partial-reuse: We detect a partial-reuse case if a cached
hash table does not contain all required tuples. Therefore,
the rewrite must add the missing tuples to the hash table.

1279

Figure 3 (bottom right) shows an example where HT2 can
be partially reused; i.e., customers 20 ≥ age < 30 must be
added to HT2 from the base table Customer before the hash
table can be reused.

Overlapping-reuse: For this case, we test if the tuples
selected by both plans R and C overlap. In this case, we
apply both rewrites that we have discussed for the partial-
reuse and the subsuming-reuse cases.

3.4 Benefit-oriented Optimizations
HashStash additionally implements the following benefit-

oriented optimizations. The main intuition behind these
optimizations is that one plan P is preferred over another
plan P ′ if the plan P creates hash tables that promise higher
benefits for future reuse.

Additional Attributes: For cached join hash tables, at-
tributes used in selection operations in the sub-plan of the
input which build the hash table might be added to the
cache. This enables post-filtering of false positives with-
out going back to the base tables. At the moment, we use a
greedy heuristic that adds a selection attribute to the cached
hash tables if the extended tuple still fits in the same num-
ber of cache lines. The reason is that based on our micro-
benchmarks in Figure 12 in Appendix A.2, we can see that
adding an additional value to a tuple does not have a nega-
tive impact on the insert, update, and probe cost.

Aggregate Rewrite: AVG is rewritten to SUM and
COUNT to support the partial- and overlapping-reuse at
the cost of initially creating a slightly bigger hash table.
Here, we use the same heuristic as before to decide whether
to apply this rewrite or not.

Join Order: Typically hash tables are always built over
the smaller join input. However, if the hash table is reused in
future it might be also beneficial to build the hash table over
the bigger input. We therefore integrated a simple heuristic
approach into our optimizer that is similar to the techniques
presented in [22] to determine which intermediate result will
provide more benefit for future queries based on the history
of queries executed.

4. MULTI-QUERY REUSE
In this section, we describe the techniques in HashStash

that enable shared plans to reuse cached hash tables. We
call these plans reuse-aware shared plans. In the following,
we first discuss the details of reuse-aware shared plans. Af-
terwards, we present how we extend our optimizer in Hash-
Stash to find an optimal reuse-aware shared plan for a given
query-batch and a set of cached hash tables.

4.1 Reuse-Aware Shared Plans
The basic idea of shared plans is shown in Figure 5. In-

stead of compiling each query into a separate plan, multi-
ple queries are compiled into one shared plan that reuses
hash tables. The idea of shared plans has been presented in
[11] already. In HashStash, we extend shared plans to allow
them to reuse cached hash tables. In the following, we first
reiterate over the idea of shared plans and then discuss the
relevant modifications for our reuse-aware operators to work
correctly in shared plans.

Different from a normal plan, in a shared plan individ-
ual operators execute the logic of multiple queries. The
most common shared operator is the shared scan opera-
tor that evaluates the filter predicates of multiple queries

Figure 4: Dynamic Programming based Plan Merging

in one scan. In order to keep track of which tuples qualify
for which query, shared operators in [11] use a Data-Query
Model where each tuple is tagged by the IDs of those queries
it qualifies for. For example, if a tuple produced by a shared
scan satisfies the predicates of query Q1 and Q3 but not of
query Q2, this tuple will be tagged using Q1 and Q3 (or
101 if a bitlist is used to represent query IDs). Moreover,
other operators such as joins and aggregation operators can
be shared as well. Figure 5 shows an example of a shared
plan where the selection operators and the hash-join are
shared by three queries (Q1 to Q3) while the aggregation is
not shared (i.e., there exists one separate operator for each
query). For the hash-join, we see that tuples tagged with
query IDs (qids) are stored in its hash table. The query IDs
are used during probing to produce the output of the join.

In the following, we describe our extensions for the reuse-
aware hash-join and hash-aggregate such that they can exe-
cute multiple queries at a time.

Shared Reuse-Aware Hash-Joins: In general, the shar-
ed reuse-aware hash-join (SRHJ) operator works similarly
to the non-shared reuse-aware hash-join (RHJ) presented in
Section 3.2.1: Instead of recomputing the hash table in the
build phase from scratch, a cached hash table is reused to
avoid re-computation.

However, there are some important differences between an
SRHJ that has to support query-batches and a non-shared
RHJ that only supports a single query. First, the SRHJ can
only reuse hash tables that include query IDs for tagging
(as shown in Figure 5). A hash table that does not include
query IDs can not be reused for a shared operator. Second,
before the SRHJ operator starts to execute it has to re-tag
all tuples stored in the reused hash table using the predicates
of current query-batch. Otherwise, if it does not re-tag all
tuples in the reused hash table, these tuples will be tagged
with obsolete query IDs from a previous (non-active) query-
batch, which might lead to wrong query results if query IDs
are recycled. To that end, re-tagging represents an overhead
that has to be considered in the cost model of an SRHJ.

Shared Reuse-Aware Hash-Aggregates: Shared ag-
gregates are different from normal aggregation operators
since they split the execution into two phases: a first phase
that groups the input tuples by keys and a subsequent ag-
gregation phase. While the grouping phase is shared for
all queries, the subsequent aggregation phase is carried out
for each query separately (i.e., the output of the grouping
phase is split based on query IDs). In this paper, we focus on
shared hash-aggregates that store the output of the group-
ing phase in a hash table before applying the aggregation
functions on the individual tuples stored in the hash-table.

The goal of a shared reuse-aware hash-aggregate (SRHA)
is to reuse hash tables to avoid the re-computation of the
grouping phase. This is very different from reusing hash
tables for a non-shared RHA operator since hash tables of an
SRHA store individual tuples and not aggregates. Another

1280

Figure 5: Shared Plans using a Data-Query Model

difference is that the SRHA operator also needs to re-tag
all the tuples stored in the reused hash table (just as for
the SRHJ operator) before the operator is executed. Both
these aspects (i.e., storing individual tuples and the need
for re-tagging) influence the cost of an SRHA and must be
included in the cost model.

Finally, SRHA and the RHA operators also differ in how
they select candidate hash tables from the cache. While an
RHA must find hash tables with the same aggregation func-
tions, an SRHA is more flexible since it can recompute any
arbitrary aggregate function on the grouped data. For ex-
ample, a hash table which was built for an SRHA operator
that computes one aggregation function (e.g., SUM) can be
reused by another SRHA operator, which computes a differ-
ent aggregation function (e.g., MIN).

4.2 Plan Enumeration
In the following, we discuss the plan enumeration imple-

mented in HashStash to support query-batches. The goal
of the optimizer is to find a set of reuse-aware shared plans
{S1, S2, . . . , Sn} for a given query-batch {Q1, Q2, . . . , Qm}
with n ≤ m that minimizes the total runtime to execute all
queries in the given batch by reusing cached hash tables.

In order to find the optimal set of reuse-aware shared plans
{S1, S2, . . . , Sn}, HashStash uses a dynamic programming
approach to merge query plans incrementally into reuse-
aware shared plans. The pseudo-code for our procedure can
be found in Appendix A.3. Figure 4 shows the applica-
tion of the dynamic programming procedure to a batch of
three queries (e.g., such as those in Figure 5). Each node in
the dynamic programming graph in 4 represents a so-called
merge configuration that describes which queries should be
merged together into a shared reuse-aware plan and which
should be executed using a separate non-shared reuse-aware
plan. In terms of notation, {Q1, Q2+3} represents a merge
configuration, which defines that two separate plans should
be generated: one non-shared reuse-aware plan for query Q1

and one shared reuse-aware plan for queries Q2 and Q3.
In HashStash, queries may or may not be merged, depend-

ing on two aspects: First, two queries are merged if the total
runtime of the shared plan is less than the sum of executing
two individual plans. Second, not all queries are mergeable.
In order to guarantee a correct plan execution, two queries
Q1 and Q2 can only be merged if they have the same join

graph. Otherwise, these queries cannot be merged and the
plans must be kept separate. If two queries Q1 and Q2 are
mergeable, the result of merging in HashStash is a shared
reuse-aware plan where (1) all join operations are shared (i.e,
SRHJ operators are used for joins) and (2) all aggregation
operators that use the same group-by keys are shared (i.e,
SRHA operators are used for aggregations).

In order to find the merge configuration that results in
the minimal total runtime (i.e., the total sum over of plans),
HashStash starts the dynamic programming process with
merge configurations of size 1 (called level 1). On level
2, the optimizer then continues to find the merge config-
urations for all possible combinations of two queries which
has the minimal total runtime by extending the merge con-
figurations from the level below until the process reaches
level m. For example, in order to compute the merge con-
figuration on level 3 in Figure 4, the dynamic program-
ming process merges query Q3 into the merge configura-
tion {Q1, Q2} of level 2 amongst the other possible combi-
nations (e.g., merging Q2 into {Q1, Q3} or merging Q1 into
{Q2+3}. In order to merge Q3 with the merge configuration
{Q1, Q2}, the dynamic programming process enumerates all
three possible merge configurations {Q1+3, Q2}, {Q1, Q2+3},
and {Q1, Q2, Q3} and keeps only the one with the minimal
total runtime. Moreover, in order to avoid analyzing the
same merge configuration twice, HashStash memoizes merge
configurations and their estimated runtime.

Finally, to estimate the total runtime of a merge con-
figuration, the optimizer computes the optimal reuse-aware
(shared) plan associated with each entry of the given merge
configuration. In order to find the best reuse-aware (shared)
plan associated with entry in a merge configuration, the op-
timizer applies a variant of the enumeration process pre-
sented in Section 3.1 that supports query graphs and not
only query trees. For example, given the merge configura-
tion {Q1+3, Q2} the optimizer applies the enumeration pro-
cedure to find the best (shared) plan separately for Q1+3

and Q2. In order to find the best reuse-aware shared plans
(e.g., for Q1+3), the the plan enumeration in Section 3.1
uses reuse-aware shared operators (i.e., SRHJ and SRHA)
instead of using non-shared reuse-aware operators.

5. GARBAGE COLLECTION
In this section, we provide the details of how garbage

collection is implemented in HashStash. The main goal of
garbage collection is to evict hash tables from the cache that
are most likely not to be reused by other queries in future.
In Section 2, we already described that the hash table man-
ager monitors the hash table cache and will start an eviction
process, whenever the total memory footprint of the cached
hash tables exceeds a threshold (i.e., no more memory is
available to store new hash tables). To decide on which hash
tables to discard is the crucial part of the eviction process.
Different from the eviction process used in database buffers,
the garbage collection in HashStash does not work on the
granularity of pages. Instead it can either work in a coarse-
grained mode on the granularity of complete hash tables or
in a more fine-grained mode on the granularity of individual
hash table entries. While a coarse-grained mode needs less
storage space for book keeping and requires less monitoring
overhead than a fine-grained mode, it tends to keep“old”en-
tries in a hash table even if other entries in the hash table are
only used. Moreover, evicting individual entries from a hash

1281

table in a fine-grained mode requires a scan of individual
buckets of the hash table. Finally, in a fine-grained mode,
concurrent access of the eviction process and queries to the
same hash table need to be synchronized. In HashStash, we
have implemented this fine-grained mode. However, initial
results showed that this mode results in a higher additional
load that reduces the efficiency of HashStash. Therefore, we
have decided to integrate only a least recently used (LRU)
policy that evicts complete hash tables instead of evicting
individual entries of hash tables (i.e., garbage collection is
working in a coarse-grained mode) in HashStash. In order to
implement the LRU policy, the Garbage Collector of Hash-
Stash keeps a timestamp of the last access for each hash table
in its usage information. Based on this timestamp, the evic-
tion process picks the hash table with the oldest timestamp
and evicts it from the cache. The garbage collection process
repeats the eviction until the memory footprint drops be-
low the memory threshold. In our experiments we see that
this policy is able to efficiently deal with different workloads
where queries build on recent results. Moreover, the coarse-
grained mode introduces only a minimal overhead for book
keeping and for executing the eviction process.

6. EXPERIMENTAL EVALUATION
In this section, we report the results of our experimental

evaluation of the techniques presented in this paper. The
main goal of this evaluation is to: (1) compare the efficiency
of reusing internal hash tables in HashStash to other exist-
ing reuse-strategies, (2) present the performance gains for
both interfaces: the query-at-a-time and the query-batch
interface, (3) show the efficiency and the accuracy of our
optimizer and the cost models, (4) analyze the overhead of
applying garbage collection in HashStash. In the following,
we explain the details of the experimental setup that are
used for all experiments.

Workload and Data: In order to analyze the efficiency
of different re-use strategies we are using three different
types of analytical workloads with (1) low-, (2) medium-,
and (3) high-reuse potential. Each of the workload consists
of 64 different queries over the TPC-H database schema.
For the workload with the low-reuse potential, the average
overlap of tuples read from base tables by two subsequent
queries is 1%. This simulates the fact that users often look
at different parts of a database. For the medium-reuse and
high-reuse cases, the overlap is 10% and 50% respectively.
The idea is that the spatial locality increases in workloads
with higher reuse; i.e., in the high-reuse case users typically
explore data in a common region using several queries before
changing focus to other parts of the data. Details about all
queries in the workload are given in Appendix A.4.

For the main dataset in all our experiments, we use a
TPC-H database with a scale factor of SF = 200. Moreover,
we created secondary indexes on all selection attributes used
in our workloads. In order to enable parallel execution (see
Implementation and Hardware), we split all tables in the
TPC-H database into 20 partitions (i.e., one per core) us-
ing the reference-based partitioning scheme described in [33]
to co-partition data. Co-partitioning tables in an analyti-
cal main-memory database is a common method to execute
queries in parallel. This approach minimizes the number of
re-partitioning operations during query processing and thus
increases the degree of parallelism [24, 2]. We could have
also used another classical partitioning scheme where we co-

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

Low Moderate High

S
p
e
e
d
u
p
 f
a
c
to

r

Materialized
HashStash

(a) Speed-up of Runtime

Workload / Stats Mat. HashStash

Low
Mem Size 21.04 GB 23.2 GB
Hit Ratio 0 0.01
Time 287.04 (sec) 256.30 (sec)

Med
Mem Size 17.16 GB 12.86 GB
Hit Ratio 1.27 1.45
Time 291.84 (sec) 198.73 (sec)

High
Mem Size 16.34 GB 10.40 GB
Hit Ratio 1.37 1.58
Time 215.04 (sec) 149.41 (sec)

(b) Workload Statistics

Figure 6: Single-Query Reuse

partition only the two biggest tables on their join keys and
share the other tables between the cores (similar to repli-
cation in the distributed setting). This partitioning scheme
would favor reuse-based strategies (including our own exe-
cution strategy implemented in HashStash) over strategies
that do not implement any form of reuse. The reason is
that execution strategies without reuse would always need
to scan the larger (shared) base tables instead of the smaller
partitions.

We do not evaluate other scaling factors of the TPC-H
database since the relative performance gains of HashStash
compared to other executing strategies (e.g., materialization-
based reuse) will be similar. For some experiments that con-
tain micro benchmarks, we use synthetic data sets (e.g., to
show the effects of our cost models). We describe these syn-
thetic data sets further in the corresponding sections.

Implementation and Hardware: We implemented a
system prototype using C++ and used GCC 4.9.2 as the
compiler for a standalone system. For the execution of
SQL queries, we generate C++ code and compile it into
executable code. This execution model is used in modern
main memory databases such as Hyper [17] and Tupleware
[6] that both generate code in order to avoid unnecessary
overhead during execution (i.e., iterator calls) and enable
higher register and cache locality. For parallel execution, we
use partition-based parallelism, which is a common execu-
tion model in modern parallel in-memory databases [17, 2].
In this model, individual threads first compute a sub-query
on each partition and then the results are merged in order
to compute the final result.

For running all experiments, we used one machine with
an Intel Xeon E5-2660 v2 processor (20 cores) and 128GB
RAM running Ubuntu Server 14.04.1. The cache sizes of
the processor are: 32KB data + 32KB instruction L1 cache,
256KB L2 cache and 25MB L3 cache. Unless indicated oth-
erwise, all experiments are executed using 20 threads (i.e.,
one thread pinned to each core).

6.1 Exp. 1: Single-Query Reuse
We now analyze the benefits of HashStash for the single-

query interface. First, we vary the degree of reuse-potential
using the workloads mentioned before and analyze the effi-
ciency of different reuse strategies. We then study the effect
of different degrees of parallelism on the reuse-efficiency.

Exp. 1a - Efficiency of Reuse: In order to show the
efficiency of HashStash, we executed each workload on the
partitioned SF = 200 TPC-H database using 20 threads
with one thread per partition. We first executed the differ-
ent workloads using the no-reuse strategy, which does not
recycle any intermediates and has no cost for materializa-
tion. Afterwards, we executed the two reuse strategies: (1)
materialization-based reuse where intermediate results are
spilled out to a temporary table in memory, and (2) Hash-
Stash, which reuses internal hash tables.

1282

 0

 0.5

 1

 1.5

 2

 2.5

 3

ZoomIn ZoomOut ShiftMuch ShiftLess DrillDown RollUp

T
im

e
 (

s
e

c
)

Always Shared
Never Shared

Cost Model

(a) Runtime

Mutation Update
Selected Reuse Scheme

(O, P, C, S, Agg)

Zoom In
1996-06-01
1996-09-01

NSSSN

Zoom Out
1992-01-01
1998-01-01

NSSSS

Shift Much
1996-09-01
1998-01-01

NSSSN

Shift Less
1994-01-01
1998-01-01

NSSSS

Drill-down
add

p brand
SNSSN

Roll-up
remove
p mfgr

XXXXS

(b) User Interactions

Figure 7: Reuse on the Query-Level

The reuse strategy (1) is designed to simulate the reuse
models of existing systems such as MonetDB [16] or Vector-
wise [22]. In order to ensure a fair comparison of (1) and
our reuse strategy (2), we cache the same intermediates in
both strategies. For example, a hash table that is created
by a join in (2) can be seen as a materialization of one of
its inputs. Thus for (1), we introduce materialization op-
erators in the plan that materializes the inputs for all join
operations on which the hash table is built, as well as for
the output of the aggregation operators. Furthermore, as
another difference, (1) supports only exact and subsuming-
reuse but not partial or overlapping-reuse as described in
[16, 22]. In order to compare the two reuse strategies and
exclude other effects, we implemented both approaches, (1)
and (2), and the no-reuse strategy in HashStash.

The results of this experiment are shown in Figure 6. In
this experiment, we turned the garbage collection (GC) off.
The effects of GC are analyzed in Appendix A.5. Figure
6a shows the overall speed-up of both reuse strategies over
the no-reuse strategy when running under different work-
loads. We see that our strategy in HashStash shows the
highest speed-up for all workloads (low-, medium-, and high-
reuse). For the workload with high reuse potential Hash-
Stash achieves a speed-up of 1.8× over the no-reuse strategy,
while the materialization-based reuse strategy only achieves
1.25×. For the workload with low-reuse potential, which
simulates a user randomly browsing the data, HashStash
performs comparable to the no-reuse strategy; i.e., it does
not introduce additional significant overhead even if there
is (almost) no reuse potential. This is different from the
materialized-reuse strategy, which incurs a penalty (i.e., a
negative speed-up of 0.85×) caused by the additional ma-
terialization costs. Figure 6b shows additional statistics for
each workload: memory footprint, hit ratio (i.e., number of
times a cached hash table is reused), and the total run-
time. For the materialized-reuse strategy, we report the
memory footprint for all temporary tables as well as the hit
ratio per temporary table (i.e., how often a temporary table
was reused). For HashStash, we report the footprint for all
cached intermediate hash tables tables as well as the hit ratio
per hash table. The hit ratio is given as the average ratio of
how often each element in the cache was re-used by a query.
For the medium- and high-reuse case, we see that HashStash
requires less memory in total while providing a higher hit ra-
tio per cached element than the materialized-reuse strategy.
The main reason for this is that the materialized-reuse strat-
egy only supports two out of four reuse-cases supported by
HashStash. To that end, less intermediates are reused and
more new ones are added to the cache. For the low-reuse
case, we see that the hit ratio of the cache is almost 0 for
both strategies. In this case, the memory footprint is the
highest since queries just register new elements to the cache
without actually reusing them. Moreover, the memory foot-
print of HashStash is slightly higher than the materialized-

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

2 4 8 12 16 20

S
p

e
e

d
u

p
 f

a
c
to

r

Number of threads

Materialized
HashStash

Figure 8: Effect of Multi-threading

reuse case. The reason is that hash tables have an addi-
tional overhead (e.g., pointers for linked lists of extends)
when compared to a temporary table which is essentially
an array in memory without any overhead. However, it is
interesting to note that this does not have an effect on the
runtime of HashStash since caching the internal hash tables
does not cause any additional memory I/O compared to the
no-reuse strategy. This is different from the materialized-
reuse strategy, which requires additional I/O to persist the
output of operators to the memory in order to support reuse.

Exp. 1b - Effect of Parallelism: In this experiment we
executed the workload with medium-reuse potential using
different numbers of threads (equally distributed to our two
sockets) to see the effect of different degrees of parallelism
and thus the effect of a varying load on the memory bus. As
a dataset we again used the partitioned SF = 200 TPC-H
database. We hypothesized that our reuse approach imple-
mented in HashStash would reduce the load on the memory
bus since no additional I/O for materializing intermediates is
required. Figure 8 shows the results of comparing the speed-
up of the two reuse-based approaches (our approach and
the materialization-based reuse approach) over the no-reuse
baseline. The results show that as the number of threads
increase, our reuse-approach improves in terms of speed-up,
which supports our claim. While our reuse approach creates
much less load on the memory bus, the no-reuse and the
materialized-reuse approaches both become memory-bound
when using more than 12 threads. Therefore, the relative
speed-up of our approach over the no-reuse based approach
increases, while the speed-up of the materialization-based
reuse approach decreases slightly.

6.2 Exp. 2: Efficiency of Query Optimizer
In this experiment, we show the benefits of our reuse-

aware optimizer. We study the runtime of (a) reuse on the
query-level as well as (b) reuse on the operator-level (i.e.,
for reuse-aware joins and aggregations). The main goal is to
compare the performance of our cost-model based strategy
with two baselines: the first baseline is never-share, where
we turn reuse in our system completely off. The second
baseline is always-share, where all operators use a greedy-
heuristic to reuse the matching hash table in the cache with
the highest reuse ratio. We include this strategy to show
that greedily reusing hash tables can result in a performance
that is worse than the performance of the never-share strat-
egy and to emphasize the need for a cost model that decides
whether to reuse a hash table or not.

Exp. 2a - Reuse on the Query-level: In this experi-
ment, we selected a subset of seven queries from the work-
load with high-reuse potential. We selected these queries,
since each query represents a different type of user inter-
action and thus provides different reuse potentials for join
and aggregation operators. We selected the high-reuse case
in order to show that the always-share baseline might re-

1283

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

 0.48

 0 20 40 60 80 100

R
u
n
 T

im
e
 (

s
e
c
)

contribution-ratio

Always Share
Never Share
Cost Model

(a) Reuse-Aware Hash-Join

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0 20 40 60 80 100

contribution-ratio

Always Share
Never Share
Cost Model

(b) Reuse-Aware Hash-Agg.

Figure 9: Reuse on the Operator-Level

sult in non-optimal plans and showing that our cost-based
approach finds better reuse-aware plans.

The first query of the sequence we picked is a 5-way SPJA
query over the tables Lineitem, Orders, Part, Customer,
and Supplier. The details of the six follow-up queries are
summarized in Table 7b. The first column of this table lists
the type of user interaction that was applied . The second
column shows the difference of each query to its predecessor:
The first four follow-up queries modify the selection pred-
icate on the attribute o_orderdate. The last two queries
modify the group-by keys.

For running this experiment, we executed all seven queries
sequentially over the TPC-H database using our reuse strat-
egy as well as using the two baselines (never-share and always-
share). The first query populates the cache with five hash
tables in total: four resulting from the joins and one from
the aggregation. The results for the six follow-up queries
(that are candidates for reuse) are shown in Figure 7a. In
this figure, we see that the Cost Model strategy, which is
based on our optimizer, outperforms the two other baselines
since it always picks the optimal reuse strategy. In the best
case (i.e., the RollUp follow-up query), the speed up factor is
about two orders of magnitude better than never-share. The
reason for this is because the cached aggregation hash table
is sufficient to execute the RollUp query (i.e., no missing tu-
ples need to be added and thus no joins need to be executed
at all). For the Drill Down query, we could not execute
the Always Share strategy since the p brand attribute was
never included in the corresponding hash table in previous
executions and thus that hash table is not reusable.

The last column of Table 7b shows the detailed decisions
of our optimizer (i.e., for the Cost Model strategy) for all
operators of the six follow-up queries, which explain our per-
formance results in Figure 7a. The string in this column uses
one character to encode the decision for each operator (join
and aggregation). The operators from left to right are shown
in the header of the last column: For example, the O char-
acter represents the hash table created by the build phase
of a join that scanned the Orders relation. The other char-
acters represent the hash tables created by the build phase
that scanned the Part, Customer, and Supplier tables. Agg
represents the aggregation operator that is executed on top
of all joins. The characters encode the following decision:
N (Not Shared) states that a new hash table was created
for the operator whereas S (Shared) states that the exist-
ing hash table was reused. Moreover, X defines that this
operator was not need to be executed at all for the given
query. For instance, this case occurs for the Roll Up oper-
ation, where the new query just needs to read the cached
aggregation hash table.

Exp. 2b - Reuse on the Operator-level (RHJ): In
this experiment, we show the efficiency of our optimizer for
the reuse-aware hash-join (RHJ). For showing the efficiency,

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 CO COL COLS COLSP COLP OL OLS OLSP OLP LS LSP LP

T
im

e
 U

n
it
s

Relation Groups in each SubPlan

Estimated
Actual

Figure 10: Accuracy of Cost Models

we directly execute the reuse-aware hash-join operators on
two synthetic input tables. The table for the building phase
was 16MB in size and the table for the probing phase was
10× the size of the table for the build phase.

In order to show the efficiency of our optimizer for RHJ,
after adding a candidate hash table of 16MB to the hash
table cache, we executed multiple runs with different con-
tribution ratios from 100% to 0%. 100% contribution-ratio
means that the RHJ can reuse all tuples in the cached hash
table and does not need to post-filter any tuples after prob-
ing; whereas 0% contribution-ratio means that the RHJ can
not reuse any tuples in the cached hash table. Moreover,
0% contribution-ratio means there is 100% overhead in the
reused hash table (i.e., all tuples must be post-filtered) due
to the fact that for all contribution-ratios we keep the size
of the cached hash table the same.

Similar to the previous experiment, we compare our Cost
Model based strategy against the Never Share (i.e., a tra-
ditional hash-join) and the Always Share strategy which
always picks the cached hash table for reuse. Figure 9a
shows the results. We see that the Never Share strategy
pays a constant price since it never reuses the hash table.
Moreover, the costs for the Always Share strategy are con-
stantly increasing since more and more missing tuples need
to be added to the reused hash table (if the contribution-
ratio decreases). At approx. 70% contribution-ratio, the
Always Share gets more expensive than the Never Share
strategy due to the overhead incurred in the cached hash ta-
ble (i.e., tuples in the hash table that are not required by the
RHJ). As an important result, we see that our Cost Model
always picks the best strategy with the minimal cost: for
a contribution-ratio from 100% to 70% it reuses the cached
hash table and below 70% it decides to create a new hash
table since the total runtime costs are cheaper when not
reusing the candidate hash table in the cache.

Exp. 2c - Reuse on the Operator-level (RHA): In
this experiment, we show the effect of reusing hash tables
for reuse-aware hash-aggregates (RHAs). We again varied
the contribution-ratio of the cached hash table as in the
experiment before. Figure 9b shows that our cost model
still picks the best strategy with the minimal cost.

6.3 Exp. 3: Accuracy of Query Optimizer
As described in Section 3.1, the plan enumeration algo-

rithm is one of the core elements of HashStash that selects
a reuse-aware plan with minimal runtime for a given set of
cached hash tables. In this experiment, we validate the ac-
curacy of the cost estimation component of our optimizer
(i.e., the cost function used in Algorithm 1).

For this experiment, we execute the workload described in
Section 6.1 with medium-reuse potential. In order to ana-
lyze the accuracy of our cost estimation, we select one of the
5-way join queries over the tables Lineitem, Orders, Part,

1284

Customer, and Supplier from this workload and analyze the
estimated and actual cost of the optimizer. We selected this
query since it is a complex query with multiple joins and
the optimal reuse-aware plan contains both cases: operators
that reuse a cached hash table and other operators that cre-
ate a new hash table. In order to analyze the accuracy of
our cost estimates, we compare the estimated and the actual
cost for each enumerated sub-plan of this query. Figure 10
shows the results.

As a general observation, we can see that our cost models
are accurate since the actual and estimated costs follow the
same trend. To better understand the results, we clustered
the costs into groups that represent equivalent sub-plans
(i.e., one group represents sub-plans over the same partition
of the join graph). For example, the group CO represents
the enumerated join plans over the two tables Customer and
Orders for all hash tables in the cache. Moreover, to bet-
ter compare the actual and estimated costs, we are using
normalized costs (called time units). For normalization, we
divide the estimated costs of all plans in one group by the
estimated cost of the plan with the lowest cost in that group.
As a result, the plan with the lowest cost per group always
has the cost of 1 time unit.

Figure 10 shows that, in the worst case, the deviation of
the estimated from the actual cost of an enumerated plan
is not higher than 25%. However, it is more important to
determine if our optimizer finds the optimal plan. As dis-
cussed in Section 3.1, plan enumeration works incrementally
and picks the cheapest sub-plan per group and composes the
complete plan based on these optimal sub-plans. Thus, as
long as the optimizer picks the cheapest plan per join group,
it will make the correct decision. In order to see this, if the
optimizer finds the cheapest plan per group, the normalized
costs are sufficient (i.e., the absolute costs do not matter for
this decision). Figure 10 orders the sub-plans per group by
their actual costs. It is important to note that the first plan
per group, which has the lowest actual cost resulting from
the ordering, always has the lowest estimated cost as well.
To that end, our optimizer is able the find the most optimal
sub-plan per group for the query.

6.4 Exp. 4: Multi-Query Reuse
In this section, we present the evaluation results for the

query-batch interface as explained in Section 4. In order to
generate the batches of queries, we group the query trace
of 64 queries of the workload with medium-reuse potential
(i.e., with 10% overlap between the subsequent queries) of
the experiment in Section 6.1 into smaller subsets of 4, 8, and
16 queries. Moreover, we expect that all 64 queries arrive at
the same time and thus do not incur any additional overhead
for batching. In order to populate the HashStash cache, we
first executed one batch of the given size (e.g., 4 queries) and
afterwards executed all 64 queries using different strategies
(see below). In this section, we use a partitioned TPC-H
database of SF = 200 and 20 threads.

In order to show the effect of reuse in shared plans, we ex-
ecuted the same sequence of batches using different modes:
the first mode (single-query plan, wo reuse) is the baseline
where all queries are executed sequentially and do not reuse
any cached hash tables. The second mode (single-query
plan, w reuse) executes all queries individually as well, but
in a set up where reuse of intermediate hash tables using our
cost-model is enabled. The third mode (shared-query plan,

 0

 1

 2

 3

 4

 5

 6

4 8 16S
p
e
e
d
u
p
 o

v
e
r

s
e
ri
a
l
p
la

n
 (

w
/o

 r
e
u
s
e
)

Number of queries in batch groups

Single-Query Plan (w reuse)
Shared-Plan (w/o reuse)

Shared-Plan (w reuse)

Figure 11: Batch Execution in HashStash

wo reuse) uses only pipeline-sharing without reusing any in-
termediates. In this case, we group all queries of a given
batch into one shared plan. In the last mode (shared plan,
w reuse), we use our reuse-aware shared plans using our op-
timizer as introduced in Section 4 to execute the batch.

Figure 11 shows the speed-up of different re-use strate-
gies over the baseline; i.e., the serial execution of all queries
without any reuse. As expected, we see that single-query
plan, w reuse has the same speed-up as in experiment 1a
(see Section 6.1) and does not benefit from batching since
it runs all queries individually. For shared-query plan, wo
reuse, we create one shared plan for all queries in a batch.
In this mode, we see the additional speed-up as an effect
of batching. The speed-up of this approach is higher than
that for the single-query plan, w reuse case. The reason is
that the single-query plan, w reuse all queries are executed
sequentially while shared-query plan, wo reuse only needs to
run one shared query-plan. In this case, shared-query plan,
wo reuse needs only one shared-scan whereas single-query
plan, w reuse needs to execute multiple scans for the same
table since the probing pipeline always needs to scan the
base table; i.e., reuse of a hash table only avoids the build
phase. Finally, for shared-query plan, w reuse the speed-up
is the highest. The reason is that unlike shared-query plan,
wo reuse, we create multiple shared reuse-aware plans for
one batch using our optimizer and thus some of our shared
plans do not need to go back to the base tables at all; e.g.
if they can reuse a hash table that was produced by an ag-
gregation operator. Moreover, shared-query plan, wo reuse
creates only one shared plan that needs to join the tables
for all queries in a batch. Thus, all queries in a batch are
bound by the runtime of largest scan (even if they do not
need this table), which is not the case for shared-query plan,
w reuse.

7. RELATED WORK
Reuse of Intermediates: In order to better support

user sessions in DBMSs, various techniques have been de-
veloped in the past to reuse intermediates [29, 16, 22]. All
these techniques typically require that results of individual
operators are materialized into temporary tables. This is
very different from HashStash, which revisits ”reuse” in the
context of modern main memory DBMSs and seeks to lever-
age internal hash tables that are materialized by pipeline
breakers and thus does not add any additional materializa-
tion cost to query execution.

In the following, we discuss further differences when com-
paring these techniques to the ideas of HashStash. [29] in-
troduces an optimizer to select which intermediates should
be reused. Different from HashStash, the cost models are
rather coarse-grained and centered around the I/O benefits
in disk-based DBMS. To that end, their cost models do not

1285

take the peculiarities of hash tables as well as hardware-
dependent parameters such CPU caches into account. In
[16], the authors integrate reuse techniques into MonetDB,
a system that implements an operator-at-a-time execution
model and relies on full materialization of all intermediate
results. Therefore, MonetDB does not need to tackle the
issues that result from additional materialization costs as
in pipelined databases. [22] extends the work of [16] for
pipelined databases and integrates the ideas into Vector-
wise. In this paper, the authors introduce a cache with lin-
eage which is similar to the ideas of the hash table manager
in HashStash. A major difference is, however, that in both
cases, intermediate results of operators are reused and not
internal data structures of operators as we suggest in Hash-
Stash. Moreover, compared to all the approaches mentioned
before [29, 16, 22], our work also supports reuse-cases for
partial- and overlapping reuse and most importantly intro-
duces a reuse-aware optimizer.

Another area where reuse of intermediates was analyzed
is in the context of Hadoop. ReStore [18] is able to reuse the
output of whole MapReduce jobs that are part of a workflow
implemented in PigLatin. Moreover, it additionally mate-
rializes the output individual operators that are executed
within a MapReduce job. Since ReStore is based on Hadoop
and not tailored towards reuse in main memory systems, it
makes their reuse techniques fundamentally different from
those presented in HashStash.

Finally, buffer pools and query caches in database systems
[5, 7] serve as a cache for frequently accessed data. How-
ever, the main purpose of buffer pools and query caches is
to speed-up the access to base data (in case of the database
buffer) or the final query result (in case of query caches) but
not to reuse intermediates.

Cost Models for Hash Tables: We believe that the
ideas presented in prior work [21, 20, 19] to model the cost
of accessing hash tables are orthogonal to our cost model.
The main contribution of our cost model is that it accu-
rately models the reuse of hash tables, a question that was
not covered by the other models. For example, in the case of
a reuse-aware join operator, we account for the missing tu-
ples that need to be added to build a hash-table. Moreover,
during probing we model the cost of having additional tu-
ples (that are not required by the query) in a hash table. To
model the basic cost components for accessing a hash table
(lookup, insert, update), we currently use ideas of micro-
benchmark-based tuning as discussed in [19]. However, we
could also leverage other cost models such as those discussed
in [21, 20] to derive these costs.

Materialized Views: The reuse of results is a prime
motivation of materialized views [12]. A key difference of
our work is that we directly leverage internal data struc-
tures that are produced by query processing, as opposed to
externalizing results as additional tables. As a consequence,
when using a materialized view as input for a hash-join, the
join operator still needs to build the hash table from the
materialized view first, which is not needed in HashStash.

Moreover, our reuse-aware optimizer implements cost-
models that target the reuse of internal data structures. As
mentioned earlier, our cost model accounts for missing tu-
ples, which is very different from the cost models for materi-
alized views that are not “extended” during query execution.
We also introduced benefit-oriented optimizations in Hash-

Stash (e.g., to store additional attributes in a hash table),
which is another aspect not covered by traditional optimiz-
ers that rewrite queries for materialized views.

Automatic Physical Schema Design: Another line re-
lated to our work are techniques for online physical schema
tuning [3]. The main goal of this work is to create additional
database objects such as indexes or materialized views (dis-
cussed before) without involving a database administrator.
Adaptive indexing [15, 28] also falls into this category and
suggests creating indexes partially as a side effect of query
processing. However, again these techniques do not consider
internal data structures for reuse but externalize their deci-
sion by creating additional (partial) indexes, views, etc.

Multi-Query-Optimization: Another area of related
work is Multi-Query-Optimization (MQO) [27]. The main
idea of MQO is to identify common sub-expressions of a set
of queries that are active in a DBMS at the same time. In or-
der to save resources, common sub-expressions are only exe-
cuted once. One problem of MQO is that in most workloads,
common sub-expressions are a rather rare case. Therefore,
MQO is typically used to optimize OLAP workloads over a
star schema where the chance of common sub-expressions is
higher since most queries join the dimension tables with the
same fact table. All ideas in MQO are orthogonal to the
reuse ideas presented in this paper; i.e., reuse of hash tables
can be integrated into plans created by MQO techniques.

Work-Sharing: Work-sharing systems [25, 34, 31, 9, 4,
11] have similar goals as MQO since they also process mul-
tiple queries at a time by sharing work. However, different
from MQO they do not require identifying the very same
sub-expression to share work. One of the techniques for
work-sharing is the shared (or cooperative) scan operator
[25, 31, 34]. The idea of shared scans is that the scan oper-
ation can be shared by queries even if queries use different
selection predicates. Other systems such as QPipe [9], CJoin
[4], SharedDB [11] extend the idea of work-sharing to other
operators such as joins and aggregations. All these ideas for
work-sharing are again orthogonal to the reuse ideas pre-
sented in this paper. In this paper, we actually extended
the ideas of [11] to integrate reuse into shared-plans.

8. CONCLUSIONS
The salient characteristics of modern main memory DBMSs

and interactive analytical workloads require a critical re-
thinking of reuse in query processing. Our solution, called
HashStash, focuses on the reuse of hash tables populated
with intermediate query results. We avoid additional mate-
rialization costs by leveraging hash tables that are already
materialized at pipeline breakers. We also do not incur the
overhead of casting hash tables into relations and vice versa
by treating hash tables as native units of reuse. Our reuse-
aware optimizer can accurately model hash table usage and
its impact on query performance, leading to highly profitable
reuse choices that offer up to 5.3× performance improvement
over the no-reuse baseline for realistic workloads.

9. ACKNOWLEDGMENTS
This research is supported in part by the Intel Science and

Technology Center for Big Data, NSF IIS-1526639 and NSF
IIS-1514491.

1286

10. REFERENCES
[1] C. Binnig et al. SQLScript: Efficiently Analyzing Big

Enterprise Data in SAP HANA. In BTW, 2013.

[2] C. Binnig et al. Sqlscript: Efficiently analyzing big
enterprise data in SAP HANA. In BTW, 2013.

[3] N. Bruno et al. An online approach to physical design
tuning. In ICDE, 2007.

[4] G. Candea et al. A Scalable, Predictable Join
Operator for Highly Concurrent Data Warehouses.
PVLDB, 2009.

[5] C. Chen et al. The Implementation and Performance
Evaluation of the ADMS Query Optimizer:
Integrating Query Result Caching and Matching. In
EDBT, 1994.

[6] A. Crotty et al. Tupleware: ”Big” Data, Big Analytics,
Small Clusters. In CIDR, 2015.

[7] S. Dar et al. Semantic Data Caching and
Replacement. In VLDB, 1996.

[8] D. DeHaan et al. Optimal top-down join enumeration.
In ACM SIGMOD, 2007.

[9] K. Gao et al. Simultaneous Pipelining in QPipe:
Exploiting Work Sharing Opportunities Across
Queries. In ICDE, 2006.

[10] G. Giannikis et al. SharedDB: Killing One Thousand
Queries with One Stone. PVLDB, 2012.

[11] G. Giannikis et al. Shared Workload Optimization.
PVLDB, 2014.

[12] J. Goldstein et al. Optimizing Queries Using
Materialized Views: A practical, scalable solution. In
ACM SIGMOD, 2001.

[13] P. Hanrahan. Analytic database technologies for a new
kind of user: the data enthusiast. In Proc. of
SIGMOD, 2012.

[14] Harizopoulos et al. QPipe: A Simultaneously
Pipelined Relational Query Engine. In SIGMOD, 2005.

[15] S. Idreos et al. Merging what’s cracked, cracking
what’s merged: Adaptive indexing in main-memory
column-stores. PVLDB, 2011.

[16] M. Ivanova et al. An architecture for recycling
intermediates in a column-store. In ACM SIGMOD,
2009.

[17] A. Kemper et al. HyPer: A hybrid OLTP&OLAP
main memory database system based on virtual
memory snapshots. In ICDE, 2011.

[18] C. Lei et al. Redoop: Supporting Recurring Queries in
Hadoop. In EDBT, 2014.

[19] V. Leis et al. How good are query optimizers, really?
PVLDB, 2015.

[20] F. Liu et al. Forecasting the cost of processing
multi-join queries via hashing for main-memory
databases. In SoCC, 2015.

[21] S. Manegold et al. Generic database cost models for
hierarchical memory systems. In VLDB, 2002.

[22] F. Nagel et al. Recycling in pipelined query
evaluation. In ICDE, 2013.

[23] T. Neumann. Efficiently Compiling Efficient Query
Plans for Modern Hardware. In VLDB, 2011.

[24] O. Polychroniou et al. A comprehensive study of
main-memory partitioning and its application to
large-scale comparison- and radix-sort. In SIGMOD,
2014.

[25] L. Qiao et al. Main-memory scan sharing for
multi-core CPUs. PVLDB, 2008.

[26] K. A. Ross. Cache-conscious query processing. In
Encyclopedia of Database Systems. Springer US, 2009.

[27] T. K. Sellis. Multiple-query Optimization. ACM
TODS, 1988.

[28] M. Stonebraker. The case for partial indexes.
SIGMOD Record, 1989.

[29] K. Tan et al. Cache-on-Demand: Recycling with
Certainty. In Proceedings of the 17th International
Conference on Data Engineering, April 2-6,
Heidelberg, Germany, 2001.

[30] TIBCO Spotfire. Retrieved on July 21, 2016.
http://spotfire.tibco.com.

[31] P. Unterbrunner et al. Predictable Performance for
Unpredictable Workloads. PVLDB, 2009.

[32] G. Wang et al. Multi-query Optimization in
MapReduce Framework. In VLDB, 2013.

[33] E. Zamanian et al. Locality-aware partitioning in
parallel database systems. In SIGMOD, 2015.

[34] M. Zukowski et al. Cooperative Scans: Dynamic
Bandwidth Sharing in a DBMS. In PVLDB, 2007.

A. APPENDIX
A.1 Matching and Rewriting Procedures
Algorithm 2: Matching Procedure in HashStash

Input : Sub-Plan R
Output: Set of candidate hash tables candHTs

1 Algorithm getCandHT(Sub-Plan R)
2 candHTs← ∅;
3 foreach candHT in GRec do
4 C ← plan(candHT);
5 pC ← predicates(C);
6 pR ← predicates(R);

7 if graph(C) ≡ graph(R) ∧ atts(R) ⊆ atts(C) then
/* exact reuse */

8 if pC = pR then
9 candHTs = candHTs ∪ candHT ;

/* subsuming reuse */
10 else if pR ⊂ pC then
11 candHTs = candHTs ∪ candHT ;

/* partial reuse */
12 else if pC ⊂ pR then
13 candHTs = candHTs ∪ candHT ;

/* overlapping reuse */
14 else if pC ∧ pR 6= ∅ then
15 candHTs = candHTs ∪ candHT ;

16 end

17 end
18 return candHTs;

In the following, we explain how the matching procedure
in HashStash works for each reuse case and then discuss
which rewrites need to be applied.

Matching: In Algorithm 2, we show our matching pro-
cedure. The problem [is ”problem” the word you want to use
or perhaps rephrase] of matching is to find a subtree in our
recycler graph GRec that matches the given sub-plan R and
to check which of the four reuse-cases holds. Matching R to
a cached sub-plan C in GRec builds on the notion of sub-
graph isomorphism to test if R is contained in GRec. In our
case, we simplify the problem and prune the search space
since we only need to compare R to those sub-plans in GRec

that actually rooted by an operator that refers to a cached
hash table. In the following, we explain the algorithm of our
matching procedure.

1287

 50

 100

 150

 200

 250

 300

 350

 400

1KB 32KB 1MB 32MB 1GB

R
u

n
 T

im
e

 (
n

s
)

Size of Hash Table

8 bytes
16 bytes
64 bytes

128 bytes
256 bytes

(a) Insert (1 Thread)

 0

 50

 100

 150

 200

 250

 300

 350

1KB 32KB 1MB 32MB 1GB

Size of Hash Table

8 bytes
16 bytes
64 bytes

128 bytes
256 bytes

(b) Probe (1 Thread)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

1KB 32KB 1MB 32MB 1GB

R
u

n
 T

im
e

 (
n

s
)

Size of Hash Table

8 bytes
16 bytes
64 bytes

128 bytes
256 bytes

(c) Update (1 Thread)

 80

 100

 120

 140

 160

 180

 200

 220

 240

1KB 32KB 1MB 32MB 1GB

R
u

n
 T

im
e

 (
n

s
)

Size of Hash Table

2 threads
4 threads
8 threads

10 threads

(d) Insert (Multi-threaded)

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

1KB 32KB 1MB 32MB 1GB

Size of Hash Table

2 threads
4 threads
8 threads

10 threads

(e) Probe (Multi-threaded)

 20

 40

 60

 80

 100

 120

 140

 160

 180

1KB 32KB 1MB 32MB 1GB

Size of Hash Table

2 threads
4 threads
8 threads

10 threads

(f) Update (Multi-threaded)

Figure 12: Reuse-aware Cost Parameters

The basic matching procedure shown here can only be
used if the root r of R is a join (i.e., R is an SPJ query). We
describe the extension of the procedure to also cover aggre-
gation operators as root nodes at the end of this paragraph.
The algorithm to find a match in the recycler graph GRec

for a given sub-plan R first iterates over all candidate hash
tables in the recycler graph (line 3-17). For each candidate
hash table candHT , it then checks if the query graphs of
the sub-plan C that creates the hash table is equivalent to
R (i.e., if they join the same set of tables using the same
join predicates) and if the attributes required by R are all
in the cached hash table created by C (line 7). If this is
true, the procedure then checks for the different reuse cases
(line 8-15) as explained next.

• Exact-reuse: The matching procedure checks if the
conjunction over all selection predicates used inR called
pR is equal to the conjunction over selection predicates
used in C called pC ; i.e., if pC = pR holds.
• Subsuming-reuse: We test if the conjunction of all

selection predicates in R called pR are subsumed by the
conjunction of selection predicates of C called pC ; i.e.,
if pR ⊂ pC holds.
• Partial-reuse: In order to support this reuse case, we

test if the conjunction of all selection predicates in C
called pC are subsumed by the conjunction of selection
predicates of R called pR; i.e., pC ⊂ pR. This means,
that the reused hash table does not contain all neces-
sary tuples.
• Overlapping-reuse: If none of the before-mentioned

cases holds, we test if the conjunction of all selection
predicates in C called pC overlaps with the conjunction
of selection predicates of R called pR; i.e., pC ∧ pR 6= ∅.

In case that the root r of R represents an aggregation
operator, we additionally need to check that the group-by
attributes groupr of r are a subset or equal to the group-
by attributes groupc of the cached hash table created by a
cached plan C and all aggregation functions are compati-
ble. Moreover, in case of subsuming- and overlapping-reuse,
all selection predicates in C and R that are on attributes
other than the group-by attributes must be equal. The rea-
son is that we are then only able to post-filter additional

tuples stored in a cached hash tables based on their group-
by attributes. In the partial-reuse case, we can still add the
missing tuples if the aggregation functions permit.

Rewrites: Depending on the reuse case detected by the
matching procedure above different rewrites are required. In
the following, we first discuss the rewrites in case that the
root r of R is a join operator and then discuss the extensions
for aggregation operators at the end of this paragraph.

• Exact-reuse: The rewrite rule for this case replaces
the sub- plan R directly by the candidate hash table
HT .
• Subsuming-reuse: In this case R can be replaced by

a selection operator σpost(candHT) over the candidate
hash table candHT where the predicate post is pR; i.e.,
the selection is applied after probing.
• Partial-reuse: R is rewritten to a plan R′ which adds

the missing tuples from the base tables to the reused
hash table by using the plan σpR∧¬pC (R).
• Overlapping-reuse: In this case, we apply both rewrites

that we have discussed for the partial-reuse and the
subsuming-reuse case before.

Again, if the root node r of R is an aggregation operator
we need to apply additional rewrites on top of the rewrites
discussed before. In that case that the group-by attributes
groupr of r are equal to groupc we can directly reuse the
cached hash table. However, if groupr is only a subset
of groupc, we need to add a post aggregation operator on
top of R′ that resulted from applying the before-mentioned
rewrites. The post-aggregation uses groupr as group-by at-
tributes and rewrites the AV G aggregation functions to use
COUNT and AV G from the cached hash table.

A.2 Calibrating the Cost Models
In the following, we present the result of a micro-benchmark

to determine the insert, probe, and update cost of a single
tuple in a given hash table that are all required input pa-
rameters for our cost model described in Section 3. The
micro-benchmark is implemented in C++. The results in
this section are obtained using GCC 4.9.2. Figure 12 show
the results of our micro-benchmark for the hash table im-
plementation used in HashStash on a machine with an In-

1288

tel Xeon E5-2660 v2 processor using 128GB RAM running
Ubuntu Server 14.04.1. The cache sizes of the processor are:
32KB data + 32KB instruction L1 cache (private), 256KB
L2 cache (private) and 25MB L3 cache (shared).

Figure 12a and Figure 12b show the results for the in-
sert and probe operations using a single thread. For both
the probe and insert operations, we can clearly see the ef-
fects of different hash table sizes (1KB to 1GB) and cache
boundaries on the insertion/lookup costs. The effect of the
tuple-width (8B to 256B) is also visible but needs some
more explanation. For insertion, the cost does not change
as long as a tuple fits into one cache line, which is 64B in
our processor. Once the tuple-width exceeds the cache line
size, the cost increases as shown for 128B and 256B in Fig-
ure 12a. For lookup, the behavior is slightly different: due
to the prefetching of one cache line by the CPU, the cost
to lookup one tuple increases only when the tuple-width ex-
ceeds 128B. Figure 12c shows the results for the update costs
cu (threaded) for the same setup. The costs for the update
follow the same trend as the insert costs; i.e., the cost to up-
date one tuple increases only when the tuple-width exceeds
128B.

We also executed all these micro-benchmarks using mul-
tiple threads to calibrate the cost model for using different
number of threads where every thread accesses its own pri-
vate hash table. The results of the multi-threaded bench-
marks when using a tuple size of 128 bytes are shown in
Figure 12d to 12f. We see that an increased number of
threads has only an impact once the hash table spills out
of the private (non-shared) L2 caches.

A.3 Multi-Query Optimization Procedures
The goal of the procedure introduced in Section 4.2 is to

find a set of reuse-aware shared plans {S1, S2, . . . , Sn} for
a given query-batch {Q1, Q2, . . . , Qm} with n ≤ m that
minimizes the total runtime to execute all queries in the
given batch. In order to find the optimal set of reuse-aware
shared plans {S1, S2, . . . , Sn}, HashStash uses a dynamic
programming approach to merge query plans incrementally
into reuse-aware shared plans. The idea is that procedure
incrementally merges plans in the given input set of queries
Q = Q1, Q2, ..., Qn (i.e., the query batch) and prunes merged
plans for a given subset if a more optimal merged plan for
the same set of queries is found. Algorithm 3 shows the
pseudo-code for the dynamic programming (DP) procedure.

Algorithm 3: DP for Multi-Query Reuse

Input : Set of Queries Q = Q1, Q2, ..., Qm

Output: Set of Shared-Plans S = S1, S2, ..., Sn

1 Algorithm getBestSharedPlans(Set Q)
2 for i = 1 to m do
3 sharedP lans[Qi]← getBestReusePlan(Qi);
4 end
5 for i = 2 to m do
6 forall Q′ ⊆ Q such that |Q′| = i do
7 sharedP lans[Q′]← ∅; forall Qj ∈ Q′ do
8 sharedP lans[Q′]← sharedP lans[Q′] ∪

mergePlans(sharedP lans[Qj], sharedP lans[Q′ −
Qj]);

9 sharedP lans[Q′]← prunePlans(sharedP lans[Q′]);

10 end

11 end

12 end
13 return sharedP lans(Q);

A.4 Workload in Experiments
As mentioned in Section 6, we generated workloads for our

experiments with different reuse potentials (low, medium,
high). The queries in all these workloads have the following
characteristics: The initial query in each workload is TPC-H
query Q3 that joins the tables Lineitem, Orders, and Cus-

tomer with an aggregation operator on top. We used this
query as it represents a medium-complex query with three
joins and one aggregation operator on top. The query cre-
ates three hash tables in total for potential reuse. All other
queries in our workloads resulted from applying different
modifications to simulate different user interactions that are
commonly used in analytical frontends such as Tableau [13]
or Spotfire [30].

The user interactions simulated by different queries are:
zooming-in/-out, shifting as well as drill-down and roll-up
operations. While zooming-in/-out and shifting only change
the selection predicate of the previous query, drill-down and
roll-up group-by attributes respectively. Both operations
can also add/remove other tables to/from the query. By us-
ing Drill-Down operations, we thus might add a new join
operation (and thus a new table) into the query. The result-
ing queries are all SPJA queries of the following form.

SELECT <group-atts>, <agg_functions>

FROM <joins>

WHERE <predicates>

GROUP BY <group-atts>

The different reuse cases (low, medium, high) are achieved
by using different predicates with the given overlap men-
tioned before. The most complex query in all workloads is a
join over 5 tables (similar to TPC-H query Q5); the simplest
query has only 1 table (similar to TPC-H query Q1).

A.5 Efficiency of Garbage Collection
In this experiment we show the effect of garbage collection

on the performance of HashStash. We again used the work-
load with medium-reuse potential and executed the com-
plete trace using two modes: The first mode (wo GC) rep-
resents the case where we execute all queries using the query-
at-a-time interface with reuse, however, no garbage collector
was active; i.e., HashStash used as much memory as needed
to cache all hash tables. For the second mode (with GC),
we additionally activated the garbage collector (GC). For
the cache, we used 20% of the memory that would be re-
quired to store all hash tables. As a result, we measured
the additional runtime overhead that was caused by the ef-
fects of the garbage collector (i.e., monitoring the size of all
caches hash tables, evicting and reloading evicted hash ta-
bles). Compared to HashStash without GC, our experiment
shows that HashStash with GC introduces approximately
only a 10% higher overhead for the medium- and high-reuse
case. For the high-reuse case this is negligible when looking
at the performance gains of HashStash over a DBMS with-
out any reuse (as we have shown in the experiments before).
For the medium-reuse case, HashStash can still achieve a
performance speed-up of 10% over the no-reuse case. Note,
however, that when increasing the cache size to 50% of the
total memory required to cache all hash tables, the over-
head of garbage collection drops down to 5%. Most inter-
estingly, for the low-reuse workload, GC causes almost no
overhead since intermediate hash tables are anyway almost
never reused.

1289

