
A Morsel-Driven Query Execution Engine
for Heterogeneous Multi-Cores

Kayhan Dursun
Brown University

kayhan@cs.brown.edu

Carsten Binnig
TU Darmstadt

carsten.binnig@cs.tu-
darmstadt.de

Ugur Cetintemel
Brown University

ugur@cs.brown.edu

Garret Swart
Oracle Corporation

garret.swart@oracle.com

Weiwei Gong
Oracle Corporation

weiwei.gong@oracle.com

ABSTRACT
Currently, we face the next major shift in processor designs
that arose from the physical limitations known as the ”dark
silicon effect”. Due to thermal limitations and shrinking
transistor sizes, multi-core scaling is coming to an end. A
major new direction that hardware vendors are currently
investigating involves specialized and energy-efficient hard-
ware accelerators (e.g., ASICs) placed on the same die as
the normal CPU cores.

In this paper, we present a novel query processing engine
called SiliconDB that targets such heterogeneous processor
environments. We leverage the Sparc M7 platform to de-
velop and test our ideas. Based on the SSB benchmarks, as
well as other micro benchmarks, we compare the efficiency
of SiliconDB with existing execution strategies that make
use of co-processors (e.g., FPGAs, GPUs) and demonstrate
speed-up improvements of up to 2×.

PVLDB Reference Format:
Kayhan Dursun, Carsten Binnig, Ugur Cetintemel, Garret Swart,
Weiwei Gong. A Morsel-Driven Query Execution Engine
for Heterogeneous Multi-Cores. PVLDB, 12(xxx): xxxx-yyyy,
2019.
DOI: https://doi.org/10.14778/xxxxxxx.xxxxxxx

1. INTRODUCTION
Motivation: Within the last decade, databases have un-

dergone a major shift in designs which is mainly caused by
two hardware trends: (1) Increases in main-memory capac-
ities made it possible to hold even large databases in RAM,
thus eliminating the I/O bottleneck when accessing data
on secondary storage (such as hard disks). However, this
also required databases to reconsider some fundamental de-
cisions, such as how data should be laid out for efficient
access by leveraging the upper levels (i.e., caches) of the
memory hierarchy. (2) Also, processor designers started to

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. xxx
ISSN 2150-8097.
DOI: https://doi.org/10.14778/xxxxxxx.xxxxxxx

exploit Moore’s Law from a different perspective by increas-
ing the number of cores, rather than focusing on single-core
performance by improving clock-frequencies.

The advent of multi-core and multi-socket processor ma-
chines has led to a multitude of parallelization strategies in
databases [1, 2], including new query scheduling paradigms
such as morsel-driven execution [13] and also other optimiza-
tions to best leverage non-uniform memory access (NUMA)
architectures [1, 2, 18].

Currently, we face the next major shift in processor de-
signs which originates from physical limitations known as
the dark silicon effect [9]. Due to thermal limitations and
shrinking transistor sizes, the multi-core scaling is coming
to an end, since not all the cores in a processor can be pow-
ered up at the same time. A major direction that hardware
vendors are therefore investigating to tackle this problem
is to place specialized hardware accelerators, that are less
power hungry (e.g., implemented as ASICs), on the same
die together with normal CPU cores and thus allow all pro-
cessing units to be powered up at the same time. One ex-
ample of such a heterogeneous multi-core environment is
the Sparc M7 processor [15], which combines normal CPU
cores with an ASIC that implements a Data Analytics Ac-
celerator (called DAX) for typical main memory database
operations. Another example is the Intel HARP platform
[12], which combines FPGAs with normal CPU cores. We
believe that in the near future there will be many more of
these specialized system-on-a-chip (SoC) designs that follow
the same paradigm of combining heterogeneous cores.

However, developing efficient data management systems
for these emerging heterogeneous multi-core processors de-
mands a critical rethinking of the architectural design and
processing assumptions. In this paper, we take a first step
and investigate how parallel query execution strategies should
be designed for heterogeneous environments that combine
normal cores with specialized ASIC-based accelerators.

One major challenge is that the state-of-the art paral-
lel query execution strategies, such as morsel-based execu-
tion, have been developed for homogeneous multi-cores and
are not optimal in heterogeneous settings. One difference
is that the specialized hardware accelerators often provide
only a limited set of functions at runtime and thus can not
be viewed as yet another general-purpose core in the archi-
tecture. For example, the DAX engine in the Sparc M7 pro-
cessor implements only two database operations (selection

1

and semi-join). A second major difference is that special-
ized accelerators typically expose themselves as passive units
that cannot actively make work requests when they become
idle.

As a result, existing query execution strategies for homo-
geneous multi-cores, are not directly applicable for modern
heterogeneous multi-core systems. Furthermore, query ex-
ecution strategies that leverage accelerators [3, 6] are not
optimally suited for heterogeneous multi-cores as well, since
they assume that these accelerator units are located at the
end of the PCI bus and not tightly integrated with general-
purpose cores. For such co-processor environments, databases
typically assume that data transfers between the CPUs and
co-processors are a major bottleneck due to slow intercon-
nects. Therefore, existing solutions instead implement coarse-
grained query processing strategies that offload big parts of
the execution to the co-processors to minimize data trans-
fer costs. Unlike co-processor environments with slow data
transfers, heterogeneous multi-cores commonly allow the ac-
celerators to access main memory via the same memory bus
and sometimes even share the same lowest level caches (i.e.,
as in Sparc M7).

Contributions: We present a query processing engine
called SiliconDB that implements a novel parallel query ex-
ecution scheme for the emerging heterogeneous multi-core
processors. Specifically, we make the following contribu-
tions: (1) We developed a new query execution scheme based
on the notion of morsels but adapted for heterogeneous multi-
cores that addresses the problem that specialized hardware
accelerators provide only a limited set of functions. (2) In
order to integrate passive DAX engines, we developed an
adaptive push-based scheduling strategy that leverages a
queueing-theory based cost model to effectively serve pas-
sive units with work elements in the morsel-driven scheme.
The main challenge here is to identify an optimal number of
work elements to be pushed to the accelerators to fully uti-
lize both the accelerators and the regular cores. (3) We addi-
tionally propose novel query optimization techniques to ad-
dress cases where a classical query optimizer would produce
a plan that would result in an under-utilization of accelera-
tors. We show that there are cases where a more expensive
plan, but one that better leverages all available resources,
would yield lower total query execution times.

In this work, we use the Sparc M7 processor as our de-
velopment and testing platform. However, we believe that
the architecture of SiliconDB and the underlying approaches
are general and can be used to support other instantiations
of heterogeneous multi-core processors as well. Explicitly
demonstrating this is a line of future work.

Outline: The rest of this paper is structured as follows:
In Section 2, we discuss the architecture of SiliconDB . In
Section 3, we present the details of our query execution
strategy for heterogeneous multi-cores based on the Sparc
M7 processor. Afterwards, in Section 4, we discuss the de-
tails of our new scheduling model that efficiently utilizes all
available compute resources; i.e., regular cores and DAX en-
gines in our case. In Section 6, we then present the results of
our experimental evaluation based on the SSB benchmark
and other micro-benchmarks. Then, we conclude the paper
in Section 9. Also, while we refer to related work throughout
this paper, we provide a detailed discussion in Appendix 7.

2. SILICONDB OVERVIEW
In this section, we provide an overview of SiliconDB , an

execution engine designed to address the challenges of emerg-
ing heterogeneous multi-core environments. We use the Sparc
M7 as our target platform to evaluate our ideas, and as-
sume a columnar layout, though our ideas should be readily
adaptable to other similar platforms (such as Intel HARP)
and storage layouts.

2.1 System Architecture
Emerging heterogeneous multi-core platforms commonly

host general-purpose CPU-cores and specialized accelerators
on the same die, where all these processing units typically
have access to the same memory regions in a NUMA fash-
ion and they even share the same last-level caches, as in the
Sparc M7 environment. In order to attribute to NUMA-
awareness and to leverage the effects of cache locality, a key
idea behind SiliconDB ’s architecture is the grouping of cores
and accelerators into the so-called processing units (PUs),
where each processing unit implements a morsel-based par-
allel execution scheme (as depicted in Fig. 1).

In a traditional morsel-based parallel execution scheme,
cores that reside within the same processing unit (i.e., that
have access to the same NUMA region) have access to one
shared work queue. During query processing, all cores ac-
tively pull work elements from those queues. Unlike this
model, SiliconDB needs to deal with two major challenges.
First, the accelerators of a processing unit cannot process
arbitrary work elements, since they may be functionally re-
stricted and can support only a certain set of operations.
For example, in the case of Sparc M7, the DAX (Data An-
alytics Accelerators) engines are designed to execute only
scans and semi-joins over in-memory columnar data. Sec-
ond, accelerators cannot actively pull work from the queues
because they are implemented as passive units.

To address the first challenge, our query compiler splits a
pipelined query plan (such as the one shown in Figure 2) into
so called sub-pipelines where each sub-pipeline is annotated
with information that denotes whether it can be executed
by a DAX engine or not. Furthermore, each processing unit
in SiliconDB comes with a set of so called ”function-specific
work queues” as well as a core-only work queue, instead
of using only one shared work queue per processing unit.
Function-specific queues are those for the work elements that
are supported by accelerators.

After query compilation, SiliconDB first fills the work
queues with work elements and then initiates query process-
ing. A work element in SiliconDB refers to a small block
of data that needs to be processed (i.e., a fixed number
of values of a column in our case). While the work ele-
ments in function-specific queues can be processed either by
a general-purpose core or an accelerator (e.g., when we have
a scan or a join queue in case of Sparc M7), the work ele-
ments in a core-only work queue can be processed only by
general purpose cores. A major challenge for our query ex-
ecution scheme is to schedule these work elements residing
in different queues in such a way to ensure that all available
compute resources are fully utilized.

To address the second challenge and serve the passive pro-
cessing units, SiliconDB uses cores to actively push work ele-
ments to the accelerators. If done naively, cores would sched-
ule individual work elements one at a time, which would be
a direct implementation of a morsel-based execution for pas-

2

2

R
A
M

LLC

c
o
r
e
-
o
n
l
y

q
u
e
u
e

f
u
n
c
.

q
u
e
u
e
s

s
c
a
n

j
o
i
na

g
g
.

Core1 DAX

LLC

c
o
r
e
-
o
n
l
y

q
u
e
u
e f

u
n
c
.

q
u
e
u
e
s

s
c
a
n

j
o
i
na

g
g
.

R
A
M

Processing Unit Processing Unit

Bus

 Core2 Core1 Core2

BusIn
te
r.

DAX

Figure 1: System Architecture

core-only queue

scan queue

σ2σ1 σn…

…

DAXCores

Γ2Γ1

SELECT status,SUM(price)
FROM lineorder
WHERE year < 1995
GROUP BY status

input: compressed year col
operation:
- filter scan
output: bit-vector result

input: bit-vector
operation:
- decomp. status and price
- apply the agg.
output: aggregation result

sub-pipe2

QUERY PLAN QUERY PROCESSINGQUERY

sub-pipe1

Figure 2: Query Processing

sive units. However, in such a naive scheme, the scheduling
and synchronization overheads for individual work elements
not only represent non-negligible processing costs but addi-
tionally cause the under-utilization the accelerators, where
they often need to wait for the next item to be scheduled
after completing the processing of the previous element. We
therefore developed a new cost-based scheduling strategy
that leverages queuing theory to decide how many work ele-
ments should be pushed to an accelerator at one time. The
main challenge here is that, when too many work elements
are pushed to an accelerator, the cores might become idle
towards the end of the query execution, which would result
in a sub-optimal query runtime.

2.2 Query Processing Example
In order to intuitively show how SiliconDB works, we dis-

cuss the execution using a simple example. Figure 2 depicts
the lifecycle of a SQL query consisting of a scan and aggre-
gation operator. As we described before, the resource-aware
query compiler first splits the query plan into two separate
sub-pipelines. In our example, the first sub-pipeline of the
plan represents a scan on a column year, which produces a
bit-vector for the selected rows. Afterwards, the subsequent
sub-pipeline uses these bit-vector results to identify the se-
lected values of the column price table and executes the
aggregation operation on them.

In this example, we assume that the query is executed
in one processing unit of SiliconDB composed of only one
core and one accelerator (as shown on the right hand side of
Figure 2). For morsel-driven fine-grained parallel query pro-
cessing, the processing unit uses one function-specific queue
(the scan queue) to keep the work elements of the scan oper-
ator and one core-only queue to hold the aggregation work-
elements that can only be processed by cores. For execu-
tion, SiliconDB first populates the scan-queue. Following
our fine-grained operator processing model, SiliconDB ini-
tially splits the scan operator into multiple work-elements
and places them into the scan queue to start the processing.

Afterwards, SiliconDB triggers several execution threads
that actively start pulling work from the scan queue: one
worker thread for the normal cores and one thread that is
a passive-unit handler to serve the accelerator. The worker
thread and the passive-unit handler are initially pinned to
physical CPU-cores while they can switch their handling
roles at any point of time. For execution, the core-handler
as well as the passive-unit handler thread pull work elements
from the scan queue and executes these work elements. Af-
ter finishing one work element, all threads (core or passive
unit handler) create a new aggregation work element that
consumes the result of the scan. Once the first elements

become available in the core-only queue, the core handler
thread starts pulling these new elements from the core-only
queue instead of working on scan work elements any fur-
ther. This not only helps us to better utilize all resources
but also pipeline the results between two sub-pipelines and
thus leverage data locality if intermediate results are still in
the cache.

3. QUERY PROCESSING
In this section, we discuss the details of SiliconDB ’s morsel-

driven query processing engine and explain all the steps
from query compilation to query execution including dif-
ferent scheduling strategies. In the end, we describe some
optimizations we implemented to further improve query pro-
cessing performance of SiliconDB .

3.1 Query Compilation
In the original morsel-driven query processing scheme [13],

an incoming query is first compiled into several execution
pipelines [14], where each pipeline processes small chunks of
the input at-a-time, named as morsels. This morsel-based
execution scheme lets the system to parallelize execution
across multiple cores in an efficient way.

While SiliconDB compiles query plans into execution pipe-
lines in a similar fashion, it additionally decomposes them
into several sub-pipelines in order to address the different
functionality characteristics of compute units (cores and ac-
celerators) residing in the emerging multi-core environments.
For instance, the specialized accelerators of the Sparc M7
processor (DAX engines) are implemented as ASICs to sup-
port only a limited set of operators, thus cannot be used
to execute full pipelines. Before we describe how we split
pipelines into sub-pipelines in SiliconDB , we first describe
the functions that a DAX engine can support for query pro-
cessing.

In the version we used for this paper, the DAX engines
support the following three database-specific functions:

(1) Scan function: This function scans an in-memory ar-
ray (e.g., representing an input column of a table) and ap-
plies a filter on its elements in order to detect the ones that
match a given constant or satisfy a range predicate (i.e.,
greater than/smaller than). The function returns a bit vec-
tor with bits set to one representing the elements of the
input column that match the condition applied.

(2) Select function: The select function also takes an in-
memory array as input and selects elements from that array
using a given bit vector that defines the selected entries.

(3) Translate function: This function can be used to exe-
cute a semi-join of two in-memory arrays. We will describe

3

more details about this function later in the paper.
In regards to these functionality characteristics, SiliconDB

separates the functions of a given pipeline that can be ex-
ecuted by DAX engines and those that they cannot sup-
port into different sub-pipelines. The compiler tags the
former ones as being DAX-executable and the latter being
core-only ones. For instance, for the example query in Fig-
ure 2 the compiler generates two sub-pipelines: Here sub-
pipe 1 represents a DAX-executable operation that scans
the year column of the input table and applies a filter,
whereas sub-pipe 2 depicts the core-only executable oper-
ation of the query which applies an aggregation function on
the filtered tuples of the base column.

Here it is important to note that SiliconDB is not re-
stricted to execute DAX-executable sub-pipelines only on
DAX engines, but also has the option to use general-purpose
cores for this purpose if necessary. The decision of what
type of compute resource (cores or DAX engines) to use for
a DAX-executable operation is given by our query execu-
tion scheme and it depends on the state of query processing
at-a-given point of time as we discuss in the following subsec-
tion. We will also describe how processing DAX-executable
sub-pipelines in this way instead of greedily pushing them
only to DAX engines helps SiliconDB to provide better load
balancing of query execution.

3.2 Query Execution
The query execution engine of SiliconDB is comprised of

the so called processing units as shown in Figure 1. Each
processing unit defines a logical processing component of
SiliconDB ’s processing model, where they each consist a
group of compute resources (CPU cores and DAX engines)
that have access to the same memory region. Accordingly,
SiliconDB partitions tables of a database across processing
units and stores these partitions in their local memory re-
gions to enable the benefits of NUMA-awareness.

Furthermore, the execution engine defines multiple work
queues per processing unit (i.e., per memory region) as the
norm of query processing unlike a classical morsel-driven
scheme that uses only one work queue per NUMA region.
To this end, SiliconDB incorporates each processing unit
with one core-only queue to hold work elements for core-only
sub-pipelines that can be processed only by general purpose
cores. It also defines a set of function-specific queues to con-
tain work elements of DAX-executable sub-pipelines that can
be executed by all resources (both DAX engines and CPU
cores). In SiliconDB , we provide one function-specific queue
for each DAX-executable function (e.g., a scan, a select, and
a join queue).

In order to process the work elements residing in these
work-queues, SiliconDB pins one worker thread to each avail-
able strand of a core and also deploys a DAX handler thread
inside each processing unit. It is important to note that
strands in a Sparc processor are similar to hyper-threads in
Intel-based platforms, but they typically offer more paral-
lelism. While all these execution threads can actively pull
work elements from corresponding work queues, only the
worker threads are defined to process them directly, whereas
the DAX Handler threads are required to push them into
the passive DAX engines and trigger their executions asyn-
chronously on them. DAX Handlers also need to monitor
the completion of each work element before scheduling the
next element on the corresponding DAX engines.

In the following section, we describe how SiliconDB im-
plements the scheduling of work elements inside a processing
unit using these worker and DAX handler threads.

3.3 Work Scheduling
The main goal of SiliconDB ’s query processing framework

is to effectively utilize all compute resources (cores and DAX
engines) and minimize the time frames that any of these
units would need to stay idle. In the following, we explain
the details of the scheduling policies that the worker and
DAX-handler threads follow towards satisfying this goal.

Worker Threads. As we pointed out in previous section,
SiliconDB defines worker threads to actively pull and pro-
cess work elements from core-only queues, as in a classi-
cal morsel-driven model, however with the possibility of ac-
cessing function-specific queues as well that contain DAX-
executable work elements.

In regards to optimal resource utilization, here the main
challenge is to decide on the order of work queues that the
worker threads should be pulling the work elements from.
To this end, each processing unit defines a priority map
that drives its worker threads to pull work-elements from
specific work queues at a specific state of query processing.
More specifically, the priority mapping defines that a worker
thread should first try to pull work elements from the core-
only queue. In case no work elements are available in the
core-only queue, the worker threads then start pulling work
elements from the other function queues and work coopera-
tively with DAX engines on the same sub-pipelines (instead
of staying idle). Algorithm 1 summarizes the general process
that the worker threads follow to implement this scheduling
scheme.

Algorithm 1: Query Processing in SiliconDB

Input: List of Work Queues Q ordered by Priority Mapping

1 Algorithm processQuery(Q):
2 while Q.allProcessed() == false do
3 cur queue← Q.GetNonEmptyQueue() ;
4 if cur queue.hasNextElement() then
5 work element← cur queue.nextElement() ;
6 processWorkElement(work element) ;
7 scheduleFollowupWork(sub pipe, work element) ;

8 end

9 end

10 end

11 def scheduleFollowupWork(sub pipe, work element):
12 if sub pipe.hasFollowing() then
13 fw pipe← sub pipe.getFollowing() ;
14 fw queue← fw pipe.GetNonEmptyQueue() ;
15 fw queue.addElement(work element.getFollowing()) ;

16 end

17 end

The input to the query processing algorithm is an ordered-
list of work queues that was generated using the priority-
mapping. To this end, work elements are processed with re-
spect to the orders of the queues they belong in this list. At
the start of each iteration, the processing algorithm returns
the first non-empty queue based on the priority-mapping
that contains some work elements (line 3). Afterwards, the
algorithm executes the sub-pipeline for the selected work
element (line 4-8) and upon its completion, the algorithms
calls a procedure to schedule follow-up work elements as en-
coded by the query plan (line 7). The idea of the handling

4

procedure is that it triggers the creation of follow-up work
elements for a subsequent sub-pipeline in the query plan if
such as sub-pipeline exists (13-15). For example, in Figure
2, the execution of a work element of the lower sub-pipeline
creates a work element for the upper sub-pipeline once the
lower sub-pipeline finished its execution.

DAX Handler Threads. As we described in previous sec-
tion, DAX handler threads work in a different way than
worker threads in order to address the passive processing
nature of DAX engines. Since they cannot actively request
new work-elements, DAX handler threads are responsible to
optimally schedule work elements on these accelerators. Ad-
ditionally they need to observe the state of the execution of
the previously scheduled elements and carefully decide when
to schedule new ones.

In order to comply with the main goal of SiliconDB , one
important challenge for DAX handlers is to keep DAX en-
gines optimally utilized during query execution. To this end,
SiliconDB implements DAX handlers to follow an adaptive
push-based scheduling strategy, which we describe in Section
4 in greater detail.

3.4 Optimizations of Execution
We conclude this section by discussing some additional

optimizations we implemented to further improve the per-
formance of SiliconDB ’s query execution engine.

Pipelining for Sub-Pipelines. As discussed previously, when
being executed in SiliconDB , work elements materialize the
output of a sub-pipelines into memory and push a follow-up
work element that consumes the output into the correspond-
ing work queue. However, pushing a follow-up work element
into a queue might cause unnecessary additional overhead
and prevent cache-locality. Therefore, we extend the worker
threads to provide a fusion mode between work elements
of different query sub-pipelines if applicable. For instance,
if a DAX-executable work element is executed by a worker
thread and triggers a follow-up work element (line 15 in Al-
gorithm 1) that is core-only executable, the worker thread
immediately processes this work element instead of placing
it first into the core-only queue.

Furthermore, we also adapted the work element handling
of DAX-handlers to provide better cache locality since DAX
engines and normal cores share the same last level caches
(LLC). The idea is that a DAX-handler can push work ele-
ments to the front of the work queues queues to maximize
the chance that the output is still in the LLC. For instance,
when the DAX-handler finishes the processing of a scan work
element in Figure 2, the DAX-handler pushed the follow-up
aggregation work element to process the output to the front
of the core-only work queue. This way, the likelihood that
the input for the aggregation work element is still present in
the LLC when the work element is pulled by on one of the
worker threads is maximized.

Work Stealing. As we described in Section 2, normal cores
and DAX engines are grouped into the so-called processing
units to attribute to the effects of NUMA-awareness and en-
able cache-locality when processing work elements. In ad-
dition to polling work elements from the local work queues,
we allow all worker threads and the DAX-handler of a pro-
cessing unit to additionally steal work elements of a remote

processing unit if all work queues of the local processing
unit are empty. This way, we can mitigate the chance that
individual processing units remain idle while others are over-
loaded (e.g., due to data skew).

4. ASYNCHRONOUS SCHEDULING
In this section, we provide the details of the scheduling

model of SiliconDB for DAX handler threads and describe
how we incorporate it with the rest of the framework in order
to comply with the main goal of SiliconDB (i.e., optimal
utilization of compute resources). To this end, we look into
the problem from two perspectives:

(1) Implementing an optimal handling strategy so that
system resources are not sacrificed just for observing the
DAX engines (cf. Section 4.1).

(2) Providing an adaptive scheduling model that effec-
tively utilizes the accelerators during query processing (cf.
Section 4.2 and cf. Section 4.3).

4.1 Handling Model
In SiliconDB , we implement two different strategies to

handle the scheduling of work-elements on DAX engines:
(1)Separate Handler: In each processing unit, one core is

reserved to pull work elements from function-specific queues
that hold DAX-executable work elements and assign them
to a DAX engine. Furthermore, alternating with schedul-
ing work, the handler thread monitors the status of running
work elements and potentially creates a follow-up work ele-
ment once another work element was finished.

(2)Piggybacked: In this model, there is no dedicated han-
dler thread to assign work to the accelerators. Instead, all
the worker threads in a processing unit share the responsi-
bility of scheduling work for the DAX engines. The idea is
that each worker thread checks whether or not the DAX en-
gine finished processing a work element, and if a new work
element should be scheduled to a DAX engine before polling
a work elements for itself.

4.2 Scheduling Policy
DAX handlers can submit single or several work elements

to a DAX engine at a time, which first places them into
an internal hardware queue and then assign these elements
to their hardware execution pipelines for processing. It is
important to note that the Sparc M7 processor implements
each DAX engine to have four of these pipelines letting them
to process multiple work elements simultaneously. There-
fore, the actual processing of work elements on the pipelines
is handled by some internal scheduling mechanisms, which
cannot be directly controlled by DAX handlers.

For the overall query processing scheme, the main chal-
lenge is (1) to ensure an internal hardware state where all
the execution pipelines are effectively utilized and (2) the
number of work elements waiting for service in the inter-
nal hardware queues are at minimum levels. While each
one of these goals can be satisfied independently by apply-
ing simple heuristics, an optimal solution requires more so-
phisticated schemes to find a sweet-spot between these two
important metrics.

For instance, the system could make sure that the utiliza-
tion is always high by submitting a large number of work
elements in each round but with the risk of having them to
pile-up in the internal queues. This not only would increase

5

the average execution time of work elements in accelera-
tors, but would also hurt the overall query processing per-
formance since DAX engines might become stragglers and
dominate the overall query runtime.

Similarly, the size of the internal queues can be reduced
by having the system to initially submit as many work el-
ements as the number of execution pipelines and then to
supply new ones one at a time for each completed work el-
ement. However, it is clear that there is a risk for DAX
engines to become underutilized with this approach since
DAX handlers first need to detect that a work element is
completed before they can submit a new one to a DAX en-
gine. Moreover, there is some internal overhead associated
with scheduling of work elements on DAX engines which
would increase the latency for each element as a result.

Therefore, the main challenge of query scheduling over
DAX engines is to find an optimal number of work elements
that the DAX handlers should submit to these accelerators
in every iteration. For the ease of representation, we de-
scribe our ideas around the model where SiliconDB uses a
separate thread for DAX Handlers. However, the ideas are
directly applicable for the piggybacked case as well.

The main idea behind SiliconDB ’s scheduling policy for
the passive hardware accelerators is to define the value of an
internal scheduling parameter called the q-size, which refers
to the maximum number of work elements that can reside
in the internal hardware queues of these accelerators. Ac-
cordingly, in every iteration the DAX handler thread mon-
itors how many work elements are completed and uses the
value of q-size to decide the number of new work elements
that should be submitted to the corresponding DAX engines.
Next, we describe the procedure that SiliconDB follows in
order to assign the value of this important q-size parameter.

4.3 Optimal Queue Size
Before providing any further details, it is important to

note that SiliconDB needs to adjust the value of q-size peri-
odically, since the DAX engines will be processing work ele-
ments with different characteristics during query execution
(i.e., different job-types or data characteristics). Moreover,
the performance of DAX engines are sensitive to other run-
time effects, such as the contention on the memory bus that
is shared between multiple execution threads. Therefore,
SiliconDB implements the DAX handler threads to follow
an adaptive scheduling model where they continuously ob-
serve the DAX engines to collect statistics during query pro-
cessing. Then they use these observations in order to adjust
scheduling decisions accordingly (i.e., updating the value of
q-size) by leveraging a cost model that we define.

Runtime Statistics: Since the internal state of DAX en-
gines are not exposed to the operating system, we make use
of an analytical model to get estimations specifically on the
two important metrics that we described in Section 4.2. In
the rest of this section and in our cost models, we refer to
these parameters as utilization and items-waiting to repre-
sent the utilization of the internal execution pipelines and
the number of work elements that is waiting for service in
the internal hardware queues. To be able to estimate these
metrics for each DAX engine, we leverage a queueing model
with limited capacity defined with the (M/M/s/k) mathe-
matical notation.

The parameters of a typical queueing model consists of

the system’s arrival (M) and service (M) rates, the num-
ber of units that can serve the system simultaneously (s),
and the maximal queue length (k) that is allowed, all re-
spective to their orders in the notation. Then with these
parameters in place, a queueing model can provide estima-
tions about the internal state of a corresponding system.
As any queue-based system can leverage queueing theory to
get estimates about its performance and then uses them to
improve service, in SiliconDB we leverage a queueing model
to estimate the aforementioned utilization and items-waiting
metrics and use them in a cost model to improve the schedul-
ing scheme that the DAX Handlers follow.

In this regard, SiliconDB actively collects statistics about
query processing such as how often DAX handlers submit
work elements (to derive the arrival-rate) and how long it
takes DAX engines to process these elements on average (to
derive the service-rate). Then it provides these statistics as
the input of the queueing-model along with two parameters
representing the number of execution pipelines in each DAX
engine (server-size) and the current q-size defined by the
DAX handler.

Now in the following, we describe the details of our cost-
model that the DAX handler threads use to find optimal val-
ues for the q-size that is based on the utilization and items-
waiting estimations as provided by the queueing model and
some throughput statistics about query performance.

Cost Model: As we mentioned before, SiliconDB lever-
ages a cost model that provides a runtime estimation value
for executing a sub-pipeline that consists of a set of work
elements. Then the asynchronous scheduling model of DAX
handler threads uses this cost model to pick a q-size that
gives the minimum runtime.

We adapt the parameter q-size at query runtime such that
the overall processing time needed for all work elements of
a sub-pipeline is minimized. The cost model is then applied
in regular time windows W to adjust q-size.

The following equations show how the runtime is esti-
mated based on the estimations of utilization and items-
waiting for the DAX engines. For our cost model, we as-
sume that cores and DAX engines can cooperatively work
on work elements of a sub-pipeline and that sub-pipelines
need to materialize their output before the next sub-pipeline
starts.

tputoverall = tput cores + tputdax ·
utilizationW+1

utilizationW

cost runtime =
N

tputoverall
+

tputdax
items− waiting

As depicted with the equations above, the main compo-
nents of the cost model are the tputcores and tputdax param-
eters, which represent the throughput that cores and DAX
engines produce for an observation window, W . While the
utilization and items-waiting parameters are provided by
the queueing model as we described above, the scheduling
model monitors the throughput parameters at query run-
time and then calculates an overall runtime estimation for
the remaining N work elements.

The main idea of the cost model is that the q-size affects
the utilization of DAX engines and thus their throughput as
well while the throughput of the cores remain stable. The
change (increase or decrease) in throughput is given by the

6

ratio between utilizationW+1 and utilizationW , which defines
the estimated throughput of the estimated utilization for
window W + 1, after changing q-size over the estimated
utilization of the current window W .

Therefore, the cost model allows us to estimate the over-
all throughput tputoverall for the next window W + 1 that
results from choosing a new q-size. The throughput can
then be used to compute an estimate for the total run-
time for processing the remaining N work elements for a
given sub-pipeline. The runtime estimate is thus given by
(N/tputoverall) plus the additional time it requires to process
the already scheduled work elements (items-waiting) that
would reside at the internal hardware queues of the DAX en-
gines as estimated by the queuing model. Algorithm 2 shows
the overall procedure that SiliconDB ’s adaptive scheduling
model follows to find the optimal q-size by leveraging the
cost model we just described.

Algorithm 2: Finding the optimal queue size

Input : Set of work elements Processed in the Previous
Window, W

Input : Submission and Completion TimeStamps of work
elements Processed by Accelerators , TS

Output: The New Optimal Queue Size, q size

1 Algorithm adjustQueueSize(W , TS):

2 a rate← calculateArrivalRate(TS) ;
3 s rate← calculateServiceRate(TS) ;
4 tput← calculateThroughputRates(W) ;

5 foreach newQSize ∈ possibleQSizes do

6 (utilization, items-waiting)←
QueueingModel(a rate, s rate, newQSize);

7 curRuntime← cost(tputoverall, utilization, items-waiting);

8 if curRuntime ≤ minRuntime then
9 minRuntime = curRuntime;

10 q size = curQSize;

11 end

12 end
13 return q size;

In order the find the most optimal q-size for the current
state, the scheduler applies a linear search over the possible
values of it, uses the estimation models as described and
picks the q-size which results in the minimal estimated run-
time. It is important to note that linear search is possible
since the search space is sufficiently small. We simply ap-
ply a neighbor search starting with the current q-size and
increment/decrement its value linearly.

In Algorithm 2, we summarize the steps the scheduler
follows towards finding the most optimal q-size:

(1) For each observation window it first calculates the av-
erage arrival and service rates (line 2-3) for the work ele-
ments based on some runtime statistics and also the esti-
mated throughput rates of cores and DAX engines (line 4).

(2) Then for each possible q-size, it first uses the queuing-
model to estimate the utilization and items-waiting param-
eters using the observed arrival and service rates (line 6),

(3) and then using the estimated utilization and items-
waiting values along with the observed throughput of com-
pute units, it calculates a runtime value for the execution
of work elements using the cost model we described before
(line 7).

In the end, it returns the q-size value that produced the
minimal estimated runtime.

3

c1 c2 c3 c4 cfk
t1 12 A C 6 ✔

t2 5 A C 5 ✔

t3 11 A D 7 ✔

t4 7 B C 9 X
t5 15 B D 6 ✔

t6 10 A C 4 ✔

(A, C) → 9
(A, D) → 7
(B, D) → 6

materialize

ORIGINAL PLAN MODIFIED PLAN

Result: A → 9

TABLE A

rewrite
plan

Γ

σ B

A

SUM(c4)c2

⨝
c1 ≤	10	∧	
c3	=	C	

t2,t6

σ

Γ

B

A

SUM(c4)c2 ,c3

⨝

c1 ≤	10

t2,t3
t5,t6

σc3 =	C

Figure 3: Additional Materialization

5. QUERY OPTIMIZER
We now explore the query optimization perspective and

describe why existing query optimizers should be reconsid-
ered for heterogeneous multi-cores. We also propose new
query optimization techniques and demonstrate their po-
tential in these new environments.

5.1 Overview
Since existing query optimizers generate query plans as-

suming a homogeneous processor environment, there are a
variety of reasons why these plans may not be applicable or
optimal on heterogeneous multi-cores. For instance, a query
plan might suggest the use of the operators that are not sup-
ported by the accelerators, which would render them useless
for processing this plan since they can not be utilized at all.

We thus suggest adapting the optimizer to take into ac-
count which compute resources can be leveraged to process
the plan. While this is a non trivial problem on its own
and would require a major change of the optimizer from the
ground up, we look into this problem around the character-
istics of the Sparc M7 processor with its DAX engines and
propose simple heuristics that rewrite a query plan produced
by a classical optimizer into one that better utilizes our pro-
cessor. With such a rewrite, we show that we can reduce
the overall runtime as demonstrated by our experiments.

5.2 Heuristic 1: Additional Materialization
First, we propose to insert extra scan operators at the end

of a query plan in order to better utilize the DAX-Units. The
query optimizer would normally regard this approach as an
inefficient way of executing the query.

We motivate our heuristics using an example query that
has an aggregation on top of a hash-join between two rela-
tions. Fig. 3 represents the original query plan that was
produced by the query optimizer, which suggests applying
all the filters first to the relation that probes into the hash-
table. In order to execute this plan on the Sparc M7 en-
vironment, the query processor would initially be able to
leverage the DAX engines, but then they would stay idle
during the latter parts of execution after all the scans at the
bottom of the query plan are completed.

To address this problem, i.e., to allow the system to lever-
age the DAX engines in the later stages of query processing,
we propose to modify the query plan by inserting an extra
scan operator at the end to filter some temporary results
produced by the aggregation.

7

4

p_pkey

0 <0 00>

1 <0 01>

2 <0 10>

3 <0 11>

4 <1 00>

5 <1 01>

6 <1 10>

7 <1 11>

lo_pkey

2

1

7

4

3

3

...

6

p_pkey

0 0

0 1

0 2

0 3

1 0

1 1

1 2

1 3

recode

lo_pkey

0 2

0 1

1 3

1 0

0 3

0 3

... ...

1 2

JOIN COLUMNS (3 BITS) RECODED COLUMNS (2 BITS)

σ

Γ

⟕

lo

p

p(c1)

COUNT(*) X

✔

X

✔

X

✔

✔

X

SPLIT

bitmap

bitmaplo_pkey

INPUT QUERY

(a) Recoding Join Columns

5

0

1

2

3

0

1

2

3

2

1

3

0

3

3

...

2

⟕

join_res1

X

✔

-

-

✔

✔

...

-

⟕

join_res2

-

-

X

X

-

-

...

✔

join_res

X

✔

X

X

✔

✔

...

✔

X

✔

X

✔

X

✔

✔

X

JOINS USING LOWER ENCODING SUB-JOIN RESULTS

join1

join2

bitmap2

lo_pkeylower p_pkey1ower

join_res2

bitmap1

join_res1

JOIN RESULT

(b) Executing Partitioned Joins

Figure 4: Operator Re-Coding

In the example, we illustrate this idea as completely pulling-
up the second scan (c3 = C) defined on the first relation and
having the aggregation to first materialize its output results
into a temporary buffer. Following this modification, we
have the system leverage the DAX engines in order to filter
out of these results (i.e., the second and third tuples in the
temporary output) to produce the final query result.

To implement this type of an optimization, it is clear that
the system should carefully examine if the benefits of apply-
ing it would outweigh the costs associated with it, and then
provide a rewrite strategy accordingly. We show the promise
of such a query optimization technique for our target plat-
forms. We also provide the results of a micro-benchmark we
implemented in this regard in Section 6.3.

5.3 Heuristic 2: Join Re-Coding
While DAX engines can support the functionality of a

semi-join operator, they are designed to process inputs of
at most 16-bit encodings. For FK-PK type of joins, this
restriction requires the smaller PK relation to have at most
216 keys, otherwise accelerators cannot be utilized during
the execution of this operator.

We propose a technique that re-codes the inputs of the
semi-join operator so that they are represented with smaller
bit-encodings and adapt the query plan accordingly to have
the system support queries that could not be executed by
the DAX engines otherwise.

In Figure, 4 we depict an example to show how we im-
plement this technique in SiliconDB . Here, the input query
includes a semi-join between the lineorder and part tables
of the SSB-Benchmark. The inputs to the operator include
a bitmap result representing the selected tuples of the part
relation and the bit-compressed lo pkey foreign-key column
of the lineorder table. Then, as to follow the implementa-
tion of a semi-join, the operator uses the values of lo pkey
to index into the bitmap vector and produces an output
bit-result representing the tuples of the lineorder that sat-
isfies the join condition. For the ease of representation, we
assume that the DAX engines can support bitmap inputs
represented with at most 2-bits, but the p pkey column has
8 distinct values and thus requires 3-bit encoding.

Now our goal in this example is to represent the values of
the p pkey column with an encoding of 2-bits and process
the join accordingly so that the system can leverage the
DAX engines. As we show in Fig. 4a, the idea is to create a
split point over the original bit-encodings and represent the
original columns as with two sub-columns that contain the
high- and low-end bits of the actual encoding in respect to
the applied split point.

After the p pkey and lo pkey columns are re-coded ac-
cording to this process, we adapt the query plan to process
the join in two steps represented as join1 and join2 in Fig.
4b. Both of these sub-joins share the use of lo pkeylower

sub-column as one side of their inputs. However, they are
required to use different portions of the re-coded p pkeylower

as their bitmap inputs (bitmap1 and bitmap2) in order to
reflect it as a PK-column as required by the join operator
(note the repeating pattern of the values).

After their execution, both join1 and join2 generate bit-
vector results (join res1 and join res2), but with some false-
positives due to the fact that they were required to index
into different portions of the original bitmap column. In
order to eliminate these false-positives and correctly gener-
ate the final join result (join res), here we use the re-coded
lo pkeyhigher sub-column as the final step.

6. EXPERIMENTAL EVALUATION
In this section, we report the results of our experimental

evaluation of the techniques presented in this paper. The
main goal of this evaluation is to: (1) compare the proposed
fine-grained execution model based on morsels against two
alternative techniques that are typically used for heteroge-
neous environments, (2) show the significance of the adap-
tive scheduling model, (3) demonstrate the promise of new
query optimization ideas and (4) highlight the benefits of
some other optimization techniques we discussed through-
put the paper.

Setup: The prototype of SiliconDB is implemented in
C++ and compiled using GCC 4.82. All experiments have
been executed on a machine at Oracle with 128GB of RAM
and one SPARC M7 processor (32 cores, 8 DAX engines)
running Solaris 11.3 as the operating system. In the SPARC
M7 processor, 4 cores and 1 DAX engine share one 8 MB
L3 cache. Moreover, each of the cores supports 8, the so
called strands (which are similar to hyper-threads) resulting
in a total of 256 hardware threads for one server with 32
cores. In most of our experiments, we were limited to use
only 8 cores and 2 DAX engines since we only had access
to parts of a remote machine at Oracle. However, we were
able to execute some experiments on the full machine and
we indicate the setup we used for each experiment.

6.1 Exp1: Star Schema Benchmark
In this experiment, we present the benefits of SiliconDB ’s

query processing model and compare our execution scheme
against two different execution models used in the past for
heterogeneous environments based on CPUs and GPUs (sit-
ting at the end of the PCI bus).

8

 0

 10

 20

 30

 40

 50

Q1.1 Q1.2 Q1.3 Q2.1 Q2.2 Q2.3 Q3.1 Q3.2 Q3.3 Q3.4 Q4.1 Q4.2 Q4.3

T
im

e
(m

s)
Operator-At-a-Time

Data Partitioning
SiliconDB

Figure 5: Star-Schema Benchmark

(1) Operator At-a-Time [4, 5]: In this scheme, the com-
plete execution of each operator is pushed to either cores
or accelerators, depending on which resource has better ex-
ecution performance on the specific operator. This model
represents a coarse-grained processing scheme, commonly
seen in heterogeneous co-processor environments. It is also
important to note that the processing model that the exe-
cution engine of an Oracle database follows in the Sparc M7
environment aligns closest with this scheme as it pushes all
scans and semi-joins to the DAX Engines.

(2) Data Partitioning [10]: This model partitions the in-
put of each operator between cores and accelerators before
the processing of each operator starts. This model lets both
cores and accelerators process some operators simultane-
ously, but in a blocking manner that avoids pipelining be-
tween operators completely. Moreover, the amount of work
is statically assigned to cores/accelerators.

In order to provide fair comparisons, we implemented both
of these schemes in SiliconDB as a different mode of process-
ing. Both for (1) and (2), we use our compilation approach
to generate plans with sub-pipelines and ensured that all
the work elements of a specific operator are consumed be-
fore the execution of a parent operator is started. Regarding
the scheduling of work elements for the operator-at-a-time
technique, we created and pushed all the work elements of
the scan and semi-join operators into the accelerators, while
the rest of the query plan is executed on normal cores. For
the second technique, we pre-assigned the work elements of
the scan and semi-join operators between cores and accel-
erators depending on their expected idealized performance
ratio for processing these operators.

In order to show the effectiveness of SiliconDB ’s query
processing model over these two techniques, we ran the queries
from the complete SSB benchmark with a scale factor of SF
= 10 and provide the total runtime results in Figure 5. In
this experiment, we used a setup involving 8 cores and 2
DAX engines.

As expected, the operator-at-a-time technique shows the
worst performance due to its coarse grained processing model,
which causes cores to stay idle while accelerators are pro-
cessing work elements or vice versa. The data-partitioning
technique improves over the operator-at-a-time model be-
cause it can support the co-processing of operators between
cores and accelerators, thus providing improved utilization.
SiliconDB outperforms both of these techniques by up-to

3.2x improvements over the operator-at-a-time model and
a 2.3x speed-up over the data-partitioning technique. This
is mainly due to the SiliconDB ’s dynamic query scheduling
model, which can adapt to run-time conditions and provide
better utilization of all compute-resources. In order to bet-
ter point out this fact, we present the details of resource
utilization during the execution of Query 1.1 in Figure 6.
This clearly shows that our scheduling strategy better uti-
lizes all available compute resources and thus minimizes the
overall runtime.

6.2 Exp. 2: Adaptive Scheduling
In this experiment, we show the significance of SiliconDB ’s

adaptive scheduling model. Our main goal is to show that
finding an optimal q-size is necessary for an optimal query
processing scheme and the value of the q-size should be ad-
justed dynamically during query execution.

We first present the result of an experiment in Figure 7
showing that the optimal q-size depends on different char-
acteristics of the query workload. Here, the y-axis presents
the total runtime of a scan operation that applies a filter on
a compressed column with a specific bit-encoding; i.e. each
line represents a different case, 8− bit and 16− bit encoding
respectively. We report the results for each possible q-size
(from 1 to 16), and the results depict how these values effect
the total runtime. In both cases, we see the effect of utiliza-
tion and items-waiting metrics as we discussed in Section 4.3
and that the optimal q-size value occurs when the system
finds a sweet-spot between them. Also even more impor-
tantly, our cost model (shown in Figure 7 as well) is able to
pick the optimal q-size value in both cases. The reason why
different q-size are important is due to the different types of
scan items processed by the system.

6.3 Exp. 3: Query Rewrites
We now show the effects of our rewrite heuristics for query

optimization techniques. All experiments in this section are
executed again using 8 cores and 2 DAX engines.

Exp. 3a - Join Re-Coding
In the first part, we executed a query which has a PK-FK
join between the lineorder and part tables of the SSB bench-
mark. Implementing this operator as a semi-join requires to
encode the smaller part relation’s join-column with 18-bits
of encoding as the bitmap of the semi-join operator. How-
ever, as we mentioned, the DAX-Units can support only
bitmaps of up-to 16-bits, so we first execute the query with
default settings which requires the joins to be handled by
CPU-cores only.

To that end, we applied our operator splitting approach,
where we create four different small joins out of the single
join operator and process the query in this manner. One
disadvantage here is that the system now needs to process
more joins instead of a single one, but the benefit is that
we will be able to utilize more resources. The results of this
rewrite are shown in Figure 8a in terms of their resource
utilization and total run-time. We see that even if the re-
coding approach does more work in total, it is able to reduce
the total run-time by utilizing more resources.

Exp. 3b - Inserting Materialization Operators
For the second experiment, we applied the rewrite which
adds additional materialization operators to better leverage

9

DAX

Core1

Core2

Core3

Core4

0 2x106 4x106 6x106 8x106

Time (ns)

scans
joins
aggs

1x107 1.2x1071.4x1071.6x107

(a) Operator At-a-Time

DAX

Core1

Core2

Core3

Core4

 0 2x106 4x106 6x106 8x106 1x107

Time (ns)

scans
joins
aggs

(b) Data Partitioning

DAX

Core1

Core2

Core3

Core4

 0 2x106 4x106 6x106 8x106

Time (ns)

scans
joins
aggs

(c) SiliconDB

Figure 6: Resource Utilizations During SSB Query 1.1

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2 4 6 8 10 12 14 16

T
ot

al
 R

un
tim

e
(m

s)

q-size

8-bit encoding
16-bit encoding

cost-model

cost-model
X

X

Figure 7: Optimal Queue Sizes

DAX

Cores

w
ith

 jo
in

 r
ec

od
in

g
b

as
el

in
e

Time(ns)

DAX

Cores

5x106 1x107 `.5x107 2x1070

(a) Join Re-Coding

DAX

Cores

w
ith

 e
xt

ra
 m

at
.

b
as

el
in

e

Time(ns)

DAX

Cores

0

2x106 4x106 6x106 8x1060

(b) Extra Materialization

Figure 8: Rewriting Query Plans

DAX engines in the later phases of executing a query plan.
To this end, we used the query from Figure 2 which has an
aggregation on top of a scan, so the system would be able to
use the DAX engines only at the start of the query. To show
the effects of our suggested operator-insertion technique, we
modified the query plan to have an additional having state-
ment after the aggregation operator, so the system would
first materialize some of the aggregation results and then
need to apply another filtering to produce the final results.

In this experiment, we use a fixed ratio of 0.5 on how much
of the output data the aggregation should materialize. In
order to make more informed decisions, we would need an
additional cost-model based decision model. In this exper-

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 50 100 150 200 250
Ti

m
e

(m
s)

Id of the Hardware Thread
Figure 9: Effects of Cache-Locality

iment, our main goal is just to show the promise of query
plan adaptation for better resource utilization. The results
of this experiment are shown in Figure 8b. Again, we can see
that the rewrite reduces the overall runtime and increases
the utilization of the DAX engines in the later phases.

6.4 Exp. 4: Micro Benchmarks

Exp. 4a - Effects of Cache-Locality
In order to reveal the effects of cache locality, we executed
the query in Figure 2. For running the query, we used the
full machine but selected only 1 DAX engine and 1 core as
follows. For executing the scan sub-pipeline, we used 256
different configurations: in each of the configurations we
used the same DAX engine but for the the aggregation we
pinned the worker thread to a different dedicated strand —
recall that the full machine has 32 cores and each core has
8 strands, resulting in a total of 256 strands. The output
of the DAX scan was sized so that it fits in the L3 cache
assigned to the DAX engine. We repeated the experiment
for all available 256 hardware threads.

The results of the experiment are shown in Figure 9. The
x-axis shows to which hardware thread we pinned the soft-
ware thread and the y-axis represents the average runtime
of the software thread. We observe that the runtime of the
aggregation when the software thread is pinned to one of
the first 32 strands is significantly lower. The reason is that
these strands are executed by the first 4 cores that share
the cache with the DAX engine. In our results, we can also
see an additional increase in runtime when using the strands
128 to 256. The reason for this are NUMA effects that re-
sult from different latencies to access the two NUMA regions
using an on-chip network on the SPARC M7 processor.

10

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 5 10 15 20 25 30 35 40 45

U
til

iz
at

io
n

(%
)

Time (ms)

DAX Engine
Cores (during scan)

Cores (during agg)

(a) DAX-Handler

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 5 10 15 20 25 30 35

U
til

iz
at

io
n

(%
)

Time (ms)

DAX Engine
Cores (during scan)

Cores (during agg)

(b) Piggybacked

Figure 10: Efficiency of Handling Strategies

Exp. 4b - Efficiency of the Handling Model
In this experiment, we show the benefits of our execution
strategies discussed in Section 4.1 when using the two vari-
ants: Separate DAX Handler and Piggybacked. In order to
show the utilization of cores/accelerator we used 4 cores and
1 DAX engine. The results of this experiment are shown in
Figure 10. While the utilization of both schemes is similar,
the overall runtime of the piggybacked version is about 25%
lower since all four cores can be used to execute meaningful
work instead of reserving one core as a DAX handler.

7. RELATED WORK
Query Processing on Co-Processors Environments:

There exists a large body of work on how to leverage special-
ized co-processors for analytical database workloads (e.g.,
FPGAs [19], GPUs [3, 7], etc.). The main limitation of ex-
isting co-processors is the PCI bottleneck, thus the main
goal of these solutions that integrate co-processors in an
end-to-end manner into a DBMS has been to reduce the
overall communication [3, 5]. However, even when using
these schemes, the high speed-up rates reported for individ-
ual database operators often become negligible when consid-
ering the overall runtime that includes the communication
costs between CPUs and the co-processors [6].

Some recent work has addressed more coupled environ-
ments where the cores and the co-processor units are inte-
grated on a single chip [16, 17, 20, 11, 21]. For instance,
in [16] and [17], to show the effects of using an integrated
GPU, the authors propose specialized scan and aggregation
operations. They were able achieve a 3× performance boost
compared to an architecture where the GPU sits at the end
of the PCI bus, even though the integrated GPU has 4×
lower computational power than a discrete GPU. Different
from our paper, these approaches focus on the integration

of GPUs which can still execute arbitrary functions whereas
SiliconDB can also efficiently integrate accelerators which
provide a limited set of functions that brings new challenges
as described in this paper. Furthermore, we believe that Sil-
iconDB can also be efficiently used for coupled CPU-CPU
platforms as well. Demonstrating this claim with imple-
mentation and experimentation is beyond the scope of this
paper.

Similarly in [10], authors provide a co-processing scheme
for hash-joins in a similar environment. Their solution splits
the execution of a hash-join into four steps and have the
CPU and the GPU units to co-execute each one of these
steps in a fine-grained manner. Before starting each step, it
uses a cost-model to find a ratio in order to split the exe-
cution between the CPU and GPU units. While this work
shares the same high-level goal (i.e., utilizing all compute-
resources effectively), our approach differs in various as-
pects. First, our focus is not to provide solutions only for
specific operators but for the execution of a whole query
pipeline that would optimally leverage all compute resources.
Also, all the related work described above depend on static
cost-model decisions that use low-level hardware parame-
ters in order to distribute the workload between cores and
co-processors. On the other hand, our scheduling strategies
are designed to be adaptive at query runtime and to avoid
static decisions before the actual execution pipeline starts.

Fine-Grained Query Processing Models: As we men-
tioned throughout the paper, in [13], the authors propose a
novel query processing model that splits the input of a query
pipeline into equal sized partitions, called morsels, and then
schedules these fine-grained elements on worker-threads that
execute them in parallel. The main idea is to provide a
scheduling model that is fully elastic at query run-time, so
that the system can adapt its decisions accordingly. In this
way, the system is able to utilize all CPU resources effec-
tively by applying techniques such as work-stealing. While
our query processing model builds on the ideas from this
paper, it differs in the way we address the new challenges
arising due to the characteristics of the emerging heteroge-
neous multi-core environments, as we described in Section 3
in more detail.

Also, our scheduling scheme has similarities with the ap-
proach used in QPipe [8]. While QPipe uses a similar queue-
based concept to schedule work for different database opera-
tors (similar to our function-specific work queues), there are
some important differences: First, the focus of the schedul-
ing strategies in QPipe is on the sharing of data and work
between queries, whereas our focus is to maximize the uti-
lization of all cores and accelerators. Second, different pro-
cessing units might share the same queue to enable dynamic
scheduling decisions, which is a key aspect of SiliconDB that
allows it to adapt to different co-processor architectures.

8. DISCUSSION
Since we develop and test our ideas specifically on the

Sparc M7 platform, one could argue whether or not the tech-
niques we implemented in this paper are applicable to other
platforms such as Intel Harp that combines an FPGA with
normal cores or other designs such as APUs which combine
CPUs and GPUs.

In order to apply the design presented in this paper with
SiliconDB , we require that the platform in question pro-
vides well-defined semantics regarding the characteristics of

11

its accelerators. More specifically, the functionality they can
support (e.g., the type of operations they can execute) and
their scheduling mechanisms, if they implement active or
passive models (as in the case with DAX engines). Here the
former is particularly important for SiliconDB ’s query com-
pilation and execution models in order to properly gener-
ate query sub-pipelines and incorporate them with function-
specific work-queues, while the latter is crucial for the adap-
tation of the query scheduler in order to handle the schedul-
ing of accelerators. In the following, we first discuss these
points from the perspective of environments that provide
re-configurable accelerator units, specifically FPGAs such
as Intel Harp and the end with some thoughts on APUs.

One challenge to adapt SiliconDB for FPGAs would be if
the query operations provided by the FPGA would change
at query run-time. However, due to the high reconfiguration
costs of FPGAs this is usually not the case for query process-
ing systems. Thus, the capability of FPGAs are typically
considered fixed at query runtime, just in an ASIC-based
architecture. In case new architectures provide reconfigu-
ration options with negligible costs, this would create an
interesting venue for future work, where the system could
decide to change the functionality of the underlying FPGAs
depending on the state of the query workload. For instance,
if the FPGAs are configured to support scans initially, but
the system starts to serve more joins than there are scans, it
might decide to re-configure the hardware to support joins
to better leverage the hardware space.

For APUs, the situation is slightly different since the GPU
can provide kernels for all database operations. However, we
think that the scheduling model of SiliconDB would still be
beneficial in order to leverage all compute resources (CPU
cores and GPUs) and adapt to the different speeds.

9. CONCLUSIONS
In this paper, we presented SiliconDB that implements

novel parallel query execution strategies for heterogeneous
environments that combine normal cores with specialized
ASIC-based accelerators on the same socket. We designed,
implemented and experimentally tested our proposals on top
of the Sparc M7 processor.

Our design and approaches respect the functional and
execution-level limitations of accelerator units, and aim to
maximize the collective utilization of all processing elements
in the system in an attempt to improve end-to-end per-
formance. To this end, we propose cost-based scheduling
models, and study query plan modifications that improve
system utilization at the expense of small increases in total
execution costs. Based on the SSB benchmarks, we showed
that SiliconDB provides a speed-up of a factor of up to 2×
compared to alternative state-of-the-art parallel execution
strategies that have been developed for heterogeneous envi-
ronments.

10. REFERENCES
[1] M. Albutiu and other. Massively parallel sort-merge

joins in main memory multi-core database systems.
PVLDB, 5(10):1064–1075, 2012.

[2] C. Balkesen et al. Multi-core, main-memory joins:
Sort vs. hash revisited. PVLDB, 7(1):85–96, 2013.

[3] S. Breß. The design and implementation of cogadb: A
column-oriented gpu-accelerated DBMS.
Datenbank-Spektrum, 14(3):199–209, 2014.

[4] S. Breß et al. Automatic selection of processing units
for coprocessing in databases. In Advances in
Databases and Information Systems - 16th East
European Conference, ADBIS 2012, Poznań, Poland,
September 18-21, 2012. Proceedings, pages 57–70,
2012.

[5] S. Breß et al. Ocelot/hype: Optimized data processing
on heterogeneous hardware. PVLDB, 7(13):1609–1612,
2014.

[6] S. Breß et al. Robust query processing in
co-processor-accelerated databases. In SIGMOD,
pages 1891–1906, 2016.

[7] H. Funke, S. Breß, S. Noll, V. Markl, and J. Teubner.
Pipelined query processing in coprocessor
environments. In Proceedings of the 2018 International
Conference on Management of Data, SIGMOD ’18,
pages 1603–1618, New York, NY, USA, 2018. ACM.

[8] K. Gao et al. Simultaneous Pipelining in QPipe:
Exploiting Work Sharing Opportunities Across
Queries. In ICDE, 2006.

[9] N. Hardavellas, M. Ferdman, B. Falsafi, and
A. Ailamaki. Toward dark silicon in servers. IEEE
Micro, 31(4):6–15, 2011.

[10] J. He et al. Revisiting co-processing for hash joins on
the coupled cpu-gpu architecture. Proc. VLDB
Endow., 6(10), Aug. 2013.

[11] J. He et al. In-cache query co-processing on coupled
CPU-GPU architectures. PVLDB, 8(4):329–340, 2014.

[12] Intel. Harp. https://www.ece.cmu.edu/ calcm/car-
l/lib/exe/fetch.php?
media=carl15-gupta.pdf.

[13] V. Leis et al. Morsel-driven parallelism: a numa-aware
query evaluation framework for the many-core age. In
SIGMOD, 2014.

[14] T. Neumann. Efficiently Compiling Efficient Query
Plans for Modern Hardware. In VLDB, 2011.

[15] Oracle. Sparc m7. www.oracle.com/SPARC-M7.

[16] J. Power et al. Implications of emerging 3d gpu
architecture on the scan primitive. SIGMOD Record,
44(1):18–23, 2015.

[17] J. Power et al. Toward gpus being mainstream in
analytic processing: An initial argument using simple
scan-aggregate queries. In DaMoN, pages 1–8, 2015.

[18] I. Psaroudakis et al. Adaptive numa-aware data
placement and task scheduling for analytical
workloads in main-memory column-stores. PVLDB,
10(2):37–48, 2016.

[19] I. Psaroudakis et al. Adaptive numa-aware data
placement and task scheduling for analytical
workloads in main-memory column-stores. PVLDB,
2016.

[20] S. Tang et al. Elastic multi-resource fairness:
balancing fairness and efficiency in coupled CPU-GPU
architectures. In SC 2016, Salt Lake City, UT, USA,
November 13-18, 2016, pages 875–886, 2016.

[21] K. Zhang et al. DIDO: dynamic pipelines for
in-memory key-value stores on coupled CPU-GPU
architectures. In 33rd IEEE International Conference
on Data Engineering, ICDE 2017, San Diego, CA,
USA, April 19-22, 2017, pages 671–682, 2017.

12

