
SiliconDB - Rethinking DBMSs for Modern Heterogeneous
Co-Processor Environments

Kayhan Dursun†, Carsten Binnig†, Ugur Cetintemel†, Robert Petrocelli*
† Brown University *Oracle Corporation
Providence, USA Redwood City, USA

ABSTRACT
In the last decade, the work centered around specialized co-
processors for DBMSs has largely focused on efficient query
processing algorithms for individual operators. However, a
major limitation of existing co-processor systems is the PCI
bottleneck, which severely limits the efficient use of this type
of hardware in current systems.

In recent years, we have seen the emergence of a new class
of co-processor systems that include specialized accelerators,
implemented as ASICs or FPGAs, which co-reside with the
CPU on the same socket. Here we revisit DBMS architec-
tures in this context, and take an initial step towards the de-
sign of a new database system called SiliconDB that targets
these new densely integrated heterogeneous co-processor en-
vironments.

1. INTRODUCTION
Motivation: Recent work on specialized co-processors

for DBMSs (e.g., FPGAs [8, 13], GPUs [2], etc.) has largely
focused on the efficient implementation of query process-
ing algorithms for these devices. The results have not only
shown that specialized co-processors are able to provide high
speedups for individual database operators but also are more
energy efficient in most cases. However, a major limitation
of existing co-processors is the PCI bottleneck, which makes
the efficient use of these devices in existing DBMSs challeng-
ing [11][12]. To address this limitation, the key optimization
goal of existing approaches that integrate co-processors in an
end-to-end manner is to reduce the overall communication
cost such as CoGaDB [1] and Ocelot [2]. Even when using
these schemes, the high speedup rates reported for individual
operators often vanish when looking at the overall runtime
that includes the communication costs between CPU and
the co-processor [3].

Recently, a new class of co-processors where accelerators
co-reside with the CPU on the same die has emerged. This
trend is primarily motivated by the so-called dark silicon
[4][7]; i.e., the areas on the CPU die that cannot be pop-
ulated with general-purpose cores because of their energy
consumption. As a result, many CPU manufacturers have

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DaMoN’17, May 15, 2017, Chicago, IL, USA
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-5025-9/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3076113.3076124

announced plans to integrate specialized units densely to-
gether with the regular cores. Developing efficient DBMS
systems for these new co-processor environments, however,
demands a critical rethinking of many of the basic architec-
tural and design assumptions that are not valid anymore.
For example, co-processors are no longer attached to the
CPU via a slow PCI connection but instead share the access
to the same memory bus and sometimes even have direct
access to the last level caches of the CPU cores. Conse-
quently, NUMA-awareness and cache-locality become key
factors when designing query processing algorithms on these
co-processor environments. Moreover, in order to meet the
desired energy restrictions and optimally leverage the real
estate on the CPU die, the next generation of co-processors
are rather specialized processing units that are implemented
either as an ASIC or an FPGA. Examples of such systems in-
clude the Oracle SPARC M7 [10] processor, which provides
specialized database accelerator (DAX) units on the same
die with the cores, and the Intel HARP [6], which replaces
a normal core on the die with an FPGA unit. For M7, the
DAX engines can even write their output to an associated
last level cache of the CPU cores.

In addition, these co-processors are not general purpose
and can only support a limited set of functions during run-
time. While FPGAs are in general reprogrammable, the
cost of reconfiguration is high, meaning that the function-
ality that an FPGA provides at runtime while executing a
query is typically fixed as well.

Contributions: In this work, we describe the design to-
wards a new database system called SiliconDB that targets
state-of-the-art heterogeneous co-processor environments.
The challenges that we tackle are two-fold. (1) In order
to achieve high performance, our goal is to leverage cache-
locality and take into account NUMA effects, which were
negated by the high transfer costs incurred by the PCI bus
[12] in previous systems. We anticipate that there will be
many different configurations of heterogeneous environments
that will be specialized for different workloads. To accom-
modate all these configurations, new DBMSs need to be
designed with general and adaptable building blocks. (2)
Query execution strategies need to change as well. Instead
of using coarse-grained placement strategies that aim to
minimize synchronization and data transfers between the
CPUs and the co-processors, we develop fine-grained, dy-
namic workload assignment approaches that can concur-
rently leverage all computing resources, assigning pieces of
the load where they can be executed most efficiently while
maximizing the overall resource utilization.

We use the Oracle Sparc M7 processor as an early ex-
ample of such an environment to rethink the architecture

Core
1

Core
2

Accel
1

Scan

G
eneralQ

FunctionQ

Core
1

Accel
1

Accel
2

Join

G
eneralQ

FunctionQ
’s

Scan

Interconnect

LLC LLC

RAM Bus

RAMBus

Processing Unit Processing Unit

Priority Mapping Priority Mapping

Figure 1: SiliconDB Architecture

of DBMSs for analytical column stores, but our approach
will be adaptable to other emerging environments as we will
study in the future including the support of different ana-
lytical workloads.

Outline: In Section 2, we discuss the general architec-
ture of SiliconDB that reflects the requirements mentioned
above. In Section 3, we present new fine-grained query ex-
ecution strategies for heterogeneous environments that we
developed to leverage all available resources. We present
our initial experimental results in Section 4. After summa-
rizing the related work in Section 5, we will conclude the
paper in Section 6.

2. SYSTEM ARCHITECTURE
Figure 1 shows the general architecture of SiliconDB . A

key idea behind the design is grouping of cores and acceler-
ators into so-called processing units. In this way, cores and
accelerators can access to the same memory regions to at-
tribute to the NUMA effects as well as to leverage effects of
cache-locality. For example, in Oracle SPARC M7, DAX en-
gines can write the output of an operation to an associated
LLC.

While NUMA-awareness and cache-locality have been ex-
tensively studied in the design of main-memory DBMSs, the
novel aspect of the architecture is the internal design of each
of these processing units: First, the structure of a processing
unit is not static; i.e., the grouping of cores and accelerators
can be defined in a flexible manner which would allow our
approach to adapt to many different hardware configurations
with a varying number of cores and accelerators. Second, a
processing unit implements a novel fine-grained execution
model to maximize resource utilization. In order to achieve
this, each processing unit defines a set of function-specific
work queues as well as a priority mapping between the cores
and the queues for work scheduling. Each function queue
contains work elements of a specific work type supported by
an accelerator (e.g., a scan queue or a join queue), whereas
each work element refers to be a small block of data that
needs to be processed (i.e., a fixed number of values of a col-
umn in our case). Additionally, each processing unit also has
a general queue, which contains all the work elements that
are not supported by a general accelerator. The main goal of
query execution is then to schedule these work elements such
that all available compute resources including the accelera-
tors are leveraged in the most efficient way. Furthermore,
in order to support different architectures, SiliconDB is de-
signed to be extensible; i.e., new function queues can easily
be added.

In the following, we describe the details of the query exe-
cution scheme of SiliconDB in detail.

SELECT SUM(l_total)
FROM lineoder L
WHERE l_date>2016-01-01
GROUP BY l_status

sub-pipe2:
tuple-mat
+aggregate

sub-pipe1:
bitscan(L)

ScanQ

GeneralQ
DAX Core

1. 3.
2.

SQL Query Query Plan Query Execution

Figure 2: Fine-Grained Query Execution

3. QUERY EXECUTION
SiliconDB first compiles a given query into a pipelined

representation similar to [9] at compile time. However, a
difference is that it decomposes the pipelines into smaller
sub-pipelines on the basis of the specific functions that are
supported by the accelerators of a processing unit. For ex-
ample, Figure 2 shows the query plan for a TPC-H Q1-like
query with two separate sub-pipelines: The first sub-pipeline
represents a scan on a bit-compressed column that produces
a bit-vector as its output – an operation that is supported
by a DAX unit in the Oracle M7. Then the subsequent sub-
pipeline uses the bit-vector to materialize the selected tuples
and to execute the aggregation on them.

In order to start the execution, SiliconDB first adds the
work elements for the scan sub-pipelines into a queue of the
processing units. Later on, each core/accelerator pulls work
elements from specific queues to process them. New work
elements are added during execution as a result of a finished
work element; e.g., after finishing a scan work element in our
sample query, an aggregation work element is added to the
general work queue. As mentioned before, while accelerators
can only pull work elements from their particular function
queue, cores can pull work from any queue.

For cores, the priority mapping defines the order of queues
that they should pull work from: in SiliconDB this map-
ping defines that a core should first try to pull work ele-
ments from the general queue, since these elements can not
be processed by any accelerator. In case no work elements
are available in the general queue, the cores can start pulling
work elements from other function queues (e.g., to execute
scans). As we show in our experiments in the next section,
this priority mapping results in a better utilization of all re-
sources (cores/accelerators) than existing execution schemes
provide. Additionally, this scheme enables a streaming exe-
cution mode between cores and accelerators, which further
increases the utilization. For instance, in the case of the
query plan shown in Figure 2, the DAX engines and cores
start working on the scan elements in the beginning. Then,
once the first scan elements are processed and new work el-
ements for the aggregation become available in the general
queue, cores start to pick these up for processing while the
DAX engines continue working on scans.

A challenge of our execution scheme as described before
is that many of the accelerators are typically passive (i.e., a
core must assign work to the accelerator). To that end, we
defined two different query execution schemes to push work
elements to passive accelerators: (1)Work Handler: In this
scheme, in each processing unit, one core is reserved to pull
work elements from different function queues, assign them to
the according accelerator and monitor them to create follow-
up work elements once they finish processing the assigned
work element. (2)Piggybacked: In this scheme, there is no
dedicated core to assign work to the accelerators. Instead,

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 50 100 150 200 250

Ti
m

e
(m

s)

Id of the Hardware Thread

Figure 3: Effect of Cache-Locality

each core assigns work elements to an accelerator just before
it starts working on a work element. In order to avoid the
accelerators becoming idle in this scheme, a core can assign
multiple work elements to an accelerator in every round.
The number of elements that are assigned to an accelerator
by a core is determined dynamically using queueing theory.
Further details are omitted for brevity.

4. EXPERIMENTAL EVALUATION
In the evaluation, we show the results of two experiments

for (1) analyzing the effects of cache-locality when sharing
caches between cores and accelerators, and (2) comparing
the utilization of cores and runtime of queries for our exe-
cution strategies compared to existing strategies. In both
experiments, we use a TPC-H database of SF=10 and exe-
cute the query shown in Figure 2.

The prototype of SiliconDB is implemented in C++ and
compiled using GCC 4.82. All experiments have been exe-
cuted on a machine at Oracle with 128GB of RAM and one
SPARC M7 processor (32 cores, 8 DAX engines) running
Solaris 11.3 as operating system. In the SPARC M7 pro-
cessor, 4 cores and 1 DAX engine share an 8MB L3 cache.
Moreover, each of the cores supports 8 strands (which are
similar to hyper-threads) resulting in a total of 256 hardware
threads for one server with 32 cores.

4.1 Exp. 1: Effects of Cache-Locality
In this experiment, we executed the query in Figure 2. In

order to reveal the effects of cache-locality between a DAX
engine and a normal core, we first executed the scan op-
eration that outputs a bit-vector on one fixed DAX engine
and then executed the tuple materialization and aggrega-
tion in a software thread using a normal core. The out-
put of the scan is stored in the L3 cache assigned to the
DAX engine. We used a block size of 1M elements for our
fine-grained execution scheme in this experiment such that
the output bit-vector of the scan can fit completely in the
L3 cache. For executing the aggregation, we pinned the
software thread to one of the available hardware threads of
SPARC M7. We repeated the experiment for all available
256 hardware threads.

The results of the experiment can be seen in Figure 3.
The x-axis shows to which hardware thread we pinned the
software thread and the y-axis represents the average run-
time of the software thread on a block size of 1M elements.
We see that the runtime of the tuple materialization and the
aggregation when the software thread is pinned to one of the
first 32 hardware threads is significantly lower. The reason is
that these hardware threads are executed by the 4 cores that
share the cache with the DAX engine, which produces the
bit-vector. In our results, we can also see another increase
of runtime when using the hardware threads from 128 to

256. The reason for this are NUMA effects that result from
different latencies to access the two different NUMA regions
using an on-chip network on the SPARC M7 processor.

4.2 Exp. 2: Efficiency of Execution Strategies
In the second experiment, we show the benefits of our

execution strategies discussed in Section 3 when using our
two variants; Work Handler (WH) and Piggybacked (PB).
In order to show the utilization of cores/accelerator we con-
figured SiliconDB to use one processing unit that groups
together four cores and one DAX engine (all of which share
the same L3 cache). Moreover, in this experiment we used
a block-size of 128K for our fine-grained execution scheme.

To compare our execution scheme to existing schemes, we
also executed the query in Figure 2 using two other execu-
tion as baselines. The first baseline is the operator-at-a-time
scheme that is commonly used in DBMSs for heterogeneous
co-processor environments today. In this scheme, the scan is
completely executed in the DAX engine and the aggregation
in all the available cores of our processing unit. For the sec-
ond baseline, we implemented a naive fine-grained scheme
similar to our scheme presented before that only uses one
shared queue that contains all work elements instead of sep-
arating the queues into function queues and a general queue.
In this scheme, work elements are assigned greedily to the
next available core/accelerator that is able to execute the
work element. Moreover, we reserve one core as a handler
to assign work to the DAX engine.

The results of this experiment are shown in Figure 4. In
Figure 4(a), we see the resulting utilization over time of the
operator-at-a-time scheme. As expected, the DAX engine is
first fully-utilized when executing the scan and then drops to
0%-utilization while the cores execute the aggregation. For
the naive fine-grained scheme, we can see that both the cores
and DAX engine start cooperatively working on the scan.
However, once all scan elements are processed, the DAX
utilization again drops to 0% while the cores finish the ag-
gregation. In our schemes, which implement separate queues
and thus enable a streaming model where the DAX engine
works on a scan while the cores process the aggregation, the
overall utilization is much better as expected; i.e., the DAX
and cores are utilized much more equally over the query
execution time. Another important result is that, while the
utilization of both of our heterogeneous fine-grained schemes
(Work Handler and Piggybacked) seems to be very similar,
the overall runtime of the Piggybacked version is approxi-
mately 25% lower since all four cores can be used to execute
meaningful work instead of reserving one core as a DAX
handler.

5. RELATED WORK
There exists a large body of work on how to leverage

specialized co-processors for analytical database workloads
(e.g., FPGAs [8, 13], GPUs [2], etc.). The main limitation of
existing co-processors is the PCI bottleneck, thus the main
goal of existing approaches that integrate co-processors in
an end-to-end manner into a DBMS has been to reduce the
overall communication [1, 2]. However, even when using
these schemes, the high speed-up rates reported for individ-
ual database operators often become negligible when consid-
ering the overall runtime that includes the communication
costs between CPUs and the co-processors [3]. A key contri-
bution of our work is to revisit the design of a co-processor

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 10 20 30 40 50 60

U
til

iz
at

io
n

(%
)

Time (ms)

DAX Engine Cores

(a) Operator-at-a-time

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 10 20 30 40 50 60

U
til

iz
at

io
n

(%
)

Time (ms)

DAX Engine
Cores (during scan)

Cores (during agg)

(b) One-queue

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 5 10 15 20 25 30 35 40 45

U
til

iz
at

io
n

(%
)

Time (ms)

DAX Engine
Cores (during scan)

Cores (during agg)

(c) SiliconDB-WH

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 5 10 15 20 25 30 35
U

til
iz

at
io

n
(%

)

Time (ms)

DAX Engine
Cores (during scan)

Cores (during agg)

(d) SiliconDB-PB

Figure 4: Efficiency of Execution Strategies

accelerated DBMS where the accelerators are tightly inte-
grated with the cores.

In [11] and [12], authors address a similar problem for
an architecture where a CPU and GPU are integrated on
a single chip. To show the effects of using an integrated
GPU, they propose specialized scan and aggregation oper-
ations. They were able achieve a 3× performance boost
compared to an architecture where the GPU sits at the end
of the PCI bus, even though the integrated GPU has 4×
lower computational power than a discrete GPU. While we
share the high-level motivation of this work, our approach
differs in various aspects. First, our focus is not on special-
ized operator implementations but on query scheduling to
leverage all compute resources in the best possible manner.
Second, another goal of the architecture of SiliconDB and
our scheduling strategies is to be able to adapt to new archi-
tectures with other types of accelerators without the need
to re-design the entire DBMS stack.

Finally, our scheduling scheme also has similarities with
the approach used in QPipe [5]. While QPipe uses a similar
queue-based concept to schedule work for different database
operators (similar to our function-specific work queues), there
are some important differences: First, the focus of the schedul-
ing strategies in QPipe is on the sharing of data and work
between queries, whereas our focus is to maximize the uti-
lization of all accelerators and cores. Second, different pro-
cessing units might share the same queue to enable dynamic
scheduling decisions, which is a key aspect of SiliconDB that
allows it to adapt to different co-processor architectures.

6. CONCLUSIONS
Previous studies on specialized co-processor environments

to support analytical database workloads mostly focused on
addressing the data transfer bottleneck. The emergence of
new co-processor environments creates a new category of op-
timization opportunities which were not addressed in past
work, as these were primarily concerned with other bottle-
necks, such as the expensive data movement costs between

the CPU and accelerator units over relatively slow PCI-e
links.

In this paper, we present SiliconDB , which we are build-
ing to address these new bottlenecks and present our initial
results in comparison to existing solutions. Our approaches
take cache locality and NUMA effects into account with the
support of an underlying architecture that is designed to
target these issues. We are using Oracle Sparc M7 proces-
sor as an early example, but our work and results are more
general, since the adaptive nature of our design will render
our solutions applicable to different types of heterogeneous
processor environments.

7. ACKNOWLEDGMENTS
This work is partially supported by Oracle Corporation by

a research gift. We also thank Angelo Rajadurai for provid-
ing us access to the necessary hardware for our benchmarks.

8. REFERENCES
[1] S. Breß. The design and implementation of cogadb: A

column-oriented gpu-accelerated DBMS.
Datenbank-Spektrum, 14(3):199–209, 2014.

[2] S. Breß et al. Ocelot/hype: Optimized data processing
on heterogeneous hardware. PVLDB, 7(13):1609–1612,
2014.

[3] S. Breß et al. Robust query processing in
co-processor-accelerated databases. In SIGMOD,
pages 1891–1906, 2016.

[4] N. Hardavellas et al. Toward dark silicon in servers.
IEEE Micro, 31(4):6–15, 2011.

[5] S. Harizopoulos et al. Qpipe: A simultaneously
pipelined relational query engine. In SIGMOD, pages
383–394, 2005.

[6] Intel. Harp. https://www.ece.cmu.edu/˜calcm/carl/
lib/exe/fetch.php?media=carl15-gupta.pdf.

[7] R. Johnson et al. The bionic DBMS is coming, but
what will it look like? In CIDR, 2013.

[8] R. Müller et al. Fpgas: a new point in the database
design space. In EDBT, pages 721–723, 2010.

[9] T. Neumann. Efficiently compiling efficient query
plans for modern hardware. PVLDB, 4(9):539–550,
2011.

[10] Oracle. Sparc m7. www.oracle.com/SPARC-M7.

[11] J. Power et al. Implications of emerging 3d gpu
architecture on the scan primitive. SIGMOD Record,
44(1):18–23, 2015.

[12] J. Power et al. Toward gpus being mainstream in
analytic processing: An initial argument using simple
scan-aggregate queries. In DaMoN, pages 1–8, 2015.

[13] J. Teubner et al. Data Processing on FPGAs.
Synthesis Lectures on Data Management. Morgan &
Claypool Publishers, 2013.

