
Bootstrap: Going Beyond Programming in
After-School Computer Science

Emmanuel Schanzer
Harvard University Graduate School of

Education
Boston, MA, USA

schanzer@bootstrapworld.org

Kathi Fisler
WPI Dept of Computer Science

Worcester, MA
USA

kfisler@cs.wpi.edu

Shriram Krishnamurthi
Brown University Computer Science

Providence, RI
USA

sk@cs.brown.edu

ABSTRACT

Adding computer science to already-packed middle- and high-

school curricula can be difficult; after-school programs offer an

enticing alternative to broadening student exposure to computing.

Over the last eight years, we have deployed a content-rich

introductory computing course to over a thousand middle-school

students through after-school programs nationwide. Our program,

Bootstrap, teaches students to program their own videogames in a

way that connects deeply to in-school learning goals for algebra

and coordinate geometry. Volunteers (college students or software

professionals) teach Bootstrap through established after-school

partners. This paper describes both Bootstrap and lessons we have

learned about teaching computing effectively in after-school

programs using volunteer teachers.

Categories and Subject Descriptors

K.3.2 [Computer and Information Science Education]:

Curriculum, Computer science education.

General Terms

Design, Languages.

Keywords

After-school, graphical programming, animation, videogames,

design-driven programming, middle-school, high-school

1. INTRODUCTION
Several countries, including the United States, have efforts to

expand computing education in the pre-college years. These have

led to initiatives to train significant numbers of computing

teachers and develop curricula suitable for pre-college students.

These efforts dovetail with more general efforts to prepare more

students for education and careers in STEM (Science,

Technology, Engineering and Mathematics).

Research suggests that STEM education is particularly important

in the 10-13 age range (middle- to early high-school in the USA),

especially for student groups who are under-represented in STEM.

Students in this age range have the cognitive and intellectual

maturity to approach more abstract material (hence the

introduction of algebra at this age) [5]. This is also a period in

which students start to make broad decisions about their career

paths: they may decide whether they are “good” in math, which is

a gatekeeper to most other classes that prepare students for STEM

careers. Exposing students to computing in ways that builds their

confidence in STEM could enable many more students to pursue

computing and STEM courses or careers.

Creating solid computing experiences for under-represented 10-13

year olds (henceforth “tweens”) is a daunting task. Detailed

curricula and teachers with computer science background are

scarce, particularly pre high-school. Even if schools in under-

represented areas boasted adequate computing teachers, schedules

are already packed with material and learning goals; in the USA,

curricula are constrained by high-stakes tests in accordance with

national initiatives such as No Child Left Behind. This suggests

that near-term efforts should look beyond formal classrooms to

engage under-represented students in computing.

This paper describes Bootstrap, a computing curriculum and after-

school program for tweens with several notable features:

 It has clear learning objectives; it does not only aim to

engage and excite students about computing.

 It uses videogame programming to reinforce algebra

and coordinate geometry in hopes of improving

students’ experience with and confidence in math. The

game structure connects specific mathematical concepts

to concrete game behaviors. The connections to in-

school math courses are clearly defined relative to USA

standards for middle-school mathematics.

 It uses volunteers from IT organizations and

universities to deliver classes through networks of

established after-school programs. The programs

provide the logistics (e.g., space, computers, student

recruitment, legal protections); Bootstrap recruits,

trains, and supports the volunteers.

This design attempts to tap into a variety of needs: focusing on

after-school routes around scarcity of computing courses and

teachers in under-represented areas; recruiting volunteers gives a

structured outlet for college students and IT professionals who

wish to teach programming as community service; combining

videogames, computing and math education motivates and helps

students who feel uncomfortable in math; providing content-rich

STEM programs helps ambitious after-school organizations

diversify their offerings beyond the arts and professions (such as

finance, law, and journalism).

Since 2005, we have taught Bootstrap to roughly 1400 at-risk and

under-represented students across the USA, through organizations

with limited resources and obsolete computer labs. We have

learned a lot about how to design volunteer-based after-school

programs to teach computing in such environments. This paper

describes our program design in detail and reflects on what we

have learned. Our goal is to provide useful insights for other

projects seeking to work through after-school programs to provide

serious computing education to under-represented students.

2. THE CURRICULAR DESIGN
Bootstrap comprises ten 90-minute classes, the last of which is a

showcase in which students present their games to friends, family,

and teachers. We assume that students have used computers

before for routine tasks such as web-browsing, but do not have

prior programming experience. We assume that students are

familiar with arithmetic and may have begun seeing functions and

word problems as well, even if they may not be comfortable with

this material. We also assume that students have played

videogames and are drawn to the idea of building one. At the end

of the course, each student (or pair of students) should have

implemented a game of her own design that involves side-

scrolling movement (meaning when characters scroll off one edge

of the screen, they re-appear on the other side), user-input via key

presses, and scoring based on collision of two game elements.

Our curricular design and its connections to math education build

on a particular view of what a videogame is and how it is

constructed. We now present this view in the same manner that

we present it to students on the first day of a Bootstrap class.

2.1 Dissecting Games
Figure 1 shows four frames from a sample videogame in which

the player moves the butterfly up and down attempting to land on

the lily pad while avoiding the airplane. To understand how this

game is built, we first ask students to identify what changes and

how across successive frames. Students fill in a game-dissection

worksheet with the details. The worksheet for this example says:

Thing in the

Game

What changes

about it? More specifically …

Plane position x-coordinate

Butterfly position y-coordinate

LilyPad position x-coordinate

Water nothing nothing

A game-dissection worksheet

Understanding what does not move is important: visual elements

that do not move are part of the background image for the game.

These elements are fixed throughout gameplay. We will treat

them differently from elements that do move when designing and

implementing a game. Attributes other than position, such as size

or color, could also change during a game.

The game-dissection table illustrates the first connection between

Bootstrap and middle-school mathematics: the idea and role of

coordinates arises early in the first day. Bootstrap does not

assume students already know this material (in practice some do,

some don’t, and some have seen but not understood coordinates).

Our lesson plans include several exercises on coordinates,

grounded in the context of videogame screenshots.

Once students see that a game is made up of a collection of

objects that change attributes from frame to frame and some fixed

background information, they are ready to outline their own

games. The Bootstrap curriculum requires that each game have

three elements: a player, a target, and a danger. Each element can

move in one dimension. The player attempts to collide with the

target while avoiding collision with the danger; each collision

with the target increases the player’s score, while each collision

with the danger decreases the score. Students are free to choose

what those elements represent and the setting in which their game

takes place. Students complete the Game Design Worksheet in

Figure 2 to summarize their choices. Student designs vary widely,

with sample games being about catching candy, avoiding

monsters, flying through space, or collecting coins.

Figure 1: Sequence of Frames Making Up an Animation

Figure 2: A Game-Design Worksheet

2.2 Game Program Structure
The game-dissection worksheet and the sequence of screenshot

frames motivate the structure of a game program in Bootstrap.

Intuitively, a videogame program has two core tasks:

1. Given the current values of each changing attribute,

draw the image for the corresponding frame

2. Given the current values of each changing attribute,

compute the corresponding values for the next frame

The second task has a bit of complexity, in that the attribute

values for the next frame may depend on user inputs, such as key

presses intended to control movement of characters. At a high

level, however, these two tasks suffice to describe a game. The

Bootstrap curriculum decomposes these two tasks into a set of

specific functions that students write on their target, danger, and

player components. Our decomposition descends directly from

Felleisen et al.’s world-programming framework [3], but is

tailored to the abilities of middle-school students.

Concretely, over the course of Bootstrap, students will implement

functions to (1) compute the target’s new x-coordinate, (2)

compute the danger’s new x-coordinate, (3) compute the player’s

new y-coordinate in response to key-presses, (4) compute the

player’s new y-coordinate in the absence of key-presses, (5)

compute the distance between the player and the target or danger,

and (6) detect collisions based on the distance between game

characters. The Bootstrap framework draws the frames, though

students could do this step as well if a course has enough time.

Each function demands different programming concepts:

computing the new location of an object with linear motion over

time requires simple arithmetic functions; computing new

locations based on key presses requires piecewise functions that

behave differently depending on which key has been pressed

(conditionals); detecting collision requires more complicated

arithmetic functions about the distance between two game

elements; drawing screenshots involves complex function

composition to create, scale, rotate and translate images before

placing them on a canvas. The Bootstrap lessons, summarized in

Table 1, build up to each of these functions after covering the

needed concepts from each of programming and mathematics.

2.3 The Design Recipe
Bootstrap takes a particular approach to teaching students how to

define functions. The approach is relevant in this paper as it

affects both the connections to mathematics and aspects of the

volunteer training component. Consider a simple function whose

input is the current x-coordinate of a target and whose output

should be a new x-coordinate located 5 pixels to the right.

Assume we want to call the function update-target. Students

would develop the function in three distinct steps:

1. Write a contract, specifying the domain and range for

the function. In this case, the contract is

update-target : number  number

2. Write a series of examples that illustrate the expected

behavior of the function. Examples are written using

actual calls to the function in the syntax of the language

used in Bootstrap. Examples for new-target-x include

 (EXAMPLE (update-target 0) (+ 0 5))

 (EXAMPLE (update-target 5) (+ 5 5))

 (EXAMPLE (update-target 100) (+ 100 5)

3. Write the function itself (testing it against the examples)

 (define (update-target curr-x)

 (+ curr-x 5))

This sequence of steps is called the Design Recipe [4]. It helps

Bootstrap students think through a function definition problem

step-by-step: if they can’t articulate the domain and range or write

examples, they usually can’t write a correct function either. The

recipe, however, is more than just a program-design aid: it is also

a key component linking Bootstrap to algebra. Our description of

Bootstrap as going “beyond programming” arises from this recipe

and its algebraic connections.

Learning standards for algebra [2] expect students to be able to

work with different representations of functions. Three common

representations (domain/range, input-output tables, and symbolic

form) have corresponding constructs in programming (type

specification or contract, test cases, and function definition,

respectively). Bootstrap helps students work with all three of

these representations, using the concrete context of programming

to motivate when and how each representation can be helpful in

Table 1: Learning and Project goals for each lesson: learning goals target particular programming and mathematical concepts,

while project goals enhance behavior of the game.

1. Lesson 2. Learning Goals 3. Project Goal

1 Games can be reduced to manipulations of coordinates Brainstorm own game and create sample coordinate lists for

different screenshots in that game.

2 Domain and range; number, string, and image datatypes Manipulate numbers, strings, and images from their game

3 Define constants, functions, and test cases Define images for background and all game elements

4 Contracts, tests, functions (the Design Recipe); multiple

representations of functions

Move game elements in a simple game (not their own)

5 More practice with Design Recipe and functions Move targets and dangers in their game

6 Booleans and functions that test values Determine whether game elements are on- or off-screen

7 Conditionals Move player in response to user input (key presses)

8 Pythagorean theorem Detect when two game elements have collided

9 Prepare for their Launch Party! Polish games and practice explaining them

problem solving. The fourth common representation, graphs,

could also be supported in Bootstrap with more instructional time.

3. THE VOLUNTEER COMPONENT
From the outset, we designed Bootstrap to be taught by

technically-qualified volunteers with an interest in programming

and community service. Volunteers not only allow us to teach the

program in regions far afield from where the Bootstrap design

team works, but also provide students with exposure to working

computing professionals in various IT-related jobs and careers.

Over the years, Bootstrap volunteers have come from many

universities and companies, including IBM, Google, Facebook,

Rockstar, LinkedIn, Cisco, NVidia and Apple. Once we have

agreements in place to offer Bootstrap with an after-school

provider, we recruit volunteer teachers through talks and word-of-

mouth at universities and companies in the surrounding area.

Each class is staffed by 2-3 volunteers, ideally one with prior

experience with the curriculum.

The typical Bootstrap volunteer brings considerable passion for

programming, but lacks experience working with middle-school

students. Many volunteers initially lack exposure to the structure

of game programs and the design practices that underlie Bootstrap

(the exception are students from universities that use a similar

computing curriculum). As a result, Bootstrap includes non-

trivial volunteer training and support component.

The high-level features of our training and support program are:

 A full-day (or two half-day) training class, led by one of

the Bootstrap staff, in the city where the volunteers will

teach. This class reviews the research behind Bootstrap

and its connection to algebra, demonstrates teaching

roughly half the curriculum, explains the role of the

various worksheets and curricular elements, and

provides some basic training in how to manage and

motivate students in our target age range.

 Lecture notes that intersperse pedagogic content with

classroom management. For example, the following

two lecture note instructions govern having students fill

in the game-dissection worksheet:

 Weekly conference calls between staff and volunteers

teaching in the same geographic region; at least one

volunteer from each site participates. The calls review

each topic in the week’s lesson, discuss what did or did

not go well, review classroom management issues, and

check in on problems from the previous week.

Perhaps our biggest challenge is that our volunteers are excited to

teach programming, but not all have bought into following the

design recipe and using the worksheets that support the

curriculum (most Bootstrap lessons involve 1-2 worksheets that

help stage material for students). Like many people with limited

classroom experience, our volunteers often lack appreciation for

pedagogic approaches beyond instructor enthusiasm. Providing a

crash course in pedagogy is therefore one of the key needs of our

training program. We discuss this further in Section 5.3.

4. PROGRAM REACH AND IMPACT
We first offered Bootstrap in 2005. Today, we offer 20-30 classes

per year across the USA (with growing adoption by teachers in

school classrooms). Most of our offerings are through after-

school organizations that target under-represented students in

urban areas. Table 2 shows course and enrollment data. Roughly

70% of our students get free or reduced-price lunch; most are

minorities; roughly 20% have been female.

We have begun evaluating student learning within Bootstrap. Pre-

and post-tests on standard algebra word problems and function-

composition problems (from actual state math exams) showed

statistically significant improvements after a week-long summer-

camp offering taught by the Bootstrap founder. Mean scores rose

from 51% to 64% (p ≤ 0.007) on function-composition problems

and from 30% to 57% (p ≤ 0.002) on word problems, both with

one-tailed t-tests. Different teachers are using the tests this year,

though in formal school settings (where variables including

attendance rates and attention to pedagogy are better controlled).

Future papers will present Bootstrap’s impact on student learning

within formal school settings.

Table 2: Statistics on Bootstrap’s after-school offerings. The

table does not report in-school adoption, which grew from

zero in 2010 to 26 classrooms in 2012. The dashes mark years

before we recorded enrollment data. The numbers in

brackets indicate how many of the classes (from the second

column) reported data on student enrollment and retention.

Year

Num

Classes States

Students

Started

Students

Finished

2005 1 MA - -

2006 4 MA - -

2007 11 MA - -

2008 16 MA, CA 88[9] 62[9]

2009 15 MA, CA, NY 67[6] 40[5]

2010 22 MA, CA, NY, RI 113[8] 103[8]

2011 22 MA, CA, NY, RI,

IL, UT, WY

273[22] 240[22]

2012 27 MA, CA, NY, IL,

VA, DC, TX, PA,

WV, WA

372[25] 121[11]

(spring

only)

5. LESSONS LEARNED
Bootstrap has been an experiment in using volunteers to deliver

content-rich computing curricula through established after-school

organizations for at-risk students. Our Bootstrap experience has

yielded several lessons about these goals.

5.1 Software Lessons
Most after-school programs we’ve worked with run out of

existing urban (often inner-city) public school facilities.

[TO STUDENTS] In your groups, take one minute

to come up with a complete list of all things in the

game. Your group will get a point for each thing

they can find. Everyone in your group should have

this list written down - not just one person! If even

one person in your group hasn’t written it down,

the group doesn’t get the point! GO!

[PEDAGOGIC NOTE] During the minute, walk

around and see how groups are doing. This is the

time to encourage expectations of community and

respect - call out good teamwork when you see it!

When time is up, give them a countdown:

"30...10... 5... 4... 3... 2... 1... PENCILS DOWN,

EYES UP HERE!" Wait for total silence and

complete attention.

Computing labs in these schools have predictable limitations: old

computers with limited memory, outdated browsers and other core

software, and school policies that forbid installation of new

software. These constraints demand web-based programming

environments that work effectively in older browsers.

Social dynamics demand that suitable programming environments

use cloud-based storage (which often, but need not, comes with

web-based tools). The computer labs we use tend to be cramped,

offering little room between adjacent computers. This can

amplify behavioral problems; if two students with a tendency to

fight with one another are at adjacent computers, one of them has

to move (this happens often in our experience). Cloud-based

tools enable students’ work to move with them, both within the

classroom and beyond (some students continue working on their

games at home or in school or public computing labs). The

common alternative, having students bring flash drives, is not

practical as younger students forget or lose them regularly.

These two observations led us to build a web-based programming

environment, called WeScheme [11] (www.wescheme.org), for

Bootstrap. Switching from a desktop IDE to our web-based one

also proved crucial to some of our offerings, as it gave our partner

organizations more flexibility in where we could hold our classes.

For our target age group (tweens), good IDEs support not just

programming, but also learning. Bootstrap uses a worksheet to

help students through the steps of the design recipe (Section 2.3).

This worksheet became much more palatable to students once we

built a widget for it into our IDE, rather than having them follow

it on paper. In general, students at this age like using the

computer, and expect to use it as much as possible. Integrating

learning materials into the IDE encourages students to use them.

5.2 Curricular Lessons
By far, our biggest curricular challenge has been accommodating

student absence. It is rare that all students are present in any

given week. As the Bootstrap lessons build upon one another,

we’ve had to design in ways for students to catch up on a missed

session. In addition, with classes meeting only once a week,

students tend to forget details even when they were present.

Starting each session with reviews of the previous week naturally

targets both problems, but this has not proven sufficient.

Gathering all of the worksheets that accompany the curriculum

into a single workbook per student helps students stay on track

(they can refer back to old examples and notes), as well as catch

up (one student can look at a friend’s completed worksheets while

figuring out what they missed). Lesson plans reinforce prior

materials by referring back to prior weeks’ worksheets as

appropriate. The volunteer teachers bring all of the workbooks

back and forth to class each week. This seems to contradict our

prior recommendation to integrate worksheets into the IDE. In

practice, we integrate worksheets that get used often into the IDE

and have students use them in the workbook (on paper) once or

twice before showing them the computerized version.

The Bootstrap staff also prepared alternate paths to product goals

for students who need to get caught up quickly. For example, if a

student misses the class on conditionals (needed to get programs

to respond to user input), the volunteers can provide a code

fragment with the conditional structure, leaving the student to

write the test and answer expressions (which they know how to

do). This costs the learning goal on conditionals, but helps

students remain engaged through a (sometimes partial) product

goal. The Bootstrap staff supply these routes to volunteer

teachers as needed during the weekly conference calls.

5.3 Managing Volunteers
Over time, we have refined what we cover in the “Teaching 101”

component of volunteer training. We also extend teaching lessons

into the weekly conference calls. During the calls, we have found

that volunteers struggle to separate engagement from learning

when reflecting on their sessions. Many assume engaged students

are learning; some assume that quiet students are not interested.

In the weekly conference calls, we ask volunteers to discuss and

rate their progress on these goals separately.

Many volunteers underestimate the importance of pedagogic

components to the curriculum. They may skip worksheets, or

pedagogic instructions in the lecture notes, for the usual reasons

that they did not need such structure themselves. We find that

most volunteers are much more receptive to pedagogic training

after teaching their first Bootstrap class. We therefore expect

second-time volunteers to also attend training sessions. We also

devote more training and support time to explaining how each

worksheet and device ties into our learning and product goals.

Sustaining a program through volunteers demands recruiting and

retaining them (or at least retaining their interest so that they help

recruit others). While recruiting volunteer teachers has not always

been easy, it has been easier than expected. We find many

volunteers who are excited to teach Bootstrap because it is more

challenging for students than Scratch or HTML-authoring. In

turn, they recruit friends and colleagues. Typically, our pool of

willing volunteers exceeds our supply of after-school providers to

host the classes. We have certainly lost volunteers who find the

learning goals in Bootstrap too rigid for their tastes. However,

many of our volunteers are (or were referred by) our own former

students who took our college-level courses that used similar

foundations to Bootstrap. These volunteers have an emotional

connection to the learning goals, beyond programming and the

product goals. This seems critical to sustaining their engagement.

5.4 Choosing After-School Partners
The Bootstrap staff have explored partnerships with many after-

school providers. By-and-large, these organizations have high

aspirations for impact on students. These organizations also face

considerable challenges, however: they are poorly funded, work

through schools with limited facilities, and support students with

significant distractions beyond school. Most struggle to find good

content for their programs; many are satisfied if they can provide

a safe and interesting place for students to spend the afternoon.

Bootstrap’s culture differs from typical after-school offerings in

two inter-related ways: first, we attempt to go beyond playing

with computers to conveying non-trivial content; second, that

content, like all STEM content, builds incrementally on earlier

content. A class with staged content is challenging to teach in an

environment where most students may miss many class sessions.

Based on our discussions with roughly a dozen organizations and

teaching partnerships with five, we have identified key metrics for

whether an after-school organization can effectively host

Bootstrap. These include a minimum of 20 hours instructional

time, with sessions at least 45 minutes long, at least once a week;

attendance rates of 70% or better; and organization staff able to

step in and help with chronic or severe behavioral problems

among students. While the specific numbers in these metrics

might differ in classes other than Bootstrap, we expect similar

metrics would govern other programs. While these metrics may

seem generous to one who has not worked with after-school

programs before, in practice many providers cannot meet them,

http://www.wescheme.org/

and indeed we have had to terminate our partnerships with some

(otherwise attractive) providers as a result.

Gathering demographic data and conducting program evaluation

can be challenging. In some cases, organizations never provide

promised data; several don’t gather sufficient data for their own

purposes. We often ask our volunteers to gather our enrollment

and gender data as a result. The bracketed data in Table 2

illustrate the extent of this problem. Some organizations highly

structure student time to achieve solid academic impact on

students. This is good, but makes it hard to get additional time for

assessment activities (such as pre/post tests, interviews, or focus

groups). Expectations on data and assessment are part of our

initial negotiations with all potential partners.

6. RELATED WORK
Papert’s innovative and inspirational Logo project [8] was an

early effort to seriously embrace programming for children.

Logo’s turtle graphics helps children who don’t yet know

coordinates perform geometric computations; in essence, children

embody the turtle, writing imperative commands that physically

perform geometric drawings and computations. Bootstrap differs

in two key ways, one tied to each of geometry and algebra.

Regarding geometry, we target children who are old enough to

work with coordinates; indeed, we seek to reinforce students’

existing work with coordinates from math class. Regarding

algebra, our reactive and functional programming model allows

students to express animations directly as algebraic functions.

Logo’s imperative computation model does not reinforce the

fundamental algebraic idea that functions consume and produce

values. From this perspective, it is thus less useful for our goal of

helping students understand and master algebra.

Bootstrap’s approach to videogame programming differs from

those built around Scratch, Alice, and other common early-

programming tools. In most languages, game programs consist of

small scripts that control each element (in our case, the player,

target, and danger). Scripts use imperative programming

constructs such as assignment statements and loops to update

attributes of elements during gameplay. Bootstrap hides these

constructs by having students write programs that generate the

attributes for each frame from those of the previous frame. This

decision vastly simplifies the programming model―students only

need to learn how to define functions and constants and how to

use conditionals―but also connects game programming to

mathematics standards for algebra and coordinate geometry.

Bootstrap also differs from other common novice programming

approaches in our emphasis on up-front design. Scratch and Alice

are designed to encourage students to play around and decide

what to build they go along (and learn more features). Bootstrap,

in contrast, pre-determines the game structure and has students

design games within that structure. This lets us integrate our

learning and product goals. Our programming model means that

students do not write their first animation in minutes (unlike in

Scratch). We nonetheless engage students in creative design from

the outset: the game design worksheet from the first lesson has

students envision their games, then gradually teaches them how to

build them through programming.

Bootstrap currently lacks the drag-and-drop syntax of most other

tools for novice programmers. This is partly by design: textual

syntax is closer to what students must master in mathematics

classes. A detailed discussion of this issue, while interesting, is

out of scope for this paper. The interesting question for this paper

is how our use of textual syntax affects the effectiveness of

Bootstrap in after-school programs. We are not aware of studies

that compare syntax in contexts similar to ours. However, nearly

all of our students do complete a working game that they can

explain to others after a 9-week Bootstrap course. While syntax

might matter, it does not appear critical in the context of a good

programming model, compelling materials, and a course structure

that requires few syntactic constructs.

The team behind Scratch intersects the founders of the Computing

Clubhouse, a network of after-school programs for 8-18 year old

inner-city students [9]. Maloney et al. studied learning evidenced

in student projects with Scratch in the Clubhouse [6], but we are

not aware of reports on the interplay between Clubhouse structure

and student learning. While many after-school computing

programs exist, we have not found any literature reporting on how

to effectively design volunteer-led curricula for such programs.

7. CONCLUSIONS
We started Bootstrap with the goal of using volunteers to teach

challenging computing classes to at-risk students through after-

school organizations. Many USA-wide organizations share our

aspirations for quality after-school STEM education [1, 7, 10].

Bootstrap has been successful on several fronts: time and again,

novice programmers in our target audience develop their own

working videogames within the 9 week class. They find the class

engaging, even though our graphics are neither flashy nor

sophisticated. They are able to develop programs successfully,

even though we use a textual programming language rather than

drag-and-drop. We have extensive anecdotal evidence that

students gain confidence in mathematics through Bootstrap, both

from students and sometimes from their parents.

As our paper explains, however, running successful after-school

programs is challenging, especially when they hope to have strong

impact on curricular learning (rather than merely offer diversion).

In particular, the logistics of after-school programs, and the

difficulties faced by after-school organizations, all conspire to

increase the challenge of successful delivery. Every aspect,

including recruitment, training, attendance, behavior, equipment,

and volunteer retention, poses challenges that are often unique to

this context.

Nevertheless, we believe Bootstrap offers a positive message.

After-school programs can deliver challenging content through

which students gain more than just exposure to computing. Many

software professionals are eager to work with students, especially

if the material feels substantial or reflects their experience. With

well-crafted materials, students can perform—sometimes to the

joy and amazement of our professional volunteers—activities

more commonly associated with real-world software practice,

such as extensive testing and live code reviews. After-school

offers more opportunities than many computing programs seem to

target; with careful management, computing educators could

provide significant benefits through this medium.

ACKNOWLEDGEMENTS
Matthias Felleisen has provided insight and inspiration throughout

this project. Matthias, Larry Finkelstein, Viera Proulx, and others

at Northeastern have provided critical support. Vicki Crosson and

Emma Youndtsmith have deftly coordinated the volunteer

program. Danny Yoo built the software and kept it running.

Dozens of volunteers have donated time, energy, and enthusiasm;

we thank them and their employers for making the program

possible. We appreciate Greg Morrisett and Stephanie Weirich’s

support for Bootstrap. We are deeply grateful for funds from

Google, Microsoft, the US NSF, Jane Street Capital, the

Entertainment Software Foundation, and several private donors.

REFERENCES

[1] After School Science. See http://afterschoolscience.org/

[2] Common Core Standards Initiative. 2010. Common Core

Standards for Mathematics. Retrieved from

http://www.corestandards.org/assets/CCSSI_Math%20Stand

ards.pdf

[3] Felleisen, M., Findler, R.B., Flatt, M., and Krishnamurthi, S.

2009. A Functional I/O System. ACM SIGPLAN

International Conference on Functional Programming.

[4] Felleisen, M., Findler, R.B., Flatt, M., and Krishnamurthi, S.

2001. How to Design Programs. MIT Press.

[5] Jackson, A., Davis, G., Abeel, M., and Bordonaro, A. 2000.

Turning Points 2000: Educating Adolescents in the 21st

Century. A Report of Carnegie Corporation of New York.

Teachers College Press.

[6] Maloney, J., Peppler, K.A., Kafai, Y.B., Resnick, M. and

Rusk, N. 2008. Media Designs with Scratch: What Urban

Youth Can Learn about Programming in a Computer

Clubhouse. In Proceedings of the 8th International

conference for the Learning Sciences (Utrecht, The

Netherlands, June 24-28, 2008).

[7] National Parternships for After School Science. See

http://npass2.edc.org/

[8] Papert, S.A. 2001. Mindstorms: Children, Computers, And

Powerful Ideas, 2nd edition. Basic Books.

[9] Resnick, M., Rusk, N., and Cooke, S. The Computer

Clubhouse: Technological Fluency in the Inner City,

published in: High Technology and Low-Income

Communities edited by D. Schon, B. Sanyal, and W.

Mitchell, MIT Press.

[10] The SEDL National Center for Quality Afterschool. See

http://www.sedl.org/afterschool/

[11] Yoo, D., Schanzer, E., Krishnamurthi, S., and Fisler, K. 2011

WeScheme: The Browser is Your Programming

Environment. In Proceedings of the Conference on

Innovation and Technology in Computer Science Education

(ITiCSE).

http://npass2.edc.org/
http://en.wikipedia.org/wiki/MIT_Press

