
A Case Study in Using ACL2 for Feature-Oriented Verification

Kathi Fisler and Brian Roberts
WPI Department of Computer Science

kfisler@cs.wpi.edu

November 8, 2004

Abstract

Feature-oriented software systems are built from components that encapsulate cohesive end-user fea-
tures. Feature-oriented components are interesting because they cross-cut the system architecture, cap-
turing behavior fragments from several system entities. Features support a plug-and-play style of software
construction, in which several systems can be constructed from the same core set of features. This ap-
proach requires novel forms of formal verification that support modular reasoning about feature-based
components. This paper presents a case study on modeling and verifying a feature-oriented email system
in ACL2. The main goal of the study is to identify classes of theorems that should be proven about in-
dividual features so that properties about compositions of features can be derived from the theorems on
the individual features. A secondary goal is to evaluate ACL2 as a modeling and verification framework
for feature-oriented systems. We present our feature model and insights into verification, then discuss
the strengths and weaknesses of ACL2 in this problem domain.

1 Introduction

Feature-oriented design is an increasingly common software development paradigm. This approach recog-
nizes that many software systems consist primarily of user-specified features, where a feature is a product
characteristic that allows customers to distinguish between products. Telecommunications systems are a
popular example, offering features such as voice-mail, message forwarding, and call-waiting. Domains rich in
features tend to lead to product-lines of related systems built from combinations or permutations of features
from a common set [5, 9].

Feature-oriented software design offers unique challenges for verification. A product line can yield an
exponential number of products relative to the number of features, making it infeasible to verify each new
product from scratch. This demands a verification methodology in which properties specific to individual
features are verified against those features and a lightweight analysis checks that feature-specific properties
remain valid when features are composed into products. While this sounds like classical modular verification,
features introduce three challenges to this standard problem. First, the composition-time analysis require
reasoning about open systems because features may refer to shared propositions. Second, two or more
features can collectively yield behavior that violates the expected behavior of a subset of those features, and
this is often desirable. Consider a voice-mail feature with the property that it activates message recording if
a call is unanswered after four rings. This property could be violated if the feature is included in a system
that also provides call forwarding (if the call is forwarded before the voice-mail system is activated). This
feature interaction problem is perhaps the most interesting technical issue in feature-oriented design (and
one that is not always amenable to formal analysis [11]). Third, features cross-cut software architecture,
meaning that a feature contributes code to several components in the underlying system. This means that
the module (feature) that we wish to analyze in isolation is less cohesive at an implementation level than
a conventional module (though more cohesive from a behavioral perspective), which violates some of the
assumptions underlying traditional modular verification.

We are interested in developing verification strategies for feature-oriented systems. In prior work, Fisler
et al. developed a modular approach to feature verification based on model-checking [4, 8, 12]. Because

1



finite state machines and temporal logic are not always appropriate formalisms, we are also interested
in understanding how to do modular feature verification in other frameworks. This paper considers this
problem in the context of ACL2, presenting a case study in modeling and modularly verifying a simple
email application. Our long-term goal is to figure out how to effectively model and modularly verify feature-
oriented systems in ACL2: this involves figuring out what the system architecture should look like to enable
plug-and-play construction of multiple products from sets of features and what sorts of intermediate lemmas
we need to prove about each feature to enable lightweight modular verification of products. Ideally, the
product-level verification should also warn of potential feature interactions, despite the incompleteness of
reasoning in ACL2. Identifying the lemmas is in some sense the most important aspect of this project, as
they should carry over to a variety of verification frameworks in which models of features are given at the
level of code (as opposed to state machine abstractions).

The work reported here is in its early stages, and has been done by two advanced-beginner-level users
of ACL2. One of our goals in presenting this work at the ACL2 workshop is to gather feedback from the
ACL2 community regarding approaches and techniques that might better realize our project. In turn, we
present our initial findings about the strengths and weaknesses of ACL2 for this problem domain. We also
hope that the ACL2 community will find this paper useful as an introduction to a growing trend in software
development that will require support from the verification community in the long term.

2 The Case Study Example: An Email System

This paper uses a running example of an email product line that is originally due to Bob Hall of AT&T
Labs [10]. The available features in Hall’s example are basic mail delivery, digital signatures, forwarding,
anonymous remailing, encryption, decryption, signature verification, auto-reply, filtering (based on sender’s
hostname), and mail hosting. Our study uses a representative subset of Hall’s features that give rise to
formalizable feature interactions. The host feature sends a “postmaster response” when an attempt is
made to send a message to an unknown user. The auto-response feature is like Unix vacation: it sends an
automatically-generated response to senders the first time they send a message to a user. The encryption
and decryption features encrypt and decrypt mail, respectively. We use host for its simplicity, auto-response
to represent features that do not modify the message being sent but can trigger other actions to be performed
(mailing new messages), and encryption and decryption as features that affect incoming and outgoing mes-
sages. The properties of and interactions between these features that are relevant to this study are detailed
as needed in the rest of the paper.

Architecturally, an email system contains several components: a database of information about individual
users (such as their encryption keys, mail aliases, and auto-response message), a series of processes to run on
outgoing messages (such as deciding whether to encrypt them) and a series of processes to run on incoming
messages (such as deciding whether to send an auto-reply to them). A full-blown email application would
also contain queues of incoming and outgoing messages; as the queues complicate verification without adding
insight to feature verification, we currently assume that only one message is active in the system at a time.
We implement an email system as a simulator that takes a list of valid commands from users (such as “send
a message to Fred” or “change my auto-response message”) and executes each one in turn. The result of
executing a command could be a change to the user database, the issuance of a new command to continue
processing a message, the delivery of a message to a user, or an error message if the command fails.

Individual features can contribute code to multiple components of an email system: an encryption fea-
ture, for example, introduces commands for enabling encryption and setting encryption keys, as well as the
process for actually encrypting an outgoing message. This illustrates how features cross-cut conventional
system architecture; Figure 1 shows this visually. Although having features (components) cross-cut the
architecture breaks the homomorphism between components at the design and architectural levels, it may
prove a benefit for verification: properties and features are both behavioral entities, arising from the perspec-
tive of end-users; as a result, feature modules often align more naturally with properties than conventional
modules. Fortunately, features tend to compose sequentially rather than in parallel, so most inter-component
communication occurs between fragments arising from the same feature; this vastly simplies verification.

2



Features

Implementation Components

Command loop Database Incoming Outgoing
auto-reply set-msg, enable response reply code
encryption set-key, enable key check encrypted encrypt msg

Figure 1: Features as modules (shown horizontally) provide code fragments for system components (shown
vertically).

3 Modeling and Building Products

The preceding overview of feature-oriented systems identifies a number of requirements for our models of
features and products in ACL2. Specifically, the model must support:

• describing a feature independently from other features,

• describing the pieces of a feature that belong in each component independently of one another,

• easily changing the set and order of features that comprise a product,

• proving properties of individual features, and

• proving properties of compositions of features using theorems about individual features as lemmas.

Not surprisingly, we model features and the simulator as collections of functions. Our model relies
on four main data structures. Messages are lists capturing the sender, recipient, message headers, and
message contents. Actions capture commands to be executed; they consist of lists indicating the action
and the data required to perform it. For example, the action to mail a message is a list of the form
(’mail sender message), where the message captures the recipient. The user environment captures users’
personal preferences (including address books and whether forwarding is set). The host environment stores
information about which users have accounts on each host. To facilitate verification, the host and user
environments also store the messages that are sent or received to each user and host.

The rest of the section describes the functions that we define for each feature and the mechanisms we
use to build products from sets of features. Section 4 discusses verification.

3.1 Modeling Individual Features

Consider an auto-response feature: when a user enables this feature, it tracks which senders have already
received an automated reply from the user and sends an automated reply when the user receives a message
from a new sender. Adding this feature requires three kinds of extensions to an email system:

1. new actions that users can perform (for enabling auto-response and setting the contents of the generated
message),

2. new types of information that must be stored in the user and host environments (the stock message to
send and which users have received replies), and

3. new processing on incoming messages (check the list of previous senders and send an auto-reply if
necessary).

Other features, such as encryption, could also introduce processing on outgoing messages.
These four kinds of changes drive our model for features. An individual feature is modeled as a set of

four essential functions, one for each type of modification. The essential functions may use any number of

3



;; augment user environment with initialized fields needed for feature
(defun email-auto-init (env)

(set-var ’already-answered ’()
(set-var ’user ’()
(set-var ’default-response ’() env))))

;; code to execute new commands introduced by this feature
(defun email-auto-command (cmd args env)
(cond ((equal ’SET_USER cmd)

(let ((?user (car args)))
(set-var ’user ?user env)))

((equal ’SET_DEFAULT_RESPONSE cmd)
(let ((resp (car args)))
(set-var ’already-answered ’()

(set-var ’default-response resp env))))
(t env)))

;; just returns a comment since this feature does not process outgoing messages
(defun email-auto-outgoing (msg env)
(begin (cw " [email-auto-outgoing: ~x0]~%" (get-var ’user env))

(act comment "[Outgoing events not handled]")))

;; the heart of the auto-response feature, which works on incoming
;; messages. The act function is the constructor for actions.
(defun email-auto-incoming (msg env)

(if (equal ’() (get-var ’user env))
(act comment " [User not set yet --> no action]")

(begin
(let ((?from (message-sender msg)))

(if (member-equal ?from (get-var ’already-answered env))
(act comment "[No autoresponse, already answered -->

no further action]")
(if (equal ’() (get-var ’default-response env))

(act comment "[No default autoresponse --> no further action]~%")
(let ((?recip (recipient msg))

(?response (get-var ’default-response env)))
(begin
(cw " respond ’~x0’to ~x1~%" ?response ?recip)
(act mail

(mk-message ?recip
(list (message-sender msg))
(set-var ’subject (list ’re (subject msg)) ’())
(cons ?response ’()))

(set-var ’already-answered
(cons ?from (get-var ’already-answered env))
env))))))))))

Figure 2: ACL2 source code of auto-response feature.

4



auxiliary functions, but the system model will only directly invoke the essential functions. The following
table summarizes the essential functions. We indicate essential functions through a naming convention: a
feature-specific prefix (such as email-auto) combined with the suffix listed in the table.

Function/Suffix Description
-init Initializes system data structures for the feature
-command Introduces new commands related to the feature
-outgoing Transforms messages sent from a user or via a host
-incoming Similar to -outgoing, for messages sent to a user. In additional, may

refuse or respond to messages

Figure 2 shows the ACL2 model of the auto-response feature. Following the naming convention, the
feature consists of four functions called email-auto-init, email-auto-command, email-auto-outgoing,
and email-auto-incoming. All the functionality of the feature is encapsulated in those four functions. The
four functions go into a single file for the corresponding feature. We chose not to package the feature functions
into ACL2 books because book certification introduced a more complicated step than seemed necessary for
the exploratory nature of this project.

3.2 Modeling Products

An email product (simulator) consists of a base system that performs simple mail delivery and a set of
hooks for adding optional features. Through the hooks, the base system must invoke each feature’s essential
functions to initialize environments, dispatch commands, and process all incoming and outgoing messages.
Figure 3 shows the core of the simulator; the full code appears elsewhere [16]1. The main function of a
product is simulate-network, which invokes do-actions, the main processing loop of the simulator. The
function do-action-conddispatchs to one of several functions (do-init, do-send, do-deliver, do-command,
and do-mail) depending on the type of the action to perform. The do-mail function implements basic mail
delivery; the remaining four functions provide the hooks for inserting features (described in the next section).
Figure 4 summarizes the call graph of the simulator, which shows where the essential functions fit into the
system code.

3.3 Building Products from Features

To insert features into a simulator, we need to specify which features to include, then ensure that the hook
functions invoke the essential functions for each feature. Figure 5 shows a representative fragment of the
product-customization code. The *features-present* constant defines which features should be included
or enabled in a product (in the figure, auto response and encryption). The user-init function provides the
hook for the -init functions; it is called from do-init in Figure 3. The fif construct is a macro (short
for “feature-if”) that includes the code for a feature if the feature is enabled. user-init calls each enabled
feature’s initialization function in turn with the user environment as its argument. Each -init function will
return a (possibly) modified environment, which user-init passes on as the argument to the next feature.

Using fif and *features-present*, we can easily customize which of the available features we include
in a particular product. This approach is not as modular as we would ideally like, since it does involve
modifying the core infrastructure code whenever we develop a new features. The usual solution to this
problem in functional languages uses higher-order functions, which ACL2 does not support. Our chosen
approach strikes a reasonable balance between quick customization of products and separation of features.
We discuss this issue in more detail in Section 5.

The do-command hook function is similar in format and function to do-init. The feature functions
for incoming and outgoing messages are invoked from the do-deliver and do-send functions called in
do-action-cond in Figure 3. Function do-send pipes the message through each feature’s -outgoing func-
tion; these functions may modify the message (to encrypt it, for example). After all features have processed
the message, do-send calls appropriate functions to send the message to the specified host. On the message

1In order to keep the paper self-contained, some uses of simple functions and macros from the full code have been inlined.

5



;; parses actions into internal representation and initiates action processing
(defun simulate-network (actions)
(do-actions (parse-actions actions) 20 *users* *hosts*))

;; runs each action in turn, returning updated user and host environments
;; the count variable is used to prove termination of the function
(defun do-actions (actions count users hosts)
(declare (xargs :measure (acl2-count count)))
(if (and (> count 0) (integerp count))

(begin
(cw "do-actions: ~x0~%" (stringify (car actions)))
(cond ((endp actions) (mv ’end users hosts))

(t (let* ((action (car actions))
(rest (cdr actions)))

(mv-let (new-actions new-users new-hosts)
(do-action-cond action rest users hosts)
(do-actions new-actions (- count 1) new-users new-hosts))))))

(mv ’error users hosts)))

;; for any action other than basic mail delivery, runs the command and
;; returns the updated user and host environments (and remaining actions).
;; Features are added to the system by extending the definitions of the helper
;; functions called in the cond cases of this function.
(defun do-action-cond (action rest users hosts)
(let ((type (action-type action)))
(cond ((equal ’init type)
(do-init action rest users hosts))

((equal ’send type)
(do-send action rest users hosts))

((equal ’deliver type)
(do-deliver action rest users hosts))

((equal ’mail type)
(do-mail action rest users hosts))

((equal ’command type)
(do-command action rest users hosts))

(t (begin (cw "Can’t execute command ~x0~%" action)
(mv rest users hosts))))))

Figure 3: The core simulator code, modeling a system that contains no optional features. As features are
added to the system, the do-init, do-command, do-send and do-deliver functions get extended to include
the code for those features (see Section 3.3).

6



do-senddo-init do-deliver do-command

do-actions

simulate-network

do-mail

f1-init f2-init

user-init

...

f1-outgoing f2-outgoing

user-deliver

...

...
...

Figure 4: The call graph for the simulator, showing where the essential feature functions are invoked. Solid
lines indicate calls from one function to another. Dashed lines indicate that the user or host environments
resulting from one function are passed to another.

(defconst *features-present* ’(auto encrypt))

(defund user-init (user)
(let-seq user

(fif encrypt (email-encrypt-init user) user)
(fif decrypt (email-decrypt-init user) user)
(fif auto (email-auto-init user) user)
user))

Figure 5: User initialization source code over three possible features. let-seq is a macro that sequentially
binds the variable in its first argument to the values of the remaining expressions, then returns the value of
the last expression. In this example, it is used to accumulate changes to the data structure for a user over
the individual feature initializations.

delivery side, do-deliver is similar to do-send. It passes the message through the features that could
affect the message, and then delivers the message. We omit the code for these functions as it does not shed
additional insight on our model or approach.

4 Verifying the System

Ideally, a modular verification technique for feature-oriented systems should allow a designer to verify prop-
erties of individual features, then use a lightweight, modular technique to confirm that feature-specific
properties are not violated when features are composed into a product. In the context of ACL2, we inter-
pret “lightweight” to mean that the composition-time proofs require little to no human interaction with the
prover. As an example, if we have a product containing auto-response that satisfies the auto-response prop-
erties, and then we add an encyryption feature, we need to prove that the extended product still satisfies the
auto-response properties; if our methodology is truly lightweight, we shouldn’t need to prove unanticipated
theorems about the functions that implement encryption. Even in the context of anticipated theorems, we
don’t want to have to prove theorems specifically about auto-response on the encryption feature because this
would lead to a combinatorial explosion of theorems across all the features that could comprise a product.
One of our goals with this case study is to understand what form these general theorems might take, if they
exist at all. Furthermore, we are interested in whether ACL2 failing to prove a property theorem from the
general theorems likely suggests a feature interaction (as opposed to a missing auxiliary lemma).

7



Fisler’s prior work on using CTL model checking for modular feature verification partially verifies a
property against a feature to automatically generate sufficient conditions under which the property would
hold of the feature; the conditions are captured as CTL formulas. When features are composed into a
product, another series of automated checks (akin to model checking and three-valued propositional checks)
discharges the generated constraints; failure to discharge a constraint indicates a feature interaction. This
approach relies on the decidability of model checking, in that it detects feature interactions through failure
of the checks on constraints.

Reasoning about features and their composition in our ACL2 model is more subtle when reasoning about
both individual features and feature compositions. The subtleties in proving properties about individual
features arise in part because our model does not make individual features truly independent of the overall
system. While a feature is defined through the four essential functions described in Section 3.1, those
four functions only interact through the code for the core infrastructure (which calls the -init function
through do-init, then the -command function through do-command, and so on). This makes it difficult to
reason about an individual feature purely at the level of its essential functions, without including the core
infrastructure. The subtleties in reasoning about feature compositions arise largely from the undecidability
of ACL2.

4.1 Reasoning about Individual Features

To verify a property against an individual feature, we first form a simple product out of the feature and
the core infrastructure (with no other features); we then prove a series of theorems that lift the property
to the level of the simulate-network function in Figure 3. As an example, consider the auto-response
feature, whose main property is that it should reply once and only once to all messages from active users of
the system, but not including automated messages such as the postmaster. One key theorem towards this
property states that sending a message to a user who has enabled auto-response adds a sender to the user’s list
of senders who have already received answers. This theorem appears as the first expression in Figure 6. The
assumptions on the theorem are that the auto-response feature is enabled (’default-response is non-nil in
the environment), the environment is a valid user environment (’user is non-nil), the sender of the message
msg is equal to sender, and the sender has not already received an auto-response message. The consequence
of the implication states that the user environment resulting from running email-auto-incoming includes
the sender in the already-answered list.

The remaining two theorems in Figure 6 lift the theorem on email-auto-incoming to the functions that
invoke email-auto-incoming, namely user-deliver (called directly from do-deliver in simulate-network)
and simulate-network. The theorem on simulate-network confirms that the property holds in a product
with only this feature; ACL2 needs the user-deliver theorem to find the proof for the simulate-network
theorem.

Were we to extend the product with an additional feature, we would want to prove that the properties
proven of the auto-response feature continue to hold in the new product. Obviously, we could simply re-
verify the theorems; if the new feature has no impact on auto-response, the theorem proved of the smaller
product should (hopefully) go through without additional human guidance to ACL2. This is not a truly
modular approach, however, because ACL2 will re-verify some theorems rather than use the results of
the previous verification: specifically, ACL2 needs to re-verify the user-deliver and simulate-network
theorems because adding the new feature requires editing user-deliver (which simulate-network calls).
In theory, the verification of the email-auto-incoming theorem need not be done again, as that code
has not been edited. Putting the feature functions into a book could prevent this re-verification, but this
approach would not scale to properties that require interaction between essential functions through the core
infrastructure. Nonetheless, this approach would allow for some modular verification. Rather than discuss
modular verification and our motivation for it further on this example, the next section explores it in the
more interesting context of feature interaction.

4.2 Reasoning Modularly about Feature Interactions

The auto-response and host features yield a feature interaction when composed. When a message is sent to
an invalid user on a host, the host feature sends a “user unknown” message from the postmaster account.

8



(defthm email-auto-incoming/auto-response-adds-sender-to-already-answered
(implies (and (get-var ’default-response env)

(get-var ’user env)
(equal sender (message-sender msg))
(not (member-equal sender (get-var ’already-answered env))))

(user-in-already-answered sender
(mv-env (email-auto-incoming msg env)))))

(defthm user-deliver/auto-response-adds-sender-to-already-answered
(implies (and (get-var ’default-response recipient-env)

(get-var ’user recipient-env)
(equal (message-sender msg) sender)
(not (member-equal sender (get-var ’already-answered recipient-env))))

(user-in-already-answered sender
(mv-env (user-deliver msg recipient-env)))))

(defthm simulate-network/auto-response-adds-sender-to-already-answered
(implies (and (get-var ’default-response recipient-env)

(get-var ’user recipient-env)
(equal (message-sender msg) sender)
(equal (email-user sender) sender-name)
(not (member-equal sender (get-var ’already-answered recipient-env)))
(equal (email-user (recip msg)) recip-name)
(equal (get-var user users) recipient-env))

(user-in-already-answered sender
(get-var recip-name

(mv-nth 1 (simulate-network
(mk-action ’mail sender-name msg)
users hosts))))))

Figure 6: Hierarchy of theorems to prove an auto-response property. The first part of the name of each
theorem indicates to which function the theorem is lifting the property. The main difference between these
theorems lies in the assumptions, which get more restrictive the closer the theorem gets to being about
simulate-network.

9



(defthm vacationer-autoresponds-to-postmaster-thm
(implies (and (message-p msg)

(equal (recipient msg) recipient)
(equal (email-user (message-sender msg)) sender-name)
(equal (email-user recipient) recipient-name)
(equal (email-host recipient) recipient-host)
(member vacation *vacation-space*)
(equal (get-var sender-name users) sender-env)
(get-var default-response sender-env)
(get-var ’user sender-env)
(get-var recipient-host hosts)
(not (get-var recipient-name users)))

(mv-let (status new-users new-hosts)
(simulate-network (mk-action mail sender-name msg) users hosts)
(eq (body-lines (get-user-var postmaster recv-msg new-users))

vacation))))

Figure 7: Theorem capturing the feature interaction between auto-response and message hosting.

The postmaster account is an administrative address, and is not always monitored by a human. It would
therefore be extraneous to send an auto-response message to the postmaster. While this situation does not
indicate that something went wrong in the email system, it is considered an unwanted interaction within the
feature-interaction community.

Detecting this interaction is difficult because it does not violate properties about either the host or auto-
response features individually. Detecting this interaction in a theorem-proving context is complicated further
because theorem proving is generally undecidable. Even if we had anticipated the potential interaction and
encoded its absence as a theorem, it would be difficult to determine whether the theorem fails because there
is an interaction or because we failed to identify sufficient supporting lemmas.

In this case study, we are mainly concerned with figuring out what properties of the individual features
could be used to signal the interaction. We therefore capture the interaction itself (rather than its absence) as
an ACL2 theorem, then determine what intermediate lemmas we would need about each feature in isolation
so that we could prove the interaction theorem without reasoning about an entire product containing both
features. Intuitively, the theorem capturing the interaction says that given a valid user name and auto-
response (vacation) message, sending a message to user who does not exist on a host should result in the
postmaster receiving a vacation message from the original sender of the message; Figure 7 shows the code.
While this approach of verifying that interactions exist is not reasonable in the long-term, it is nonetheless
useful for developing a methodology for modular theorem proving about feature-oriented systems.

The interaction lemma follows from theorems about the behavior of the host and auto-response features.
Specifically, the theorem depends on three theorems: 1) if the auto-response feature is enabled, and the
sending user has not yet been responded to (i.e. not in ’already-responded), then that user will be added
to the ’already-responded list, 2) if the auto-response feature is enabled, and the sending user has not yet
been responded to, then an auto-response reply message will be sent, and 3) if the user in the recipient field
in not known on a host, then the postmaster will send an “unknown user” reply to the message sender. The
first two capture the changes in environment and action resulting from auto-response, respectively. Although
these theorems reflect core properties of the individual features, they would not signal an interaction in the
absence of the interaction theorem.

Proving the interaction theorem becomes more interesting when we require that reasoning to be modular.
The proof that the interaction theorem follows from the three feature-specific theorems uses the bodies of the
functions that define the features. Truly modular reasoning should not need the feature implementations.
Figuring out how to do truly modular reasoning is important because we want to determine whether we

10



; email-auto-outgoing returns a valid message when given a valid message
(defthm thm-email-auto-outgoing-returns-message-p

(implies (message-p msg)
(message-p (mv-nth 1 (email-auto-outgoing msg env)))))

Figure 8: Theorem characterizing constraints on functional outputs.

(defthm thm-email-auto-init-adds-or-changes-only-x-variables
(implies (and (symbol-alistp env)

(equal (get-var key env) var)
(not (member key ’(already-answered user default-response))))

(let ((new-env (email-auto-init env)))
(and (equal (get-var key new-env) var)

(has-var ’already-answered new-env)
(has-var ’user new-env)
(has-var ’default-response new-env)))))

Figure 9: Theorem characterizing which attributes are changed during function call.

can identify logically sufficient intermediate lemmas for modular verification, independently of ACL2. To
simulate modular reasoning, we exploited ACL2’s disabling feature and hands-off hints to prohibit expansion
of the feature’s functions at verification time. ACL2 now needs additional lemmas to discharge the interaction
theorem, as we describe in the next section.

4.3 Characterizing the Intermediate Lemmas

The specific intermediate lemmas needed to prove interaction theorems modularly are not interesting in
this paper, but their nature is instructive for our goal of developing a methodology for modular feature
verification. Our work identified four general types of supporting lemmas:

1. Input/output: Constraints on the types or format of the functional inputs (arguments) and outputs
(return values). Figure 8 shows an example.

2. Changes: Which attributes might and definitely do not change in the environment after executing the
feature. Figure 9 shows the theorem thm-email-auto-init-adds-or-changes-only-x-variables,
which proves that only ’already-answered, ’user and ’default-response are added by the function
email-auto-init. Explicitly stating those variables that are changed enables the theorem to remain
the same when additional variables are added to the system—the number and content of the unknown
variables in the system are irrelevant to this theorem.

3. Dependent changes: How the environment is changed and what values are returned, based on at-
tributes of the inputs or variables in the environment. Figure 10 shows an example. The theorem
auto-response-if-not-already-answered-mail-action proves that if auto-response is enabled and
the sender of the incoming message is not already in the ’already-answered list, then an auto-response
message is sent back. The theorem no-auto-response-if-already-answered proves the reverse: if
the sender is already in the ’already-answered list, then no auto-response message is sent.

4. Lifting: Theorems needed to raise theorems proven about individual features to theorems about the
simulate-network and its immediate helper functions.

11



;; If enabled, first message from user results in an auto-response message
(defthm auto-response-if-not-already-answered-mail-action
(implies (and (get-var ’default-response env) ;; autoresponder enabled

(get-var ’user env)
(equal sender (message-sender msg))
(not (member-equal sender (get-var ’already-answered env))))

(equal (mv-status (email-auto-incoming msg env) ’mail))))

;; If enabled, subsequent messages from the same user result in no additional messages
(defthm no-auto-response-if-already-answered
(implies (and (equal (message-sender msg) sender)

(user-in-already-answered sender env))
(not (equal (mv-status (email-auto-incoming msg env)) ’mail))))

Figure 10: Theorems characterizing messages resulting from the auto-response feature.

The first three kinds are proven against the essential functions for the individual features. The lifting
theorems naturally involve the enclosing definitions referenced in the theorems themselves.

The changes and dependent changes lemmas most closely resemble the constraints that Fisler et al.’s
model-checking technique generates to preserve properties of features. The main difference is that the ACL2
theorems frame changes in the context of environments, which is a data structure more appropriate to ACL2’s
functional models than to state machines. The input/output theorems are new to the ACL2 context; they
were unnecessary in a model-checking context because all data was propositional, lacking both type and
structure (messages there were captured as individual propositions for each message attribute). The lifting
theorems are also novel to the ACL2 context, arising from ACL2’s richer modelling framework as compared
to state machines.

4.4 Verification Effort

The following table shows the distribution of theorems needed to prove the interaction theorem between the
host and auto-response features. The feature-level theorems were generally easy to produce, and required
less user time and effort to create and prove. The majority of the human effort was expended at the lifting
theorems, particularly because of the number of theorems at that level. We used ACL2 version 2.5 for this
project.

Theorem Type/Level Number Proven
Top Level
- simulate-network 1
Lifting Level
- lifting theorems 88
Feature Level
- input/output 21
- changes 12
- dependent changes 8

In our experience, the dependent-changes and lifter theorems required the most human intervention, often
requiring hints to the theorem-prover or additional helper lemmas before finally proving. The input/output
and changes theorems in the system generally went through with little additional intervention. As our
experience with ACL2 and the problem domain increased, lifting became easier because the effort needed
to lift different properties followed predictable patterns. Additional case studies would be needed before we
could predict the human time needed to use our approach to add (and verify) new products to the system.

12



5 Perspective on Using ACL2 for Modular Feature Verification

Our main goals for this case study were twofold: first, we wanted to explore how difficult it would be to
model and verify feature-oriented systems in ACL2; second, we wanted to understand what sort of lemmas
are needed about individual features to enable modular verification and detection of certain kinds of feature
interactions. This section reflects on our lessons learned toward both goals.

ACL2 has both strengths and weaknesses for modeling feature-oriented systems for modular verification.
The procedural style of models in ACL2 naturally captures the high-level control flow in feature oriented
systems because features generally interact sequentially, rather than in parallel. Features, however, cross-cut
system entities. As such, a feature is not one function but several, the calls to which occur within some
core infrastructure code. Composing features into a product therefore required that we modify the core
infrastructure code in order to invoke all the necessary functions. ACL2 macros were very useful in managing
the code modifications, but this approach is not modular due to our need to modify the infrastructure code.
A standard modular model for feature oriented systems in functional languages passes functions that extend
a system as arguments to the appropriate parts of the infrastructure code. ACL2’s restriction to first-
order functions fails to support this model. In addition, the cross-cutting functions for a single feature often
execute concurrently, rather than sequentially as in this case study; we currently ignore this aspect of realistic
feature-oriented systems.

A related consequence of connecting the essential functions for a single feature through the core infras-
tructure code is that ACL2 books fail to be appropriate for modularity. Ideally, we would want to create a
book for each feature, putting all the code and theorems needed for modular reasoning into the book. This
approach would work for theorems that involve only one essential function, but not for theorems involving
the interaction between essential functions or for the lifting theorems. Putting the code for the core infras-
tructure in each book would result in multiple copies of that code; theorems would not be reusable across
these copies. Our best approach to modularity thus far has been to disable traversal of features that had
already been verified using ACL2’s hands-off hints. Without hands-off, which is outside the scope of the
core ACL2 logic, it is not clear how we could create a suitable modular verification framework within ACL2.

One might argue that whether proofs succeed with or without hands-off is irrelevant, as long as the
proofs go through automatically. We believe, however, that being able to prove theorems at composition
time while using hands-off hints provides a metric for assessing the lightweightness of our compositional
reasoning approach: proofs that don’t go through with hands-off hints indicate necessary feature-specific
theorems that our methodology missed. We must conduct further case studies to determine whether this
metric is meaningful in practice.

Fisler et al.’s modular model checking methodology for features was able to automatically generate
sufficient constraints for preserving properties of each feature. These constraints serve the analogous role to
the intermediate lemmas used for the interaction theorem in this case study. Automatic constraint generation
is a significant advantage, as assumptions can be notoriously hard to get right in assume-guarantee reasoning.
A natural question, then, is whether we might be able to automate generation of the intermediate lemmas
in ACL2. As a first level of automated support for lemma generation, we exploited ACL2 macros to create
theorems parameterized by details from the actual features. For example, Figure 11 shows the macro
make-*/mail-returns-message-p-thm which creates a theorem to prove that the function’s second return
value is has the format of a valid message. The macro takes in the name of the function to which to apply
the theorem and (optionally) any hints that should be provided to the theorem prover to aid in proving the
theorem. This technique vastly simplified our task of maintaining and updating the system, and kept similar
theorems consistent across features.

Our macro-based approach, while useful, still requires the product designer to decide which lemmas to
create for each feature. In the longer term, we would prefer to push this automation even further, and
use some formal analysis of the feature models to determine which theorems to generate in the first place.
Furthermore, we would like to be able to predict which classes of lemmas ACL2 could generally discharge
without guidance (beyond the hints that we build into the macros). Input/output style theorems mostly
capture type annotations, and could be generated from a front-end feature modeling language with type
annotations. The changes theorems, which characterize which variables definitely or sometimes change, could
at least be approximated with standard flow analyses. We could probably generate skeletons of the lifting

13



(defmacro make-*/mail-returns-message-p-thm (func &optional hints)
‘(defthm ,(new-thm func ’returns-message-p)

(implies (message-p msg)
(message-p (mv-nth 1 (,func msg env))))

:hints ,(inject-goals
(list (list "Goal" ’:in-theory (list ’enable func))) hints)))

(make-*/mail-returns-message-p-thm email-auto-outgoing)

Figure 11: Macro definition for make-*/mail-returns-message-p-thm and example usage.

functions, but those require additional assumptions based on the system’s control flow that might be hard
to generate accurately in practice. The dependent change theorems talk about the feature implementations,
and are not good candidates for automation. A feature-oriented verification environment built around ACL2
could therefore provide some nontrivial designer support, but would still be subject to some of the usual
complexities that arise in theorem proving. Naturally, we need to perform additional case studies to refine
our views on how much we can automate in this domain.

6 Conclusion

The software engineering community is exploring many notions of programming with cross-cutting compo-
nents. Work on aspect-oriented programming [1], mixin layers [2], units [7], subject-oriented program-
ming [14] and others [3, 13, 15] all revolve around creating design-level components that span several
implementation-level entities. This design trend raises new challenges for verification. In the context of
features, the vast number of ways in which features can be composed into products mandates that this veri-
fication be somewhat modular, so that the majority of verification effort is amortized over several products;
composition-time checks must be lightweight.

This paper describes an early effort at using ACL2 as a modeling and verification framework for feature-
oriented systems. Using a case study of a feature-rich email system, we proposed a model of individual
features and showed how to compose features into products. We showed how to verify properties against
individual features, and identified four classes of lemmas that we need about individual features in order to
reason modularly about their compositions. We demonstrated that these lemmas allow ACL2 to modularly
prove that a particular email product contains an undesirable interaction between two features (an instance
of so-called feature interaction). This gives us high confidence that our current findings are on the right
track towards a feasible methodology for reasoning about feature-oriented systems through ACL2.

Our models are inspired by Hall’s LISP-based descriptions of feature-oriented systems [10]. Hall manually
searched his models for feature interactions, rather than use a verification-based approach as described here.
We are developing more automated techniques that can modularly detect these interactions from formal
descriptions of the behavior that they violate. Felty and Namjoshi [6] use temporal logic as a foundation
for detecting feature interactions between feature specifications, but do not consider verifying properties
of features or modular detection of interactions. We are not aware of any other efforts to detect feature
interactions modularly through theorem proving.

Our work to date has made several simplifying assumptions that we need to relax in future work. Perhaps
the most disconcerting is that modularly detecting a feature interaction currently involves proving a theorem
stating that the interaction exists. In reality, feature interactions are unexpected behaviors; we would prefer
to detect interactions when a composition of features fails to preserve a property proven of one of the
features. Even this is challenging in an undecidable logic such as ACL2’s, since failure to find a proof
does not guarantee that a theorem is false. We are hopeful, however, that many feature-oriented systems
will have a certain level of regularity that makes feature interaction detection feasible in practice. For
example, the features in our current email suite all follow a pattern of making adjustments to the host and

14



user environments; the theorems that we prove modularly at composition time essentially confirm that the
sequence of features respects the environment setting that each feature requires. These theorems appear
to involve mostly straightforward rewriting and reduction; as such, we are hopeful that we can identify a
sufficiently rich set of lemmas to prove about individual features so that composition theorems have high
likelihood of succeeding without human guidance to the prover. Alternatively, we may be able to use hints
more effectively to help trigger failure in the face of feature interaction. If we can achieve this, failure to
prove a theorem would strongly suggest a feature interaction. This hypothesis is highly speculative, and will
require additional case studies to confirm or deny.

Our work indicates that ACL2 has both strengths and weaknesses for modular feature verification. The
hands-off hints are perhaps ACL2’s greatest asset, as they allow us to simulate modular verification by
disabling expansion of a feature’s definition. ACL2 macros are also extremely helpful from a code manage-
ment perspective; we use them extensively to configure different products out of features and to generate
standard templates of theorems to prove about individual features. Most of ACL2’s disadvantages reflect
the standard limitations to automation associated with theorem proving. One ACL2-specific issue was that
having only first-order functions meant that we had to manually inject features into a product, rather than
externally linking features together through higher-order functions.

We close with a series of questions for more experienced ACL2 users:

1. How might we create a more genuinely modular model of a feature-oriented system? Even assuming
we could write feature models such that the interaction between the core functions doesn’t rely on the
infrastructure code, is there a good way to “inject” a feature into a product without modifying the
core infrastructure code?

2. How might books be most useful in this project? Our understanding is that books are essentially
libraries of code plus theorems; including a book would still give the prover access to the feature
implementations during verification, so we would still need to use hints (hands-off or disable) to
enforce modular verification. Are we missing a characteristic of books that might be helpful here?

3. Has anyone had luck with determining sets of intermediate lemmas that make a class of theorems
highly likely to go through? Which sorts of hints might we explore to get ACL2 to distinguish feature
interactions from theorems that lack sufficient supporting theorems? Are we overly optimistic that
regularity across features could be sufficient to yield high probability that theorems about property
preservation would go through if they were indeed true?

References

[1] Aspect oriented programming (article series). Communcations of the ACM, 44(10), October 2001.

[2] D. Batory and S. O’Malley. The design and implementation of hierarchical software systems with
reusable components. ACM Transactions on Software Engineering and Methodology, 1(4):355–398,
October 1992.

[3] L. Bergmans and M. Aksit. Composing crosscutting concerns using composition filters. In Communi-
cations of the ACM, October 2001.

[4] Colin Blundell, Kathi Fisler, Shriram Krishnamurthi, and Pascal Van Hentenryck. Parameterized in-
terfaces for open system verification of product lines. In IEEE International Symposium on Automated
Software Engineering, 2004.

[5] Paul Clements and Linda Northrop. Software Product Lines: Practices and Patterns. Addison-Wesley,
2002.

[6] Amy P. Felty and Kedar S. Namjoshi. Feature specification and automated conflict detection. ACM
Transactions on Software Engineering Methodology, 12(1):3–27, 2003.

[7] R. B. Findler and M. Flatt. Modular object-oriented programming with units and mixins. ACM
SIGPLAN International Conference on Functional Programming, pages 94–104, 1998.

15



[8] Kathi Fisler and Shriram Krishnamurthi. Modular verification of collaboration-based software designs.
In Joint European Software Engineering Conference and ACM SIGSOFT Symposium on the Foundations
of Software Engineering, pages 152–163, September 2001.

[9] Martin Griss. Implementing product-line features by composing component aspects. In First Interna-
tional Software Product-Line Conference, August 2000.

[10] Robert J. Hall. Feature interactions in electronic mail. In Proc. 6th International Workshop on Feature
Interactions in Telecommunications and Software Systems. IOS Press, 2000.

[11] Dirk O. Keck and Paul J. Kuehn. The feature and service interaction problem in telecommunications
systems: A survey. IEEE Transactions on Software Engineering, 24(10):779–796, October 1998.

[12] Harry Li, Shriram Krishnamurthi, and Kathi Fisler. Modular verification of open features through
three-valued model checking. Journal of Automated Software Engineering, To appear.

[13] Karl Lieberherr, David Lorenz, and Mira Mezini. Programming with aspectual components. Technical
Report NU-CCS-99-01, College of Computer Science, Northeastern University, March 1999.

[14] H. Ossher and P. Tarr. Multi-dimensional separation of concerns in hyperspace. Technical Report RC
21452(96717), IBM, April 1999.

[15] Christian Prehofer. Feature-oriented programming: A fresh look at objects. In Proceedings of
ECOOP’97. Springer-LNCS, 1997.

[16] Brian Roberts. Modular detection of feature interactions through theorem proving: A case study.
Master’s thesis, WPI Department of Computer Science, August 2003.

16


