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Studies of diagrammatic reasoning have tended to focus on cognitive or
logical issues, but rarely on computational ones. A computational view
of diagrams studies how diagrammatic representations affect solutions to
computational problems. This paper presents a computer scientist’s view
on diagrams research. As a case study, it considers the role of diagrams
in hardware verification, an area with a long tradition of using diagrams
in informal reasoning. We discuss several ongoing projects and some
emerging results on the benefits of diagrams in this problem domain. We
also identify features of diagrams that might explain our findings.

1 Introduction

Diagrams are an important tool in problem solving. In domains from
mathematics to architecture to political science to engineering, peo-
ple develop and communicate ideas through diagrams. This pervasive
use in such widespread areas has inspired much research into the na-
ture of reasoning with diagrams. This research generally takes one of
two perspectives: the cognitive or the logical. The cognitive perspec-
tive explores diagrams’ role in human thought processes. The logical
perspective explores the mathematical nature of diagrammatic repre-
sentations. These perspectives are complementary, and help paint a
broad picture of diagrammatic reasoning.

Relatively little work, however, has presented a computational per-
spective of diagrammatic reasoning. Such a view is sorely lacking. A
plethora of computer-based tools support problem solving in a variety
of domains. Recognizing the cognitive advantages of visual informa-
tion, many of these tools employ visual interfaces in order to attract
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and support users. Beneath the interface, however, these tools gener-
ally translate the diagrams into existing textual representations before
running the problem solving algorithms. This approach is sound if the
translation is sound', but could the computer-based algorithms operate
more effectively on the diagrammatic representations themselves? Di-
agrams suggest certain data structures; how do these data structures
compare computationally to those that traditionally capture textual
representations? The computational view on diagrammatic reasoning
addresses these questions by exploring the potential computational ben-
efits, or computational efficacy, of diagrammatic representations.

This paper presents both a primer to computational efficacy in dia-
grammatic reasoning and some results arising from our own research in
this area. Section 2 describes computational efficacy and motivates our
choice of hardware verification as a case study. Section 3 provides an in-
troduction to hardware design and verification and their diagrammatic
representations. Section 4 describes our ongoing research projects and
some results. Sections 5 and 6 summarize our perspectives on dia-
grammatic reasoning as gained from these projects and offer concluding
remarks, respectively.

2 Computational Efficacy and a Case Study

Computational efficacy studies the interplay between representations
and the computational resources, such as time and memory, required
to process them. This focus on resource requirements distinguishes a
computational perspective on diagrammatic reasoning from both the
cognitive and logical ones. Unlike the cognitive view, the computa-
tional perspective studies machine-based, rather than human, informa-
tion processing. Computational studies therefore yield more mathe-
matically grounded analyses than cognitive ones.

The differences between the computational and logical perspectives
are more subtle. In essence, logic studies representation, while com-
puter science studies how representation affects computation. For ex-
ample, a logician might study completeness and compactness, whereas
decidability and descriptive complexity are more important to a com-
puter scientist. The two views are by no means independent: both
study expressibility, certain algorithms require complete logics, and lo-
gicians study proof theory, which has a computational flavor. Nonethe-
less, these areas emphasize different criteria of logics and representa-
tions, and those differences should be significant to the diagrammatic

1Unfortunately, developers rarely address this issue.
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community. Whereas a logician might study how diagrams affect our
notions of information and inference, a computer scientist might ask
whether diagrams enable machines to solve particular problems more
effectively. Lemon and Pratt [Lemon and Pratt (1997)] illustrate both
logical and computational views on diagrams in spatial reasoning.

Exploring the computational efficacy of diagrams requires a set of
problems to study in a domain for which diagrams provide suitable
representations. Candidate domains and problems should meet three
criteria. First, the domain should use diagrams in interesting ways: if
the diagrams are essentially isomorphic to existing textual notations,
then the diagrams are unlikely to offer computational benefits. Second,
the problems should be computationally difficult, so that the relative
merits of different representations are more readily apparent. Finally,
both the domain and the problems should be important in order to
justify the search for new and improved representations.

Hardware design and verification satisfy all three criteria. Hard-
ware designers have a long history of using diagrams, albeit in informal
contexts. This practice has persisted, despite the largely textual nature
of early computer-aided design tools. This suggests that, at least on a
cognitive level, diagrams play roles unmatched by existing textual rep-
resentations. Whether they play similar roles at a computational level
is an interesting and open question for computer science. Hardware
design also contains many important and computationally challenging
problems. Verification, the process of proving that designs satisfy cer-
tain behavioral requirements, is one example. Verification is important
because it helps guarantee that the designed circuits will not malfunc-
tion. It is also extremely difficult, as its computational requirements
often surpass the available resources of modern computers.

Our study of the computational efficacy of diagrams in hardware
verification uses a logic of design diagrams that we describe in Section 3.
Currently, our project asks the following questions:

e How expressive is our logic relative to other verification logics?
e How concise are statements in our logic relative to other logics?
e Is verification decidable in our logic?

e Does translating our diagrams to text yield larger instances of
verification problems than if we processed the diagrams directly?

e How do proofs in our logic compare to ones of the same properties
in other logics with respect to proof-theoretic properties?

Section 4 describes these projects in more detail.
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3 Hardware Design and Verification

Hardware design is the process of creating an electronic circuit to pro-
cess information for a particular task. A typical hardware design in-
volves hundreds or thousands of interacting components that collec-
tively perform the intended task. The interactions between these com-
ponents can be complex and subtle. As a result, they often yield unex-
pected, and erroneous, system behavior. Given our increasing reliance
on computer technology, techniques for locating and eliminating these
errors are of increasing importance. Unfortunately, the sheer size of
modern designs makes this task extremely difficult. A modern design
can contain millions of transistors, which leads to a system with far
more states than there are atoms in the universe. Developing so-called
validation techniques to analyze and debug designs on this scale is one
of the most challenging problems facing modern hardware design.

Verification is a validation technique that brings logic and proof
to bear on error detection [Clarke et al. (2000); Manna and Pnueli
(1995)]. In verification, designers state properties that a design should
satisfy, then formally prove that a model of the design satisfies those
properties. For example, a design for a traffic-light controller should
satisfy at least the following two properties:

o Green lights are never on in both directions simultaneously.

o If a car is waiting at a red light, that light eventually turns green.

This example presents two flavors of properties: they can express either
invariants about the design or various forms of progress guarantees.
For verification, both the design model M and the desired property ¢
must be expressed in some formal notation. Verification then entails
proving that M |= ¢. Specific verification techniques vary from model-
theoretic to proof-theoretic, and employ a range of heuristics to control
the size of the model to be checked. A typical verification task can take
from several seconds to several months to complete, depending upon
the complexity of the design, the complexity of the property, and the
particular techniques that apply to the problem at hand.

Most modern verification tools capture models and properties using
textual logics. Hardware design, in stark contrast, uses a wide array of
representations, many of them diagrammatic. A design encompasses a
vast array of information of varying sorts. Fach design representation
excels at capturing some aspect or set of aspects of a design. Figure 1.1
shows examples of three common diagrammatic design representations:
state machines (left) capture flow of control; circuit diagrams (center)
capture layout and implementation details; and timing diagrams (right)
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Figure 1.1: A collection of design representations.
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Figure 1.2: A heterogeneous hardware logic.

capture temporal relationships. A single design generally involves in-
formation given in several of these, as well as other, representations.

This representation gap between design and verification complicates
the designer-controlled aspects of verification. Designers are more com-
fortable with their highly evolved design notations than with verifi-
cation logics. Furthermore, designers develop intuitions about their
designs in terms of their original notations; once a design has been
translated to another notation, designers find reasoning about it more
difficult. This is problematic both in guiding the verification effort, and
in locating the sources of errors found during verification.

In an effort to bridge this gap, many verification tool developers
now provide diagrammatic interfaces to their tools. While these in-
terfaces don’t support the full suite of design notations, they provide
some support, such as a timing diagram interface for specifying prop-
erties [Damm et al. (1995)]; this frees the designer from part of the
task of manually translating their ideas into verification notations. At
a minimum, creating the interfaces requires developing a well-defined
syntax and semantics for every supported design representation, as well
as sound translations between representations. While this approach
allows developers to leverage off of existing tools, it bypasses any po-
tential computational efficacy of hardware diagrams. Our work asks
whether we lose any computational benefits by taking this approach.
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We have developed a logic of hardware representations in order to
study this question [Fisler (1996)]. Figure 1.2 provides an overview of
the logic. It includes five syntactic representations: the three diagram-
matic notations from Figure 1.1, monadic second-order logic (MSOL),
and a linear-time temporal logic (LTL). The logic uses two levels of
semantic models: Kripke structures for four of the representations, and
a general language model to encompass timing diagrams, which are
more expressive than Kripke structures. Inference rules in the logic are
proven sound relative to the greatest common semantic model between
the representations involved. The projects described in this paper pri-
marily use timing diagrams and LTL; we describe each in more detail
in the following sections.

3.1 Timing Diagrams

Timing diagrams express patterns of value changes on signals. In addi-
tion, they express precedence, synchronization, and timing constraints
between changes. Figure 1.3 shows a sample timing diagram in our
logic. Variables a, b, and ¢ name boolean-valued signals. To the right
of each name is a waveform depicting how the variable’s value changes
over time. For example, b transitions from high to low, then later re-
turns to high. The terms low and high correspond to voltage levels; in
our logic, we interpret low as logical false and high as logical true.

Vertical parallel lines indicate synchronization. Figure 1.3 requires
b to be low when a’s value rises. A transition or a synchronization is
called an event. Arrows indicate temporal ordering between events.
Annotations of the form [I, u] on the arrows indicate discrete lower and
upper bounds on the time between the related events; [ and v may
consist of natural numbers, variables, and addition and subtraction
expressions over them, as well as the symbol co. The annotation “=n”
abbreviates [n, n]. The labels at the bottom, referred to as time points,
are for explanatory purposes and are not part of the timing diagram.

Since timing diagrams express sequences of values on variables over
time, an appropriate semantic model for them must do the same. For-
mal languages, which are sets of sequences over a given alphabet, sug-
gest an appropriate semantic model. Our semantics considers finite or
infinite words over an alphabet consisting of all possible assignments
of boolean values to the names labeling waveforms. Intuitively, a word
models a timing diagram when the transition patterns in the diagram
reflect the changes in values assigned to names in the word. This pa-
per provides an intuitive description of the semantics; the full details
appear elsewhere [Fisler (1999)].
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Figure 1.3: A timing diagram and an illustration of its semantics.

Consider the timing diagram and (random) word in Figure 1.3. The
word appears in tabular form: the waveform names label the rows and
the indices into the word label the columns. Each cell in the table
indicates the value on the corresponding signal at the corresponding
index. Symbols 0 and 1 denote logical false and true, respectively. The
two lines directly beneath the table indicate two separate assignments
of indices to time points, as explained shortly.

Intuitively, the semantics walks along a word looking for indices that
satisfy each time point. An index satisfies a time point if the values
assigned to each name in the index correspond to those required by
the events at the time point; for transition events, satisfaction relies on
both the current index and its immediate successor. For example, if a
time point p; contains a rising transition on signal a, index d satisfies
p; if d assigns value 0 to a and index d + 1 assigns value 1 to a.

Verification properties often have the form ¢ — 1; we would there-
fore like our timing diagrams to express some notion of implication.
For example, we might want the behavior shown in the timing diagram
in Figure 1.3 to occur only when the first event, the falling transition
on b, occurs. We use a parameter that is external to the diagram to
indicate which prefix, if any, of the diagram should be treated as a
trigger for satisfying the entire diagram. We call the portion of a tim-
ing diagram defined over these time points the assume portion of the
diagram. Taking the assume portion in Figure 1.3 to contain only p;
treats a falling transition on b as the trigger.

For the word and timing diagram in Figure 1.3, index 0 satisfies
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the falling transition on . The walk continues, now searching for an
index satisfying the synchronization line at ps. According to this line,
b must be low when a rises. However, is b required to be low until a
rises? The desirability of the “until” interpretation is heavily context-
dependent. A second parameter therefore indicates which segments of
waveforms should be matched exactly within words. Such segments are
called fized-level constraints. For this example, assume we have only
one such constraint: that a must remain high between ps and p3. Index
2 satisfies the first synchronization line.

Now, we search for indices satisfying either p3 or ps. Although ps
appears before py in the diagram, the semantics allows them to occur in
either order because no relationship is explicitly stated between their
events. Index 3 satisfies ps and index 4 satisfies p3. Once finding
an index that satisfies ps, the semantics must also check whether the
indices assigned to p; and ps3 respect the bounds given on the successor
edge. If not, the walk fails to match the timing diagram. The first
row below the table contains this first assignment of indices to time
points. Verification properties are often invariant over a system; thus,
we need to check for the timing diagram pattern starting from each
index containing a rising transition on b (indices 4, 7, and 9). The
second line beneath the table shows a walk on which the semantics fails
(from index 4); thus, this word does not satisfy the timing diagram.

Thus, our semantics defines when a timing diagram describes the
sequences in a given language (i.e., a set of words). A timing diagram
language is any language that some timing diagram describes. One of
our projects in Section 4 discusses characteristics of timing diagram
languages in more detail.

3.2 Linear-time Temporal Logic (LTL)

Like timing diagrams, linear-time temporal logic describes patterns of
changes in variables over sequences of assignments. LTL is a proposi-
tional temporal logic. Its syntax and semantics are defined relative to
a finite set of propositions P. The formulas of LTL include P and are
closed under unary operators — and X (next), and binary operators V
and U (until). Intuitively, X¢ says that ¢ holds in the next state, while
U1 says that ¢ holds in every state until ¢ holds, and 1 eventually
holds. Other temporal operators, such as G (something holds in all
states) are defined in terms of U.

Verification of LTL formulas relies on a well-known correlation be-
tween LTL and Biichi automata [Vardi and Wolper (1986)]. A Biichi
automaton is a tuple (Q,X, qo,d, F) where @ is a set of states, X is



D1AGRAMS AND COMPUTATIONAL EFFICACY / 9

an input alphabet, go € @ is the initial state, § C @ X ¥ x @ is the
transition relation, and F C @ is a set of states (called the fair states)
used to determine acceptance. Given a design represented as a Biichi
automaton A and an LTL formula F', verification consists of checking
whether the language generated by A is contained in that accepted by
F'. In other words, LTL verification reduces to testing a language con-
tainment of the form £(A) C L(F); verification tools implement this
check as L(A) N L(F) = ). This check is decidable for a large class of
verification problems. The first step of this check involves compiling
the negation of formula F into a Biichi automaton. One of our projects
looks at this compilation step as a means of comparison between LTL
and timing diagrams.

4 Exploring Computational Efficacy

This section describes four specific projects that explore the computa-
tional efficacy of hardware diagrams. We discuss the role of hardware
diagrams in interactive theorem proving, the expressiveness of timing
diagrams relative to LTL, the decidability of verification of timing di-
agram properties, and two methods for compiling timing diagrams to
Biichi automata for purposes of verification. For each problem, we
identify the features that distinguish the diagrammatic representations
from their textual counterparts.

4.1 Interactive Theorem Proving

In interactive theorem proving, users guide tools in developing proofs
(using natural deduction or the sequent calculus, for example) that
models satisfy properties. Designers use theorem proving when a ver-
ification problem is either undecidable or too complex for automated
techniques to handle effectively. We are interested in comparing nat-
ural deduction proofs developed in our heterogeneous logic with those
developed in textual logics. In particular, we are interested in whether
the heterogeneous proofs are longer or shorter, or whether they involve
more or less branching into subcases than purely textual proofs.

This section presents an example verification of a simple device
known as a single pulser. A single pulser has one input and one output.
For each arbitrary but finite length pulse on its input wire, the single
pulser produces a unit-duration pulse on its output wire. Such a device
is useful, for example, to convert long depressions of a call button on
an elevator to single requests in the underlying hardware. The defining
property of a single pulser is simple: the device should produce exactly
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one unit duration output pulse between each pair of consecutive input
pulses. The timing diagram in Figure 1.1 captures this property.

The circuit diagram in Figure 1.1 implements a single pulser. In the
diagram, the triangular icon represents logical negation, the rounded
icon represents conjunction, and the rectangular icon represents a unit
delay. The latter device updates its value in regular intervals (defined
by a system clock). In each interval, the value on the output is the
value that was on the input in the previous interval. The lines connect
inputs and outputs of these smaller devices to one another; the inputs
of each device enter on the left side, while the outputs are on the right.

We wish to contrast two proofs that the circuit diagram satisfies the
property expressed in the timing diagram. We perform one proof in
our heterogeneous logic (the inference rules and their soundness proofs
are in the style of those in Hammer [Hammer (1996)] and appear else-
where [Fisler (1996)]). For the second proof, we translate both diagrams
into first-order logic formulas and use first-order logic inference rules
to prove that the circuit diagram formula implies the timing diagram
formula. Converting the two diagrams into first-order logic formulas
is straightforward. For the circuit diagram, we write a formula that
captures each gate in the diagram, then name the inner wires via exis-
tentially quantified variables.

delay(i, o Vi:o(t+1) =i(t)
Vit : o(t) = —i(t)
Vi :o(t) = i1(t) ANia(t)

Az3y : delay(i,y) A inverter(i,x) A and(x,y, 0)

inverter(i,o

)

)
and(i1,12,0)
SP(i,0)

For the timing diagram, we introduce an existentially-quantified time
variable for each event in the diagram and capture the relationships
between the signals around each time variable. In the following formula,
t' captures the falling transition on 4, t" captures the second rising
transition on ¢, and ¢; captures the rising transition on o.

Vi: (@At + D) AT >EAI) At + 1) A
Vitp it < tp Aty <tl:i(th)/\
37 s (1 > ¢ A —i(t") Ad(E" +1))A
Vig:t' >t At <t':—i(ty)) =
b1t >EA —lO(tl) A O(t1 + 1) A —'O(tl + 2) A
(Vt2 : (tz >tAty < tl) — —|O(t2)) A
Vi3 : (t3 >Sti+1At3 < t" — ﬁO(tg))
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Figure 1.4: The diagrammatic single pulser proof.
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SP(i,0)
delay(i,y) A inverter(i,z) A and(z,y,0)
—i(t) Ai(t + 1)A
It >tAIE)A-IE +1) A
Vi tt <tp Atp <t :i(th) A
;@ > AR AT+ 1) A
Ve it >t At < t" . —li(tl)
' >tAt) At +1)
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-z (t)
-o(t")
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—o(t' + 2)
ta >t Aty <t
i(t2)
-z (t2)
—0(t2)
ta >t Aty <t — —o(t2)
Vis i ta >t Ata <t — —o(ts)
" >t A=) At +1)
ts>t At <t’
i(t3)
—y(ts +1)
—10(t3 + 1)
ts >t Ats < t' — —|o(t3 + 1)
Vi3 : t3 > t Ats < — ﬁO(t3 + 1)
' >tA-o{t')Ao(t +1)A—o(t' +2) A
Vis ita >t Ata <t — —o(t2) A
Vitg itz >t Ats <t — —o(ts + 1)
Tt it >t A ﬁO(i’l) A O(t1 + 1) A
—o(t1 +2) A
Vta : to >tAta <t —)ﬁo(tz) A
Vi :ts > t1 Ats <t — —o(ts + 1)
[line 3 — previous line]
Vt[previous line]

Given
3 Elim: 1
Assume

3 Elim: 3

Def delay: 2, 4

Def invtr: 2, 4

Def and: 2, 5, 6
Def invtr: 2, 4

Def and: 2, 8

Def delay: 2, 4

Def and: 2, 10

Assume

VY Elim: 3

Def invtr: 2, 13

Def and: 2, 14

— Intro: 12, 15

V Intro: 16

3 Elim: 3

Assume

VY Elim: 3, 19

Def delay: 2, 20

Def and: 2, 21

— Intro: 19, 22

V Intro: 23

A Intro: 4, 7,
9,11, 17, 24

3 Intro: 25

— Intro: 3, 26

Y Intro: 27

Figure 1.5: The textual single pulser proof. In the justifications, invtr
abbreviates inverter.
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Figures 1.4 and 1.5 show the two proofs. Each proof uses core in-
ference rules of its respective logic, rather than derived lemmas, so the
granularity of reasoning between the proofs is comparable. The dia-
grammatic proof is much shorter, requiring only eight steps as opposed
to twenty-eight for the textual proof. The main difference lies in how
each proof handles information about a single signal. The textual proof
must establish several statements about the signal o; these statements,
although derived from the same lemmas about the relationship between
o and the other signals, are spread throughout the formula represent-
ing the timing diagram, as shown by the underlining in the formula.
The diagrammatic proof, in contrast, handles o in one step because all
information about o is localized within a single waveform; in this sense,
the timing diagram is inherently conjunctive. The two-dimensional na-
ture of timing diagrams controls the length of the diagrammatic proof:
we can access information specific to a particular time or information
about an entire waveform quickly and easily.

The two proofs also differ in their degree of branching. The dia-
grammatic proof never branches into subcases, while the textual proof
involves multiple layers of subproofs. The textual proof requires a new
subproof for each implication in the property formula. The implications
capture requirements about particular regions of the original timing
diagram. Since the timing diagram represents all regions simultane-
ously, it does not require additional subproofs to establish statements
about individual regions. Thus the two-dimensional nature of timing
diagrams affects the branching degree as well as the length of the di-
agrammatic proof. Multi-dimensionality therefore appears to be a key
factor in the computational efficacy of timing diagrams.

4.2 Timing Diagram Expressiveness

Section 3.1 defines a timing diagram language as a formal language
that models a timing diagram. We would like to identify any interest-
ing characteristics of timing diagram languages that might distinguish
them from other classes of languages. The Chomsky hierarchy defines
several layers of languages, such as regular, context-free, and context-
sensitive, each of which corresponds to a different model of compu-
tational machines. Timing diagram languages defy characterization
by the Chomsky hierarchy: they capture languages at each level of
the hierarchy, but cannot fully capture any single layer. For example,
timing diagram languages cannot capture simple disjunctions, which
arise in some regular languages. They can capture context-free and
context-sensitive languages through their use of parameters in timing
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[(FLo A —rising(a))U
[(FLo A —rising(a))U
(FLo A rising(a) A
X[(FL; A —rising(b))U
b 53 (FLy A rising(b) A
[2.3] X(FLa A —rising(c) A
X((FLqy A rising(c)) V
(FLy A —rising(c)A
X(FLs A rising(c))))))])]

(FLo A rising(a))] —

Figure 1.6: A timing diagram and its translation to LTL, assuming
that the assume portion contains only the rising transition on a. The
translation captures one walk of the timing diagram semantics.

constraints. The following diagram, for example, captures the context-
sensitive language A"B"C", where A, B, and C are the assignments
(a=1,0=0,c=0), (a=0,b=1,c=0), {a=0,b=0,c = 1).

=n

To date, two-way, one counter machines provide the closest match
we have found between timing diagram languages and a computational
machine model. These machines also capture languages across the
Chomsky hierarchy; in particular, they capture all timing diagram lan-
guages. However, we have examples of two-way, one counter machines
for which there is no timing diagram representation, so the correspon-
dence is not exact. Whether timing diagram languages define a class of
languages with distinct, yet interesting, properties from two-way one
counter machine languages remains an open problem.

As timing diagrams provide a form of linear temporal logic, a com-
parison between timing diagrams and LTL is natural. LTL is contained
in the regular languages. Thus, it is clear that LTL does not subsume
timing diagrams. Timing diagrams do not subsume LTL either, since
LTL can express simple propositional disjunctions, such as pV ¢q. Thus,
the two logics are expressively incomparable. However, timing dia-
grams that are interpreted as invariants and do not include parameters
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in their time bounds can be translated into LTL. The LTL expression
for a timing diagram follows the semantics for a single walk over the
diagram: if a sequence satisfies the assume portion of the diagram, then
it must satisfy the entire timing diagram.

Figure 1.6 shows a timing diagram and its corresponding LTL for-
mula. In the formula, the notation rising(s) abbreviates —s A Xs. FL;
denotes the fixed-level constraints in a segment of the diagram: FLg
is the constraint before the transition on a, FL; covers the segment
between the transitions on a and b, and FL, spans the transitions on
b and c¢. We leave these in symbolic format to highlight the general
form of the translation. The assume portion forms the antecedent of
the implication: it is true when a rising transition has been found on a
and the fixed level constraint FLg has held in all states preceding that
transition. The format of this until statement guarantees that the LTL
semantics uses the first rising transition on a, as required by the tim-
ing diagram semantics. In the consequent of the implication, the LTL
expression looks for the entire diagram: the first rising transition on a,
followed by the first rising transition on b, followed by the first rising
transition on c. The first rising transition on ¢ must occur either two
or three steps after the one on b. The nestings of next-time operators
X towards the end of the formula express this requirement.

This example shows one shortcoming of LTL as compared to timing
diagrams. LTL is unable to share the common subexpression

(FLy A —rising(c) A X(FLy A rising(c)))

which appears twice towards the end of the expression (once for each
allowable duration between the transitions on b and ¢). The timing
diagram, in contrast, needs only one instance of the rising transition
on c¢. Thus, timing diagram expressions can be more concise than their
LTL counterparts when timing constraints are involved. The LTL ex-
pression also duplicates the assume portion on both sides of the im-
plication. These differences may not be significant computationally,
however, unless they affect the resources required by a verification al-
gorithm. Section 4.4 examines this issue. The relative merits of LTL
and timing diagrams remains an open question for future research.

4.3 Decidability of Verification

Section 3.2 describes how verification of linear temporal logic proper-
ties reduces to language containment. In a similar vein, verification of
timing diagrams also reduces to language containment, though of a dif-
ferent class of property languages. Therefore, we need to ask whether
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containment of a Biichi automaton language (which captures a design)
in a timing diagram language is decidable. We might expect this prob-
lem to be undecidable, because containment of a regular language in
a context-sensitive language is known to be undecidable [Hopcroft and
Ullman (1979)]. However, we have proven that the problem is actually
decidable, regardless of where the timing diagram language resides in
the Chomsky hierarchy [Fisler (1999)]. This result holds because timing
diagrams localize where they count (i.e., their non-regular behavior) to
areas between particular events. This property is sufficient to render
verification of regular language design models decidable for properties
expressed in timing diagram languages.

4.4 Compilation to Biichi Automata

As discussed in Section 3.2, verification tools for LTL properties com-
pile the negation of an LTL formula into a Biichi automaton. The
timing diagram semantics effectively define a Biichi automaton accept-
ing a timing diagram language. This suggests two routes to verifying
timing diagram properties that are expressible in LTL: compile the
timing diagram directly to an automaton, or translate the timing dia-
gram into LTL and use the existing LTL compilation algorithms.? We
would like to compare the automata arising from these two approaches.
Is one substantially larger than the other? Size is important because
verification computes the cross-product of the automata representing
the design and the negated property. Does one approach yield an au-
tomaton that is more amenable to verification than the other? Some
verification heuristics work only on property automata with particular
structural features. Answers to these questions help determine whether
verification tools can safely treat timing diagrams as interfaces to LTL
expressions without having an adverse effect on the verification process.

When comparing how each approach scales with respect to a given
timing diagram, there are two classes of parameters to consider: the
value of the lower and upper time bounds on the edges, and the size
of the assume portion. While the bounds on the edges certainly affect
the size of the resulting automata, we conjuncture that the size of the
assume portion will be more significant. Consider the structure of the
LTL expressions resulting from the translation algorithm. As the ex-
ample in Figure 1.6 shows, the subexpression for the assume portion
appears on both sides of the implication in the LTL formula. Algo-
rithms for converting Biichi automata into LTL normalize formulas be-

2New verification algorithms that operate directly on timing diagrams are an-
other option; we are exploring this in separate research.
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fore translation: the normalization process will destroy the similarities
between the two copies of the assume portion. Our timing diagram to
automaton algorithm, in contrast, translates the assume portion only
once. Our experiments use Daniele, Giunchiglia, and Vardi’s LTL-to-
Biichi translation algorithm, which currently yields the most compact
automata of all such translation algorithms [Daniele et al. (1999)].

As an initial experiment, consider a simple diagram with an empty
(trivial) assume portion. The table shows the numbers of states in the
semantics automaton (column “Direct”) and the automaton obtained
from the equivalent LTL formula (column “LTL”).

1 | u | Direct | LTL 1 | u | Direct | LTL
a 11 7 9 1] o0 | 12 17
ﬁ 2 2] 10 12 2 00| 12 16
b 313 14 | 16 ||3 o0 | 16 | 20
44| 18 20 400 | 20 24

Each automaton has constant growth with respect to increases in the
time bounds. This supports our hypothesis that the magnitude of the
bounds does not yield significant differences between the two transla-
tion algorithms. Similar experiments on diagrams with more transitions
show similar results: while the magnitude of the constant difference
between the two machines increases slightly on these examples, the
differences are still small constants when the assume portion is empty.

The picture changes dramatically once we produce the automata for
the negated properties, as required in verification. Consider a diagram
with three transitions. The table reports the number of states in the
complemented semantics automaton and the automaton derived from
the negation of the equivalent LTL formula.

i | ug | 1o | uy | Assume | Direct | LTL
1 1 1 1 0 8 650
2 2 2 2 0 14 5372
313133 0 22 24174
1 |oo|1] o 0 18 4999
2o | 1] 0 18 6369
2|00 | 2] 0 18 8286
11111 1 10 655
1 1 1 1 2 11 658
1 |oo| 1] o 1 20 5004

The “Assume” column in the table indicates how many rising tran-
sitions (counting from the left) are in the assume portion; thus, an
assume value of 1 indicates that only the rising transition on a is in the
assume portion. The direct translation algorithm remains constant in
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its growth across the first three sets of experiments. The LTL-based
translation algorithm, however, exhibits neither constant nor even lin-
ear growth. Thus, the LTL-based approach performs worse as size of
the assume portions increase.

Although these figures suggest clear differences between our two ap-
proaches for compiling a timing diagram into a Biichi automaton, they
do not indicate the source of the differences. Several factors influence
the results. Most importantly, timing diagrams translate to a particular
subset of Biichi automata that preserve their size under complemen-
tation [Fisler (2000)]; in the general case Biichi automata may grow
exponentially under complementation. Second, the LTL to Biichi algo-
rithms are not canonical, in that they may produce different automata
for logically equivalent expressions. In practice, the current best al-
gorithm produces larger automata than necessary on timing diagram
formulas. Finally, this canonicity problem suggests that an alternative
translation from timing diagrams to LTL might yield smaller automata.
Using direct timing diagram translation algorithms and improving the
LTL to automata algorithms seem the best options to pursue further.

5 Timing Diagrams and Computational Efficacy

The investigations into computational efficacy described in the paper
have exposed several features of timing diagrams that may make them
more computationally effective than similar textual representations in
the context of hardware verification. In particular, we have cited their
two-dimensional nature, their localization of non-regular behavior, their
ability to capture certain forms of common subexpressions, and their
relationship to a particular restricted class of automata models.
Two-dimensionality is useful because it provides two different per-
spectives on a set of signals simultaneously. Proofs about systems some-
times need to consider how the system looks at a particular point in
time, and sometimes need to consider how a particular signal behaves
over time. Timing diagrams provide both views, whereas common tex-
tual representations emphasize one over the other. LTL, for exam-
ple, is well-suited to describing individual sequences of events, but not
meeting points across sequences; this explains the duplication of the
subexpression regarding the rising transition on ¢ in the translation
example in Figure 1.6. Accordingly, we believe the two-dimensionality
issue and the common subexpression issue are closely related. Local-
ization of non-regular behavior appears to be unrelated to these other
attributes. This issue affects the machine models that capture timing
diagram languages. The models, in turn, affect decidability for a range
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of questions, include several of interest in verification. We are still in-
vestigating connections between localization and the automata models
that capture timing diagrams.

Researchers have proposed two explanations for why diagrams ap-
pear so useful in reasoning. One is their ability to capture spatial re-
lationships [Glasgow et al. (1995)]. This explanation seems reasonable
for contexts where the problem domain involves spatial reasoning, but
we do not believe that to be the case for hardware verification. The
second explanation is what Barwise and Etchemendy call the homo-
morphic relationship between diagrammatic representations and their
models [Barwise and Etchemendy (1996)]. This appears more relevant
to our work. Hardware designers can examine a design from many an-
gles, which is similar to our multi-dimensional view of timing diagrams.
However, timing diagrams are much more abstract than the devices
that they describe, which seems inconsistent with existing examples of
homomorphic representations. The root of computational efficacy in
diagrams therefore remains a widely open question for future research.

6 Conclusion

Computer scientists have much to contribute to, and hopefully gain
from, the growing interest in diagrammatic representations and rea-
soning. Computational analyses provide solid metrics for gauging how
representations affect solutions to computational problems. A compu-
tational perspective on diagrams, as opposed to a cognitive or logical
one, helps determine the boundary between diagrams as interfaces and
diagrams as computational artifacts in their own right. This is increas-
ingly important as more computer-based tools attempt to support hu-
man problem solving in various domains. In turn, computer science
may benefit from studying diagrams as they may suggest new repre-
sentations with better solutions to existing computational problems.
The interplay of computer science and diagrammatic reasoning is thus
a vibrant and promising research area.

This paper presents one computer scientist’s approach to diagrams
research. We are exploring the potential computational benefits, or
computational efficacy, of diagrams in hardware verification. This area
is well-suited to such research: it involves a wide array of diagrammatic
representations, has many subproblems that require both reasoning
and proof, and yields computationally intensive problems. Accord-
ingly, results from this project should interest researchers in diagrams
and hardware verification alike. This paper describes several of our
ongoing projects in this area. Our results suggest that diagrams do
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have computational benefits over their textual counterparts for certain
verification problems. Our current hypotheses as to the properties of
diagram that yield these benefits, also discussed in this paper, suggest
several open and exciting problems for future research.
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