Coding Manual for Rainfall Study in Racket/Pyret/ML/Java

Kathi Fisler (Kkfisler@cs.wpi.edu)
Accompanies ICER 2014 paper, “The Recurring Rainfall Problem”

Problem Statement (to be given to students)

Design a program called rainfall that consumes a list of numbers representing daily rainfall amounts as
entered by a user. The list may contain the number -999 indicating the end of the data of interest.
Produce the average of the non-negative values in the list up to the first -999 (if it shows up). There may
be negative numbers other than -999 in the list.

At the top of your file, please include a comment describing your programming experience prior to this
course. Do NOT include your name.

Evaluation
In line with the existing studies, we will view this as a plan-composition problem. We will be computing
data on (a) which plans students implement correctly, and (b) how they compose the plans.

Plans to Track
(adapted from Ebrahimi’s metric, omitting his read and print plans, and adding the filter negative and
stop at sentinel plans)

e Sum the (non-negative) numbers (SumPlan)

e Filter out the negative numbers (NegativePlan)
e Stop at the sentinel, if any (SentinelPlan)

e Count the numbers (CountPlan)

e Check division by zero (CheckDivZeroPlan)

e Compute the average (AveragePlan)

Each solution will compose these plans through a combination of sequential ordering (“appended” in
Ebrahimi), interleaving, and branching.

Data to code per solution
e student-id : an anonymous id for the student
e school : factor variable
e course : factor variable within schools
e language-used : factor variable
e time-taken : numeric, estimate in minutes (use a+b format if students separated out coding and
doc/test times)
e prior-experience : none, (prior | self) (bit | lot) lang [use these tags for whatever they say]
e how many test cases they wrote : number (main/rainfall only, no helpers)
e tests correct against the spec : number of correct test cases
e any tests incl negative nums beyond sentinel : boolean
e code structure summary : string indicating plan-composition style (code list later in doc)

e perrequired plan
a. which function contains the plan : rainfall, own, helper, multiple, missing, assumedaway
(use “own” if plan is in separate function primarily designed for that plan, such as a
separate sum function which may also handle negs and sentinel). Use helper if plan is
one of many computations in a function other than “rainfall” (or the “main” function of
the solution). “Assumed-away” for cases when stated assumption obviates the plan
(such as assuming the list has a positive rainfall amount)
b. which, if any, built-in function was used to implement the plan
c. correctness summary :y (meaning correct) or error codes from following, hyphen
separated (ie X-B). Use semicolon to separate multiple error codes
i. category of difference : missing (X), misplaced (P), malformed (F), spurious (S),
inconsistent with tests (I)
ii. component of difference : init (I), base(B), update (U), guard (G), input(P),
header(H)
iii. extent of difference: full (F), partial (P) [F is default]

e rainfall Remarks: blank or one of “Recursive”, “SentSplit” [cases based on whether sentinel
exists in list], “TemplateOnly”, “TemplateListed” (but non-template code also provided),
“AssumedData” if simplified problem through data assumption, “ExpectedSentinel” if errored on
lack of sentinel in list

Coding Examples for Low-Level Task-Implementation Errors
(adapted from Ebrahimi, removing issues that do not arise without I/O or in Racket/Pyret programs)

”, u;

On components “init” vs “base”: “init” refers to the output value in the base case, whereas “base” refers
to the guard and structure of the input base case (usually the empty list).

Component “input” refers to the input data (actual parameter) being off — this covers cases where the
connections between plans are off (expect to use in conjunction with “malformed” most of the time).

Component “header” refers to the function name and formal parameter list at the top of the function.

The following tables show examples of patterns in the code that correspond to various codes (formed by
col-row)

SumPlan : Sum the Numbers

Plan Components ‘
Plan differences init update guard
Missing no init of 0 not incrementing sum no check for end of list
Misplaced init sum wrong place | increment outside loop ‘() test after first
Malformed wrong init for sum wrong sum formula check other than empty
Spurious init some other var update addl var check more than empty

NegativePlan : Filter Out the Negative Numbers

Plan Components

Plan differences

init

update

guard

Missing

no init of empty

not keeping any nums

no check for +/-/0

Misplaced

init ‘() wrong place

keeping in wrong place

check after use

Malformed

wrong init for list

keep neg/elim pos,0

checking wrong item

Spurious

init some other var

update addl var

check more than +/-/0

SentinelPlan : Stop at the Sentinel (if any)

Plan Components

Plan differences

init

update

guard

Missing

no init of empty

no non-sentinel data

no check for sentinel

Misplaced

init ‘() wrong place

keeping in wrong place

check after use

Malformed

wrong init for list

keep sentinel or later;
lose non-sentinel

wrong check for value

Spurious

init other var

update addl var

check more than sentnl

* use “base” if wrong element is compared to -999 in the base case

CountPlan : Count the Numbers

Plan Components
Plan differences init update guard
Missing no init of 0 no add1 no check end of nums
Misplaced init count wrng place addl in wrong place check after access
Malformed wrong init for count wrong incr formula check other than ‘()
Spurious init some other var update addl var check more than ‘()

CheckDivZeroPlan : Check Division by Zero

Plan Components
Plan differences init update guard
Missing NA NA no check for 0 denom*
Misplaced NA NA check 0 after /
Malformed NA NA wrong check
Spurious NA NA guard beyond /0

* enter “X-G-P” if only missing the guard on some control paths (eg, after cleaning out neg/sentinel)

AveragePlan : Compute the Average

Plan Components
Plan differences | init/base case update guard input
Missing NA avg not computed NA function with no input
Misplaced NA avg before data ready NA wong input position
Malformed NA wrong / formula NA wrong input to plan
Spurious NA more than / NA extra input to plan

Coding High-Level Plan Compositions
Legend: & =weave together | =in either order ; = sequential -> = branch/conditional

T = Sentinel N = Negative D = CheckDivZero C=Count S =Sum A = Average

See the spreadsheet “PlanCodes” in the same directory for the codes and their clusterings.

Miscellaneous Notes

e Omitting the negative plan simplifies the CheckDivZero plan, since checking whether orig list is
empty or just has the sentinel then covers CheckDivZero. Those who handle negatives
potentially need those checks again after filtering out negatives.

e Coding DivZero as correct if init list checked for empty and no cleaned list gets created

e even when students crossed work out, marked it in this assessment (unless crossed out work
was replaced by other code for the same function name or computation). Usually happened
when students crossed out a start at a function

e |eft open spec when there were no nums in the list; accepted any handling of that case (error,
return 0, etc)

e Repeated sub-compositions (like T&N&C twice) often means calling a helper for the sub-
composition multiple times

e Classifying average as correct even if sum is horribly wrong if code suggests that student knew
that avg was sum/count

e Used error code P-l when inputs to / swapped in computation of average

e For solutions that started with a cond on whether sentinel is in the list, ignoring that test in the
plan code and capturing with “SentSplit” in RainfallCorrect summary instead

e marking a plan as “correct” if its core computation is conceptually correct relative to the other
plans. If a plan (like average) correctly divs sum by count, but sum/count are off, average is
marked correct and sum/count are marked erroneous as appropriate

e If student assumed only one sentinel, no clear place to record that in the coding (might show up
as an input problem to average)

e not recording whether tests were syntactically malformed. Assess tests based on correctness of
intent relative to spec

e inrare case of student giving multiple sols, graded first one

e if D occurs before T/N, divzero should not be correct

