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ABSTRACT
Sensitive data are increasingly available on-line through the
Web and other distributed protocols. This heightens the
need to carefully control access to data. Control means not
only preventing the leakage of data but also permitting ac-
cess to necessary information. Indeed, the same datum is
often treated differently depending on context.

System designers create policies to express conditions on
the access to data. To reduce source clutter and improve
maintenance, developers increasingly use domain-specific,
declarative languages to express these policies. In turn, ad-
ministrators need to analyze policies relative to properties,
and to understand the effect of policy changes even in the
absence of properties.

This paper presents Margrave, a software suite for ana-
lyzing role-based access-control policies. Margrave includes
a verifier that analyzes policies written in the xacml lan-
guage, translating them into a form of decision-diagram to
answer queries. It also provides semantic differencing infor-
mation between versions of policies. We have implemented
these techniques and applied them to policies from a working
software application.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Veri-
fication—formal methods; D.2.7 [Software Engineering]:
Distribution, Maintenance, and Enhancement—version con-

trol ; D.4.6 [Operating Systems]: Security and Protec-
tion—access controls; D.3.2 [Programming Languages]:
Language Classifications—specialized application languages

General Terms
Algorithms, Security, Languages, Verification.
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1. MOTIVATION
Important data are now on-line, and are increasingly ac-

cessible through a variety of means, ranging from thin clients
(such as Web interfaces) to thick ones (distributed applica-
tions like Web services). Due to this growing variety of ac-
cess methods, central databases must now provide data in a
large number of different contexts, each governed by specific
access-control policies.

Implementing and maintaining these policies has become
increasingly difficult. In particular, it is dangerous for pro-
grammers to hard-code a policy in a program that accesses
data, for several reasons. First, tracing the policy when
maintaining the program becomes very difficult, since its
implementation is likely to be scattered across the code-
base. Second, it is onerous to share the same policy across
multiple different programs and to change the policy consis-
tently. Third, programmers must be sure to make efficient
implementation decisions when hard-coding the policy. Fi-
nally, automated reasoning about the policy becomes diffi-
cult since it forces reasoning about one or more programs
written in rich general-purpose languages, each of which un-
doubtedly contains many operations and data that are un-
related to the policy itself. For all these reasons, we notice a
growing trend towards writing separate access-control pol-
icy specifications and integrating them with programs in a
standardized manner.

Access control is conventionally defined using a matrix.
As organizations grow, however, the explicit matrix becomes
very cumbersome. Modern access-control policy languages
are instead declarative, using rules that succinctly capture
the information in the matrix. Given a request for data, an
engine evaluates the request against the rules to determine
whether or not to provide access.

Simply authoring a policy is, however, insufficient: an or-
ganization must also be able to analyze it. Testing, while
useful, suffers from the hindrances of requiring oracles and
not necessarily being exhaustive. As organizations grow
their policies can become very subtle, which places particu-
lar burden on the quality of testing. The growing value of
both availability and privacy of information demands a high
degree of confidence in a policy. Policy deployers would thus
benefit from complementing testing with more exhaustive,
formal verification methods.

As we know, however, property elicitation is rarely com-



plete, so we cannot rely solely on verification failure to iden-
tify problems, especially around sensitive information. Or-
ganizations that do not have mathematically precise state-
ments of requirements still need to react to problems induced
by changing a policy. Suppose you find your company pub-
lishing sensitive information on a public Web page. You
notify your administrator, who rapidly modifies the policy.
You re-load the Web page and the sensitive information is
no longer on it. This is a relief; however, how do you know
what else changed, especially given the subtle behavior of
declarative rules?

Organizations in this situation would benefit from a more
lightweight process that highlights changes in the effect of
the policy, which administrators can explore for unintended
consequences. For instance, they should welcome an anal-
ysis that shows them all the requests that used to map to
deny but now map to permit, so they can examine these for
information leakage or denial.

In this paper, we present a suite called Margrave1 for ana-
lyzing access-control policies written in the xacml standard.
Margrave has two components:

1. A verification system that consumes a policy and prop-
erty and determines whether the policy satisfies the
property. (More generally, this can be used as a query
engine to investigate the behavior of a policy.)

2. A system for change-impact analysis. The analysis
consumes two policies that span a set of changes and
summarizes the differences between the two policies.
Users can not only examine the summary, but also
query it and verify properties of the change. This
verification can happen even in the absence of formal
properties about the system as a whole. (Indeed, these
properties may not even hold of the entire system.)

We have implemented these ideas and successfully applied
them to both organizational and software policies. The run-
ning time of Margrave on these examples suggests that it
could feasibly be used in an iterative refinement scenario for
policy design.

2. BACKGROUND
xacml [24] is a standardized XML language for describ-

ing access-control policies. xacml policies center around
attributes. Attributes describe subjects, actions, and re-

sources; for example, Faculty is a value for the attribute
role, which describes the subject. The names of attributes
(such as role) are called attribute ids, while the values bound
to them (such as Faculty) are called attribute values. A (ab-
breviated) fragment of an xacml policy designating Faculty

as a role is

<SubjectMatch MatchId="...:string-equal">
<AttributeValue DataType="...#string">
Faculty</AttributeValue>

<SubjectAttributeDesignator
AttributeId="role"
DataType="...#string"/>

</SubjectMatch>

xacml can thus express role-based access-control [8]. De-
lineating access by roles (rather than by individuals) lets

1A margrave (markgraf in German and markgraaf in Dutch)
is a lord or keeper of borders: that is, a medieval access-
control manager.

organizations express privileges more abstractly, and thus
more easily adapt to changes in personnel.

A rule in xacml specifies which decision to take as a
function of the attributes. The xacml engine consumes a
request—the names and values of a set of attributes—and
makes an access-control decision on it based on the specified
rules. A decision can be permit, deny, or not-applicable; the
last arises if no rule in the policy covers the request. (The
full standard is more complex, but this description suffices
for our purposes.)

Given that multiple rules may yield decisions for the same
request (say through overlaps in rules or in roles), an xacml

policy must specify the precedence between rules in the
form of rule-combining algorithms. While the standard per-
mits the definition of arbitrary rule-combining algorithms,
Margrave supports three described in the standard: permit-

overrides says that a permit decision takes precedence, deny-

override is analogous, and first-applicable follows the deci-
sion in the first rule to report permit or deny. Sets of rules
combined through these algorithms form policies. Policies
may be combined using policy-combining algorithms; these
have the same names, and similar semantics, as the rule-
combining algorithms.

Margrave handles a restricted subset of xacml that we
intend to enlarge over time. We do not consider different at-
tribute value datatypes, complex conditionals, multi-subject
requests, and more obscure features such as hierarchical re-
sources. Some of these, such as some classes of conditionals,
fall outside the scope of static validation and will probably
be better served by simulation and testing.

IBM publishes an access-control language called epal [25]
that is very similar to xacml. It restricts rule combination
to the first-applicable algorithm; besides subjects, resources
and actions, epal also specifies purposes. There are other
minor differences, but we believe Margrave can, with minor
changes, handle epal just as well as it does xacml.

3. ILLUSTRATIVE EXAMPLE
We introduce many of the concepts in Margrave through a

running example, presented from a user’s perspective. The
example formalizes a university’s policy on assigning and
accessing grades.2 Armed with this example, we can then
study the implementation of these concepts in Margrave.

All the examples discussed in this paper have been pro-
cessed by Margrave. To keep the examples readable (and
to stay within page limits!), the paper presents policies and
properties in English. Section 4.4 provides information on
obtaining source versions of these policies.

3.1 Property Verification
We initially have two roles, Faculty and Student; two kinds

of resources, InternalGrades and ExternalGrades; and three
actions: Assign, View and Receive. We expect the policy to
initially satisfy the following (inexhaustive) properties:

Pr1 There do not exist members of Student who can Assign

ExternalGrades.

Pr2 All members of Faculty can Assign both InternalGrades

and ExternalGrades.

2This example is based loosely on Brown University’s actual
grading policies; the violations we discover mirror those that
led over time to the current policy.



Pr3 No combination of roles exists such that a user with
those roles can both Receive and Assign the resource
ExternalGrades.

Based on these roles, resources and actions, we can imple-
ment a policy in xacml:

Pol1 Requests for students to Receive ExternalGrades, and
for faculty to Assign and View both InternalGrades and
ExternalGrades, will succeed.

Running Margrave immediately reports failure for proper-
ties Pr1 and Pr3. One of the counter-examples indicates
that a student can request to receive an external grade (which
Pol1 permits) while simultaneously assigning an external
grade (about which Pol1 is silent, which implies access will
not be granted). In effect, an illicit request is piggy-backing
atop a legitimate one, and exploiting an underspecification
in the policy. This reflects a subtlety of xacml: the lan-
guage specification states that an attribute (here, the action
attribute) represents an arbitrary set of values, not neces-
sarily singletons.

The policy author must sometimes make the policy more
elaborate to guard against such requests. In other cases,
the author can presume that generated requests will include
only a single value for certain attributes. To instruct Mar-
grave about this presumption (discussed in section 9), the
author can employ a general Margrave mechanism called an
environment constraint. These are analogous to the envi-
ronment models used in model checking, which bound the
behaviors of the system by explicating details of the oper-
ating context in which the model will execute.

Returning to our example, we constrain the attributes (us-
ing make-singleton-attribute of section 5) governing the ac-
tion and requested resource to be singletons (Pol2). While
this addresses the property violations above, this constrained
policy still violates Pr1 and Pr3. The (sole) counter-example
shows that a member of Faculty can also be a Student—
naturally triggering the violations—which is really a viola-
tion of the principle of separation-of-duty (SoD) [6]. Fortu-
nately, this separation is easy to encode with another en-
vironment constraint (using constrain-policy-disjoint of sec-
tion 5). This results in policy Pol3, which satisfies all three
properties.

For the next generation of policy, we add teaching as-
sistants (tas). Since tas have some of a faculty member’s
privileges (while still being students), a careless implemen-
tation gives them the same rights as faculty (Pol4). Mar-
grave catches this error by reporting a violation of Pr1 and
Pr3. The sole counter-example shows that a student with
the freedom to assign external grades is also a ta but not a
faculty member. Thus:

Pol5 TA can view and assign InternalGrades but not Exter-

nalGrades (since faculty must take final responsibility
for all external grades), combined with Pol3.

Margrave establishes that this policy implementation suc-
cessfully satisfies all the properties.

Finally, we extend the policy one more time. Now we
introduce a FacultyFamily role. Faculty-family members are
permitted to enroll in classes and thereby receive external
grades (Pol6), prompting one more property:

Pr4 All members of role FacultyFamily can receive External-

Grades.

Margrave analyzes Pol6 and finds a violation of property
Pr3. This is a fundamental policy error; the corresponding
counter-example lists a person who has both Faculty and
FacultyFamily roles. This can indeed happen when, say, the
spouse of a faculty member is also a professor! This is an-
other violation of SoD, but it too can be successfully cor-
rected with one more constraint (Pol7).

3.2 Change-Impact Analysis
Suppose we had defined the same sequence of policies,

but did not have formal properties to help identify problems
introduced at each stage. What can change impact analysis
tell us? Remarkably, simply by examining the output of
change analysis closely, we can find most of the errors found
by formal property analysis.

Since change-impact analysis is meant for use on exten-
sions to stable code, we begin with policy Pol3, the initial
policy constrained with the singleton and SoD conditions.
Performing change analysis on this policy against Pol4 (the
buggy addition of tas) finds eight changes that now grant
access. Four of these involve ExternalGrades. A vigilant user
would immediately notice something awry, since adding tas
should not have affected external grades in any way. Thus,
even in the absence of formal properties, a policy deployer

can potentially detect a dangerous leakage of access.
Repeating this analysis on Pol3 and Pol5 shows changes

that involve only tas and internal grades. Since the changes
all correctly grant new permissions, we can now be confident
that the TA role in Pol5 was added correctly to Pol3.

Upon adding faculty families, we now examine changes
between Pol5 and Pol6. The output reveals that all the
changes involve receiving (as opposed to assigning, thank-
fully) grades, but also reveals that some changes involve the
Faculty role. Output like this would, hopefully, help the pol-
icy maintainer derive situations such as two spouses who
are both faculty members. Finally, analyzing Pol5 against
Pol7 shows the expected output: faculty family members
can take courses, and now requests that involve both Fac-

ulty and FacultyFamily are not permitted actions.

3.3 Performance
We measured performance on an Athlon XP 1800+ at

1.5GHz with 512Mb RAM. The longest it took to parse and
represent a policy was 355 milliseconds (ms), though this
time was closer to 70ms once the cache was warm. No prop-
erty took longer than 10ms to verify; most finished sooner
than the timer could reliably measure. Margrave has a mem-
ory baseline of 4.7 Mbytes, and verification took no addi-
tional memory. The space and time consumed by change
impact were similarly negligible.

4. REPRESENTING XACML POLICIES
xacml policies lend themselves naturally to various forms

of boolean representations. One natural approach is to en-
code them using disjunctive normal form, but this has the
potential for rapidly exploding in size. We prototyped this
to confirm that the natural approach produced formulae
that grew too large to be of any practical use. An attrac-
tive alternative is to encode the policy as a set of rules in
Alloy [16]. Several others have attempted this in various
guises, but these approaches also have shortcomings; we dis-
cuss this in section 8.
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Figure 1: An mtbdd for a simple policy.

In any chosen representation, scalability concerns are gen-
uine. The example in section 7 is in fact illustrative of a real
software system’s policy: it has 50 attribute-value pairs. A
member of the Corporate Information Security division of a
major American financial institution has informed us that
each of their typical policies has 5–20 pairs, but there are
several default ones built into the policy system; in general,
their only clear upper bound is about 100 pairs. The policy
in Schaad, et al.’s case study [28] (not expressed in xacml)
appears to need at least 432 attribute-value pairs to express.

4.1 Representing Policies Using MTBDDs
Margrave uses mtbdds (multi-terminal binary decision di-

agrams) as the underlying representation of access-control
policies. mtbdds are a form of decision diagram that map
bit vectors over a set of variables to a finite set of results [4,
7]. Figure 1 shows an example of an mtbdd representing a
simple security policy in which faculty can assign grades and
students can receive grades. The mtbdd has five variables
(faculty, student, receive, assign, and grades). Each com-
bination of boolean values over these variables maps to one
of three policy results (permit, deny, or not-applicable); the
results are denoted by the terminals of the mtbdd. We refer
to mtbdds with these three terminals as “policy mtbdds”
or Pmtbdds (though as we will see in section 4.3, we will
need a fourth terminal). Given an assignment of boolean
values to the variables, traversing a Pmtbdd from the root
to a terminal according to the variable values indicates the
result of the policy under that assignment.

mtbdds have three defining characteristics, which are valu-
able in Margrave. First, they are constructed relative to
some fixed ordering on the variables (read from root to ter-
minal): an mtbdd would not allow two subtrees to inspect
variables in different orders. This restriction makes mtbdds
a canonical representation up to the chosen variable order-
ing. Second, mtbdds maximally share subtrees, in that at
most one copy of a subtree appears anywhere in the deci-
sion diagram; this is evident in the three paths to the same
grade node in figure 1. Third, mtbdds collapse irrelevant
variables, meaning that if both values of the same variable
refer to the same subtree, the node for that variable is re-
moved, and all references to it are redirected to the shared
subtree. The combined effect of the latter two character-
istics on the mtbdd in figure 1 is seen in the case where
the faculty and student variables are false: rather than enu-
merate the remaining variables’ values, the mtbdd refers
directly to the not-applicable terminal.

mtbdds are a more general form of bdds [5], which have
been credited with helping model checking scale to realis-
tic systems in hardware verification (bdds have only two
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Figure 2: Sample mtbdds for rules and rule combi-

nation.

terminals, one for each boolean value; the b stands for “bi-
nary”). While in the worst case the number of nodes in an
mtbdd is exponential in the number of variables, in prac-
tice the number of nodes is often polynomial or even linear.
This representation therefore gains dramatically over näıve
dnf in practice. Operations that combine mtbdds tend to
be efficient in practice; most of the ones Margrave needs
yield mtbdds with at most the product of the numbers of
nodes of the originals. We summarize the complexity of our
policy-specific operations as we encounter them.

Margrave uses one variable for each attribute-value pair
that is mentioned in the xacml policy. The variables for the
policy shown in figure 1 would correspond to role=faculty,
role=student, action=receive, action=assign, and finally re-

source=grade (the association between attributes, such as
role, with values, such as faculty, is stated in the xacml pol-
icy). Margrave creates mtbdds for the individual rules, then
combines these with mtbdd-combining algorithms that im-
plement the xacml rule- and policy-combining algorithms.

In the implementation, Margrave views the policy con-
stants permit and deny as rules; an operation called augment-

rule takes a boolean condition on the variables and a rule
and constrains the rule to also require the given condition.
Rule Pmtbdds are built using augment-rule. The Pmtbdds
for rules saying that faculty attempting to assign grades
should yield permit and students attempting to assign grades
should yield deny appear as the left two Pmtbdds in figure 2.
The third Pmtbdd represents the result of combining these
two rules using any of the three rule-combining algorithms
we have discussed (these produce different results only when
the conditions on the rules overlap).

4.2 Combining Policies
Algorithms for combining two mtbdds use a general al-

gorithm called Apply that is parameterized over a function
specifying what to do when one or both of the input mtbdds
reaches a terminal node. Apply traverses both mtbdds si-
multaneously starting from the root node (for the least vari-
able in the order). Each node is labeled with a variable, and
has two children nodes, one for each value (true or false) of
that variable; we represent this below as Node(v, B0, B1)
where v is the variable and each Bi is the child node cor-
responding to truth value i. The following two equations
summarize how Apply works on node combinations not cov-
ered by the terminal’s function (assuming that a < b in the
variable order):

Apply (Node(a, F0, F1), Node(a, G0, G1)) =
Node(a, Apply(F0, G0), Apply(F1, G1)



Combinepermit−override(A1, A2) =
if A1 = permit or A2 = permit then permit
else if A1 and A2 are both terminals

if A1 = deny or A2 = deny then deny
else na

else continue apply

Combinefirst−applicable(A1, A2) =
if A1 = permit then permit
else if A1 = deny then deny
else if A1 and A2 are both terminals then A2

else continue apply

Figure 3: The base cases for rule-combining algo-

rithms.

Apply (Node(a, F0, F1), Node(b, G0, G1)) =
Node (a, Apply(F0, Node(b, G0, G1)),

Apply(F1, Node(b, G0, G1))

The functions for handling terminals in two of the rule-
combining algorithms appear in figure 3. The subtree shar-
ing and variable collapsing that characterize mtbdds are
built into the Apply algorithm. The equations for Apply il-
lustrate that the result of any combination algorithm that
uses it has at most the product of number of nodes in the
input mtbdds.

4.3 Applying Environment Constraints
Environment constraints, such as “no faculty is also a stu-

dent”, are easily represented as boolean conditions, and thus
as bdds. Combining a Pmtbdd with a constraint bdd also
builds on Apply (recall that a bdd is a special case of an
mtbdd). When the bdd constraint indicates true, the ter-
minal function follows the Pmtbdd. When it is false, how-
ever, we must flag the path as having been eliminated by
the constraint to avoid erroneously considering these vari-
able assignments in subsequent computations. We therefore
add a fourth terminal, EC, to represent that a path has been
excluded by a constraint.

Adding this fourth terminal impacts rule-combination. In
a first-applicable policy, for instance, if a path (i.e., a vari-
able assignment) maps to permit in the first policy and EC
in the second, it should map to permit in the resulting com-
bined policy. In principle, this particular case will very
rarely occur: presumably, all policies will be governed by
the same set of environmental constraints, which means a
path excluded by constraint in one policy will be excluded
in all of them. Margrave does not, however, preclude the
use of different constraints on different policy fragments.

Margrave updates the base cases of the rule-combinations
shown in figure 3 to account for EC. Since the details are
straightforward, we do not present the updated combina-
tions here.

4.4 Implementation
Margrave is implemented atop the cudd package [30],

which provides an efficient implementation of mtbdds (which
are called adds in cudd). Margrave lets users manipu-
late mtbdds as data structures in Scheme [19]. Specifically,
Margrave imports the cudd representation and operations
through the native function interface of PLT Scheme [9], a

full-featured programming language with objects, iterators,
and other modern language features. PLT Scheme’s pro-
gramming environment, DrScheme, provides an interactive
interface to better enable incremental exploration of policies
and changes.

When a policy fails to meet a property, Margrave presents
the requests that lead to the violation. For instance, con-
sider a student-ta assigning ExternalGrades due to the bug
in the policy Pol4 from section 3. Margrave’s error report
has this form:

1 1:/Resource, resource-class, ExternalGrades/

2 2:/Resource, resource-class, InternalGrades/

3 3:/Action, command, Assign/

4 4:/Action, command, View/

5 5:/Subject, role, Faculty/

6 6:/Action, command, Receive/

7 7:/Subject, role, Student/

8 8:/Subject, role, TA/

9 12345678

10 {

11 10100011

12 }

Line 11 represents the set of requests that comprise the
counter-example. To explain this output, lines 1–8 list the
subjects, resources and actions mentioned in the policy, while
line 9 indexes the counter-example information against this
header. The 1s in line 11 indicate which subjects, resources
and actions are present in the counter-example, while the
0s indicate absence. (A third symbol, -, indicates “don’t
care”.)

As an instance of change impact output, consider the dif-
ference between Pol3 and Pol4. The astute reader can find
the error presented above in the output below, this time by
seeing that ExternalGrades (column 3) are involved in (four)
changes from not-applicable (N) to permit (P).

1 1:/Subject, role, Faculty/

2 2:/Subject, role, Student/

3 3:/Resource, resource-class, ExternalGrades/

4 4:/Resource, resource-class, InternalGrades/

5 5:/Action, command, Assign/

6 6:/Action, command, View/

7 7:/Action, command, Receive/

8 8:/Subject, role, TA/

9 12345678

10 {

11 00010101 N->P

12 00011001 N->P

13 00100101 N->P

14 00101001 N->P

15 01010101 N->P

16 01011001 N->P

17 01100101 N->P

18 01101001 N->P

19 }

The raw output from Margrave, while meaningful, is not
yet refined enough for end-users. It is, however, easy to see
that this information can become the input to a graphical
interface that permits better exploration.

The Margrave implementation, as well as the sources of
policies and properties discussed in this paper, are all avail-
able on the Web:



http://www.cs.brown.edu/research/plt/

software/margrave/

We welcome the use of these examples by developers of other
tools for reasoning about access-control policies.

5. POLICY QUERYING AND
VERIFICATION

Section 3.1 presents examples of properties that we check
against a policy. Margrave provides operations that perform
the steps needed to verify these properties.

Consider property Pr1. To verify this property, the user
would restrict the policy to cases that permit assigning ex-
ternal grades, then check to see whether students are en-
abled in the restricted policy. This highlights three funda-
mental operations needed to verify policies: restricting poli-
cies to particular decisions (e.g., permit), inspecting which
attribute values appear in a restricted policy, and focusing
the search on specific attribute values (e.g., Assign and Exter-

nalGrades). In general, a user might want to incrementally
explore a policy through such queries. Margrave therefore
provides a set of primitive combinators (composable func-
tions) that users can employ to query policies. (We have
not yet built a special-purpose query language atop these
combinators; we discuss this issue further in section 10.)

In what follows, we employ the following type domains:

Dec = {P, D, NA, EC} decision

av = id × val attribute-value pair

avc = P(av) → bool (described below)
Pol = P(av) → Dec policy

where id is a set of legal attribute identifier names, val is a
set of corresponding attribute values, and P(·) is the power-
set operator.

The key internal data structure in Margrave is called the
attribute-value cohort, or avc, which represents a set of re-
quests. (As section 2 defines, a request is a set of attribute-
value pairs.) A canonical use of an avc would be to represent
the restriction of a policy to a particular kind of decision:

restrict-to-dec : Pol × Dec → avc

The result is the set of requests that yield the specified de-
cision under the given policy.

To implement restrict-to-dec, Margrave replaces the ter-
minal for the given decision in the policy mtbdd with logical
true and all other terminals with logical false. This yields a
decision diagram with only boolean terminals, i.e., a bdd.

Given an avc, a set of combinators helps extract infor-
mation from them. The more primitive operators imple-
ment quantification over variables associated with sets of
attribute values. The more convenient operators include
the following. get-present-matches computes the set of all
id=val pairs present in at least one request in the set repre-
sented by the avc. get-present-attrValues returns just those
values that match a given id.

get-present-matches : avc → P(av)
get-present-attrValues : avc × id → P(val)

get-present-matches builds on two cudd operations (viz.
Cudd_SupportIndex and Cudd_FindEssential) that deter-
mine which variables are used on paths to true in a given
bdd. get-present-attrValues uses a Scheme-level mapping

from cudd variables to their corresponding pairs of attribute
ids and values to project the result of get-present-matches

to the values for the given id. These operations are linear
in the size of the bdd.

The above two operations, in conjunction with restrict-

to-dec, can already perform rudimentary queries of a policy.
For instance, we can easily determine all the roles that have
write access to a file. We cannot, however, verify properties
of the form “Ensure that students cannot write grades”,
because we have neither predicates, nor ways of focusing
our attention on the subset of requests that have common
attribute values (such as those whose role attribute has the
value student).

To enable verification, Margrave provides a set of avc

combinators:

avc-empty? : avc → bool
avc-equal? : avc × avc → bool

avc-u : avc × avc → avc
avc-t : avc × avc → avc

avc-not : avc → avc

Other operators include additional comparisons (such as
subset) and more boolean combinations. In addition,

make-avc : id × val → avc

takes an attribute identifier (such as action) and a value
for that attribute (such as assign) and creates an avc that
represents all requests that possess the given attribute-value
pair (such as action=assign).

Recall that avcs are represented as bdds. The make-avc

operation takes the given attribute and value and returns a
bdd that maps any request containing that attribute-value
pair to true, and all other requests to false. The remain-
ing avc operations are implemented as standard boolean
operations on bdds: avc-u computes the intersection using
bdd-and, avc-empty? checks whether the bdd is the con-
stant false, and so on. All of these standard bdd operations
are built into cudd. Binary operations on bdds take time
linear in the size of each bdd and result in a bdd of size at
most the product of the input bdds. The unary operations
all take constant time due to particulars of their implemen-
tation within cudd.

At this point, we have not yet presented the represen-
tation of environment constraints. Conceptually, just as
an avc can indicate which attribute values and combina-
tions to focus on, it can also indicate those to which the
policy applies. Specifically, constrain-policy takes a policy
and a constraint (represented as an avc) and returns a con-
strained policy in which all cases failing to meet the con-
straint now map to EC. To simplify constraining policies,
Margrave provides constrain-policy-disjoint, which takes a
policy and a set of conditions (such as action=assign and
action=receive) and constrains the policy to those cases that
satisfy at most one of the given conditions. A simplified
form of constrain-policy-disjoint is make-singleton-attribute,
which takes an attribute identifier (such as resource) and
restricts the policy to cases where exactly one value is as-
sociated with the given identifier. The implementation of
make-singleton-attribute makes a closed-world assumption,
namely that it knows the names of all the attribute values
that can occur in a policy.

constrain-policy : Pol × avc → Pol
constrain-policy-disjoint : Pol × P(avc) → Pol
make-singleton-attribute : Pol × id → Pol



constrain-policy uses the Apply operation from section 4.2,
replacing any path for which the avc yields false with EC.
The other two operations are implemented via constrain-

policy : constrain-policy-disjoint forms a bdd representing
the exclusive-or of the given avcs, combines it using avc-t
with the negation of the avc-u of the given avcs, and then
behaves as constrain-policy ; make-singleton-attribute is sim-
ilar, but the exclusive-or is over all variables corresponding
to the given attribute. The complexity of these operations
therefore comes from the complexity of Apply (polynomial
in the size of its inputs).

Use Case
As a sample use of the combinators for verification, the fol-
lowing Margrave query checks that students cannot assign
final grades. (We use traditional rather than Scheme nota-
tion for the benefit of the parenthetically-challenged.)

stu-asn-ext = avc-u (make-avc (role, Student),
make-avc (resource, ExternalGrades),
make-avc (action, Assign))

perm-requests = restrict-to-dec (policy, permit)
perm-stu-asn-ext = avc-u (perm-requests, stu-asn-ext)
answer = avc-empty? (perm-stu-asn-ext)

When policy is bound to Pol4 (the buggy policy involving
tas), answer is bound to false. We investigate the problem
by running get-present-matches (perm-stu-asn-ext), which in-
dicates that errors occur when the student is a ta.

6. CHANGE-IMPACT ANALYSIS
Change-impact analysis must function even in the absence

of an externally-defined property. All we can assume to be
given is two (hopefully similar) versions of a policy. How do
we extract differences between the two? In particular, can
we reuse our Pmtbdd representation of a policy for perform-
ing this analysis?

The natural approach is to attempt to compute the differ-
ence between two Pmtbdds. The difference is well-defined
for binary decision diagrams, but is not as clearly defined
for multi-terminal decision diagrams such as a Pmtbdd. To
define this operation in our context, it is worth examining
what form of answer would be most useful.

When a user analyzes a change, they are naturally inter-
ested in which requests will produce different answers in the
two policies. In many cases, a deny changing to a permit will
be regarded as dangerous; sometimes, however, the purpose
of a change is to publish information, so the inverse change
should equally evoke caution. Because of these different use
cases, Margrave does not rank either change higher than the
other. Rather, the important lesson is that users will care
not only about what changed but also how.

To implement change analysis, Margrave introduces a de-
cision diagram called a change-analysis decision diagram or
Cmtbdd. A Cmtbdd has sixteen terminals, one for each or-
dered pair of results from the policies being compared (such
as permit-to-permit, deny-to-ec, permit-to-not-applicable,
and so on). Margrave then provides a suite of combinators
for processing a Cmtbdd.

Change impact analysis extends the Margrave library with
the following new types:

Chg = {P¢P, P¢D, P¢NA, change kinds

P¢EC, D¢P, . . . }
Cmp = P(av) → Chg policy difference

At an intuitive level, the operations we want to perform
on Cmtbdds are similar to those on Pmtbdds, such as re-
stricting a Cmtbdd to a particular kind of change and de-
termining which variable values can lead to particular kinds
of changes. The operators for creating and manipulating
Cmtbdds have the following types:

compare-policies : Pol × Pol → Cmp
restrict-cmp-to : Cmp × Chg → avc
get-attrVal-in : Cmp × id × Chg → P(val)

Given two polices (as Pmtbdds), compare-policies creates
the Cmtbdd showing the changes between the policies. This
operation is implemented using the Apply algorithm. The
terminals function applies only when both input Cmtbdds
are at terminal nodes, and the returned value is the ap-
propriate terminal for the pair of values at the respective
nodes. Having sixteen terminals instead of four may reduce
subtree sharing, but the number of nodes remains at most
the product of node counts in the original policies.

The restrict-cmp-to operator on Cmtbdds uses the same
implementation as on Pmtbdds. Margrave supports various
get-attrVal functions, which use the same core implementa-
tion techniques as get-present-attrValues but on Cmtbdds.
Operation get-attrVal-in returns the set of values for the
given attribute that can contribute positively to the given
change, while others like get-attrVal-in-change returns the
set of values for attributes that contribute positively to any

change (rather than a particular change).

Quering and Verifying Changes
Invoking the compare-policies procedure on two Pmtbdds
constructs a Cmtbdd, whose printed representation shows
which combinations of changes occur between the policies.
More interestingly, the user can then query the result of
change analysis. The user can, for instance, apply get-

attrVal-in-change to get the roles that trigger D¢P changes.
To further explore changes from deny to permit, the user can
employ restrict-cmp-to to obtain an avc.

Having generated an avc, the user can now employ the
rich set of avc primitives from section 5. get-present-matches

can extract the contributing pairs of attribute ids and val-
ues; the avc boolean connectives can further refine the set
for the avc predicates to verify properties over changes, akin
to verifying a single policy. For example, the user can verify
that a change did not affect access to ExternalGrades. This
enables a form of lightweight policy exploration.

7. ANALYZING A
CONFERENCE MANAGER

We have applied Margrave to an access-control policy
modeling Continue [13, 22], a working software system ini-
tially written by the second author. Continue is a Web-
based application that supports the submission, review, dis-
cussion, and notification phases of conferences. Continue

has been used by several conferences to date, including the
International Symposium on Software Testing and Analysis
(ISSTA), 2004.

We were forced to adopt a role-based information presen-
tation policy for Continue after discovering role-conflict
errors during testing. This policy was implemented in a
special-purpose access-control language we had developed
(since we were not aware of xacml at that time). For this



paper, we have translated this policy into xacml, gener-
ated properties from a requirements exercise, and gathered
information on Margrave’s performance.

Translating and verifying the Continue policy is valuable
for assessing Margrave. First, it represents the policy of a
real software system, in particular one whose verification has
tangible benefits for the user community of researchers sub-
mitting papers to conferences. Second, the policy describes
a software system found “in a state of nature”, so it is not
contrived to suit Margrave. In particular, it is a valuable
evaluation of the utility of the xacml fragment that Mar-
grave handles. Finally, the bugs we have found in Continue

are in fact based on role-conflicts, making this an interesting

example for encoding and verification.
The Continue policy has 50 Pmtbdd variables. The

mtbdd has 1268 nodes; upon applying environment con-
straints, it shrinks to 817 nodes. Parsing and converting
it to this representation took 2050ms and constraining it
another 20ms.

We verified twelve properties against this policy. Each
property verification took less time than could reliably be
measured by the millisecond-resolution clock. The entire
process increased memory consumption by 316,288 bytes
above the baseline (due to cudd) after all the verification
runs. The verification process did report errors; some are
an artifact of our modeling, while others appear to be legit-
imate software bugs that we are investigating further.

We also conducted change analysis on different versions of
the Continue policy. Given the two policies converted into
Pmtbdds, the change itself computed in 2 milliseconds. The
resulting Cmtbdd had 1133 nodes and consumed 16.3Kb of
additional memory.

8. RELATED WORK
The similarity between policies and functions from boolean

variables to booleans suggests encoding them using dnf [2].
This can, however, require exponentially many clauses rela-
tive to the number of variables. This especially arises from
rule-combining algorithms such as first-applicable, since the
expression must encode the order of evaluation. These prob-
lems are compounded by deny rules, policy sets, etc. A
similar explosion occurs when performing change analysis.
Indeed, our experiments suggest that dnf does not scale
beyond all but the simplest policies.

Alloy [16] seems an obvious choice for modelling access-
control policies, but suffers from several potential pitfalls.
First, it forces users to bound the sizes of each set, so its
analysis is valid only for problem instances up to the stated
sizes. Second, Alloy is designed to support first-order rea-
soning: a natural approach to modelling XACML policies
in Alloy exploits the first-order features, which results in a
substantial increase in the number of variables created as
compared to Margrave. Both Margrave and Alloy require a
variable per attribute value in the policy. Any other entity
that is modelled explicitly (such as roles, people, or indi-
vidual rules) introduces additional variables that can make
the analysis intractable in practice. In our own experience
embedding xacml in Alloy using first-order constructs, we
found the tool unable to handle even a third of the policy
we describe in section 7 without exhausting memory (after
a few minutes).

An alternate Alloy approach is to employ the language’s
propositional constructs (as do Bultan and Hughes [15], and

as suggested to us by Daniel Jackson [personal communica-
tion]). This approach is, however, somewhat unsatsifying.
Implementing the rule- and policy-combining algorithms re-
quires explicitly modeling sub-policies, each of which intro-
duces an additional variable into the analysis as compared
to Margrave. Furthermore, an efficient Alloy model of a pol-
icy effectively mimics the mtbdd operations within Alloy. It
is unclear what this gains relative to using mtbdds directly,
since satisfiability solvers (which Alloy employs to find so-
lutions) and bdd packages perform different optimizations.
Finally, the results of an analysis are an internal Alloy rep-
resentation that can only be explored with Alloy’s visualiza-
tion tools (which, designed for first-order variables, are a bit
clumsy for propositional expressions). In contrast, the re-
sults of an analysis in Margrave are given as mtbdds, which
enables using the policy query language to explore and refine
counter-examples.

A tempting alternative to Alloy is the use of logic pro-
gramming systems. While such a solution is effective at
querying policies, it does not provide support for change
analysis. In particular, encoding policies as full-fledged logic
programs can potentially make the change analysis prob-
lem as hard as trying to difference general source programs
written in richly expressive languages, a difficult problem
and one whose solutions would provide little insight to the
policy developer.

Schaad and Moffett [29] examine the problem of verifying
a policy that is subject to change proscribed by another pol-
icy. They describe how an access-control policy under the
RBAC96 model, a policy governing access to the access-
control policy under the ARBAC97 model, and a set of
separation-of-duty constraints can be translated into Alloy,
which can then be used to check that the ARBAC97 policy
does not allow for roles to be assigned to users in ways that
will violate the separation-of-duty constraints. Ahmed and
Tripathi [1] propose translating access-control policies into
PROMELA. From this model, a sub-model is produced for
each of four types of query. They employ SPIN to analyze
the appropriate model given a query. It is difficult to offer a
direct comparison since neither work discusses algorithms,
tool support, or experimental results. Our experience, how-
ever, is that state-exploration in the style of Alloy may not
scale well to large policies.

Kolaczek [21] proposes to translate access-control policies
into a role-based access control modal model (RMM), then
into Horn clauses for conversion into Prolog. Although he
provides a proof that RMM may be represented in Horn
clauses, he does not discuss tool support, experimental eval-
uation or change analysis.

Guelev, Ryan, and Schobbens present a formal language
for expressing access-control policies and queries [10]. Their
work presents algorithms for deciding queries. They have
implemented one of these algorithms in Prolog but do not
report on the scalability of this work. They state, moreover,
that their policy and property languages are “not meant to
be [. . . ] for users” [10]. Their follow-up work [31] provides a
translator from their language to xacml that preserves the
verified properties.

Guttman and Herzog use bdds to implement verification
tools for network security goals [11]. Their models capture
connections between regions or devices within networks and
operations (such as packet filtering) within regions. Their
verification algorithms search for paths through the network



that either allow classes of packets to reach undesirable re-
gions, or violate authentication or confidentiality properties.
bdds scaled very well for their applications (including real-
istic Cisco routing policies and models of IPSec). Their use
of a network model is both a strength and a weakness: the
analysis is not effective without such a model but, given one,
can provide interesting information about data flow. Their
work does not consider change impact analysis.

Several systems have analyzed the policies of the Security-
Enhanced Linux system (SELinux). Most of these efforts [12,
27, 23] build models of a SELinux policy and translate it
into various notations such as tabled Prolog, bdds and a
model checker’s input. These tools are, however, optimized
for determining information flow. Since analyzing an xacml

policy is largely concerned with resolving rule-conflicts, the
efforts appear orthogonal and complementary. Gokyo [18]
provides the ability to reason about a policy’s structure in
terms of underspecification, overlaps, and conflicts, and pro-
vides means to resolve these. It does not address verification
relative to external properties.

Koch, Mancini, and Parisi-Persicce study the change im-
pact problem [20]. They propose using graph transforma-
tions to represent policy change and integration. Although
they present examples of changes and of the result as graphs,
they present no algorithms or tools, nor suggest methods for
eliciting policy change from graph differences.

Backes, Karjoth, Bagga, and Schunter [3] propose refine-
ment relations as a technique for comparing policies. Policy
A is said to refine policy B if for all requests, A produces the
same decision as B and a set of obligations that include all
the obligations B would issue for that request. Their paper
presents an algorithm to determine whether one epal policy
refines another. Since Margrave does not track obligations,
it is incapable of validating refinement. However, while this
relation is useful in some circumstances, at other times ad-
ministrators purposely break refinement, so knowing they
have done so is of little use.

The change-impact analysis computes, in effect, the dif-
ference between two programs. The general problem of pro-
gram differencing has a venerable research lineage [14]. By
working with programs in a restricted domain, however, we
can compute semantically richer differences than differenc-
ing tools that cater to general-purpose languages.

9. PERSPECTIVE ON
PROGRAM ANALYSIS

A comprehensive software-security analysis would employ
Margrave as a policy-analysis component. A program that
consults a policy engine for sensitive data must ultimately
act on its results. The result of the access-control check must
thus be combined with, say, secure information flow anal-
ysis [26]: if the access-control engine responds with deny,
then no information about the secure datum should leak to
the client. Margrave isolates the policy verification from
the analysis of the enclosing program. This may simplify
and enhance some program analyses because critical deci-
sions that were earlier embedded in the (harder-to-analyze)
general-purpose language are now expressed in a domain-
specific access-control policy language.

Programs also need to be verified with respect to the envi-
ronment constraints applied during Margrave’s analysis. At
a technical level, the xacml components known as the PEP,

PIP, and context-handler should only produce combinations
of attribute values that are consistent with the applied con-
straints. Ultimately, however, this analysis must occur at a
managerial level, as decisions about which attribute values
may overlap are organizational in nature.

10. CONCLUSION AND FUTURE WORK
This paper argues that multi-terminal decision diagrams

are a scalable and flexible representation for formal analy-
sis of access-control policies. We have discussed two forms
of analysis for security policies: querying and verification
relative to known properties, and change analysis between
two policies. We have presented techniques for performing
these operations, and discussed their implementation in the
Margrave tool suite. Margrave has been run on policies ex-
tracted from real software, and its performance has been ex-
tremely attractive. In particular, its running time on these
examples is sufficiently low (often well under a second) that
it can conceivably be used to iteratively design policies.

Ultimately, Margrave’s scalability will depend on the num-
ber of variables used in large-scale policies and whether those
variables can be ordered to produce compact mtbdds. bdds
are regularly used for verifying systems with hundreds of
variables, which is within the scale discussed in sections 4
and 7. Furthermore, Margrave uses the bdd operations
that commonly cause blow-up only when projecting vari-
ables to explore counter-examples. We are therefore opti-
mistic about the scalability of this approach.

In conjunction with reasoning about programs, we will
also need richer reasoning about data in policies. We cur-
rently employ the standard technique of using uninterpreted
symbols, constrained by the environment, to simulate rea-
soning about data. To encode this information directly in
a policy would require explicit representation of the data,
which would explode the size of the mtbdd. Other reason-
ing tools may be more effective at this: for instance, theo-
rem provers can typically perform inductive reasoning over
structured data, while a tool such as Alloy can perform op-
timizations such as eliminating isomorphs [17]. These tools
therefore perform operations that complement those in Mar-
gave, so they may be usable in conjunction (for instance, by
generating instances of problems for Margrave).

Section 5 describes several procedures for querying and
analyzing a policy. Ideally, the user should be able to express
queries in a more concise language. We have intentionally
not tried to synthesize such a language, preferring to wait
until we have enough experience to generate a catalog of
common query paradigms.

Margrave presents output using a simple front-end to dis-
play cudd’s sum-of-product representations. Algorithmic
and heuristic techniques could be used to eliminate redun-
dant output, partition results around attributes, and provide
traceability from counter-examples and changes to policy
source files. This is a rich area for future investigation.
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