
WPI-CS-TR-17-02 November 2017

The Impact of a Single Lecture on Program Plans in First-Year CS

by

Francisco Enrique Vicente Castro
Shriram Krishnamurthi

Kathi Fisler

Computer Science
Technical Report
Series

WORCESTER POLYTECHNIC INSTITUTE

Computer Science Department
100 Institute Road, Worcester, Massachusetts 01609-2280



The Impact of a Single Lecture on
Program Plans in First-Year CS
(Technical Report Version)∗

Francisco Enrique Vicente Castro
WPI Dept of Computer Science

fgcastro@cs.wpi.edu

Shriram Krishnamurthi, Kathi Fisler
Brown Dept of Computer Science

{sk,kfisler}@cs.brown.edu

ABSTRACT
Most programming problems have multiple viable solutions that
organize the underlying problem’s tasks in fundamentally different
ways. Which organizations (a.k.a. plans) students implement and
value depends on the solutions they have seen before as well as fea-
tures of their programming language. Many first-year courses teach
different equivalent low-level constructs (such as for vs while loops)
without also discussing different higher-level plans. How much
exposure to planning do students need before they can appreciate
and produce different solution plans?

We report on a study in which students in two introductory
courses at different universities were given a single lecture on plan-
ning between assessments. Surprisingly, that one lecture sufficed
to get students to produce multiple high-level plans (including
ones first introduced in the lecture) and to richly discuss tradeoffs
between plans. This suggests that planning can be taught with
fairly low overhead once students have a reasonable foundation in
programming.

KEYWORDS
Plan composition, program design, programming pedagogy

1 INTRODUCTION
Given a programming problem, students make multiple choices in
crafting a solution. Some choices focus on lower-level concerns
such as which language constructs to use (e.g., a while loop versus a
for loop). Higher-level decisions include how to cluster the subtasks
of a problem into individual functions or code blocks. The cluster-
ing of subtasks is often called a plan [19]. Programming involves
(among other things) implementing plan components in lower-level
constructs and composing those constructs into a solution for the
overall problem.

For students who will study computing further, dealing with
planning is instructive. Arguably, the ability to imagine multiple
plans for the same problem is a powerful and useful programming
skill. Plans have tradeoffs: some are tuned for efficiency, some adapt
better to changing requirements, some are easier for humans to
maintain, and so on. Computer science students should, at some
point, learn to see problems through plans, and be able to envision
and implement multiple plans while weighing their tradeoffs. When
this should happen and how much instruction this requires are,
however, open questions.

∗This version can be cited as WPI Dept of Computer Science Technical Report number
WPI-CS-TR-17-02, released November 2017.

However, planning is not an advanced topic only for upper-level
students or students who intend to work as software engineers.
Even casual programmers who write scripts more than full-fledged
software are affected by planning decisions. A science student writ-
ing scripts to process data for a lab experiment encounters changing
data requirements, noisy data, or other situations that get handled
through planning, not just low-level construct choices. Thus, plan-
ning is relevant even to students in first-year computing courses,
including those who may not take later courses.

But can we teach planning that early, and if so, how? Some
researchers have made notable efforts at teaching students high-
level strategies, patterns, or plans from the outset [4, 8], but this
requires a concerted effort to make planning a central part of the
introductory curriculum. Because these courses serve a variety
of needs for the rest of the program, doing so requires buy-in
and prioritization from all the other faculty, who may have vastly
different disciplinary concerns. Thus, wewere interested in whether
a lightweight approach to teaching planning could have any effect,
or whether only a comprehensive overhaul of the courses—which
may be impossible given a department’s other needs—would suffice.

Concretely, we assigned students programming problems—of
the form the courses anyway expected them to become comfortable
writing—that could be approached through multiple plans; lever-
aged those to give a single 50-minute lecture on plans and tradeoffs;
and then assigned a new set of programming problems. In the post-
assessment, we asked students to produce two solutions to each
problem, each embodying a different plan. We also asked students
to rank their solutions by preference, so we could see what criteria
they were learning to apply to plans. We ran the experiment in two
courses (at different universities, with slightly different contexts),
neither of which had discussed plans, high-level design choices, or
efficiency concerns prior to the experiment.

We expected that many (if not most) students would produce
two solutions with different low-level constructs, but the same high-
level plans.Wewere pleasantly surprised that nearly all students did
produce two different plans in the post-assessment, often choosing
a general plan structure that was first introduced in the planning
lecture. When asked to preference-rank among their solutions,
many students chose solutions with a different general structure
than what they wrote on the pre-assessment. In one of the courses,
we gathered pre-lecture data on the criteria students used to rank
different solutions; these students raised considerably more varied
criteria when ranking the post-assessment solutions. All in all, these
results suggest that lightweight instruction in planning can have
signficant impact, assuming students can produce a single correct
solution for the pre-assessment questions.



Beyond this study, another contribution of this work lies in
the methodology that it proposes for studying planning. Plan-
composition studies seem to be having a resurgence [2, 16], but it is
time the field moved beyond looking just at errors to taking a more
holistic look at students’ planning choices and practices (which
in turn could better explain some of the errors observed in prior
studies). We therefore hope this paper will contribute to a larger
discussion about research directions in program planning for both
majors and non-majors.

2 RELATEDWORK
The task of developing and integrating programming plans has been
identified as a recurring problem among programming students
[3, 18, 19]. The landscape of first-year programming courses tends
to focus instruction on low-level programming constructs, with the
expectation that students implicitly build their knowledge base of
problem solving and programming strategies from trial-and-error
through extensive sets of exercises [3]. While some recent studies
show students succeeding at plan composition in specific contexts
[6, 16], the pedagogic choices that help students with this task
remain poorly understood.

A growing body of research aims at improving planning skills
through pedagogical frameworks and practices that explicitly teach
systematic problem solving strategies in programming. Porter and
Calder draw on the concept of programming patterns, known so-
lutions used for recurring design or programming problems: their
work suggests a process for building a pattern vocabulary for guid-
ing students through problem decomposition [14]. Muller, Haber-
man, and Ginat used this same concept in developing pattern-
oriented instruction [10]: this approach involves attaching labels to
algorithmic patterns and presenting various problems to students,
while encouraging students to look for common patterns across
problems. Students in the latter effort were successful at applying
the patterns at the end of the course. Our work differs in trying a
lightweight approach, in which planning is the focus of a lecture
and two assignments rather than the entire curriculum.

De Raadt, Watson, and Toleman, in incorporating programming
strategies in an introductory programming curriculum, make the
explicit distinction between programming knowledge (language
syntax and semantics) and programming strategies [4]. They include
a ‘strategy guide’ that discusses abutment, nesting, and merging as
ways for integrating strategies; their assignments require students
to apply specific strategies in their solutions. Our work, in contrast,
focuses on problem-level techniques (such as cleaning data) rather
than code-level techniques (such as merging code). Unlike all three
works, we also ask students to discuss design tradeoffs, as a way of
triangulating what they understand about patterns. Arguably, the
skill of evaluating tradeoffs becomes valuable as students progress
through computing courses; as the contexts in which students
solve problems grow more subtle, design tradeoffs take on greater
importance.

3 COGNITIVE FOUNDATIONS OF
RECALLING SOLUTIONS

Different strategies for teaching planning build on results of how
people construct programs at a cognitive level. Given a program-
ming problem, programmers (subconsciously) identify solutions to
similar problems and adapt them to the constraints of the problem
at hand [12, 13, 15, 20]. Repeated application of a pattern helps pro-
grammers form a mental schema for that problem (which could be
recalled later for solving other problems); repeated use of a schema
strengthens later recall of that schema [9, 11]. This basic architec-
ture underlies curricular approaches to teaching patterns explicitly
(as reviewed in section 2).

How much exposure do students need to a solution schema be-
fore they can apply it to new problems? This is an open question,
and one that depends on a student’s experience level. We would
not expect a truly novice programmer to internalize a solution that
used constructs (such as iteration) that the student had simply been
shown in class: internalizing code patterns requires practice with
actually using them. But what if a student had written several pro-
grams that traverse lists (for example), then saw a program that
traverses a list to accomplish a slightly different goal than before?
It seems plausible that the student could subsequently produce a
program that handles the latter goal, even without separate prac-
tice (by virtue of having internalized both list traversal and any
other constructs required for the latter goal). Given that there are
differences between knowledge schemas and strategy schemas (as
both de Raadt et al. and Caspersen cite [1, 4]), students may re-
quire less direct practice to internalize a new pattern that built on
already-internalized schemas.

These results frame our experiment because our lightweight
planning lecture shows students new ways to cluster subtasks of
planning problems. All of our participants had been learning and
practicting writing list traversals prior to the experiment (naturally,
some were better at this than others). The planning lecture showed
new (relative to the course contents) high-level ways to decompose
a planning problem into (potentially multiple) list traversals. Our
study asks whether students would apply these high-level strategies
to new problems based just on the single lecture (without us telling
themwhich solution style to produce, as other pattern-based studies
have done [4]).

Of course, failure of a student to apply the new strategies could
be due to many factors: students might not have understood the
new planning patterns, they might have understood them but not
liked them, they might not have had enough practice to use them
confidently, and so on. The various components of our study at-
tempt to tease out some of these factors, as the study design in
section 4 describes.

4 RESEARCH QUESTIONS
Building on the cognitive literature described in section 3, our
project explores the following research questions:

• Can planning be taught at all in the first year? Or is it a topic that
can only be covered after students have had significant experience
with programming, software engineering, and/or computer science?

2



• Assuming it can be taught, what are the differences between groups
of students in their ability to construct multiple plans, rank different
plans, and talk about programs with a plan-oriented vocabulary?
• Assuming students can engage in these plan-oriented activities, how
much of an intervention is necessary before they can do so? Does
the class need to be restructured to make planning a focus, or can it
be done with a lightweight intervention?

On questions about the feasibility of a lightweight treatment of
planning in the first year, our answers are a qualified “yes”. How-
ever, our work raises as many questions as it answers; therefore,
throughout the paper we list natural areas for follow-up. These are
indicated byR followed by a number. The discussions are all in
section 8, where the number indicates which entry discusses it.

We show that:
• Planning can be covered in the first year for at least some popu-
lations of students.
• We do see quantitative differences between students based on
prior programming experience [R1].
• These results were obtained with a rather lightweight interven-
tion: students wrote the kinds of programs they anyway would
have in the course, and only one class lecture was devoted to
the topic of planning. This suggests that planning is a topic that
can be successfully integrated into a variety of courses without
having to restructure the courses around planning.
• However, the students in our courses did have the benefit of
studying functional programming (“functional” in the sense of
languages like Haskell or Scheme, not C), so it is unclear whether
a similar intervention would work in a traditional, imperative
programming class [R2]. Thus, this raises interesting questions
about how we approach teaching introductory programming.

In what follows, we first describe our context and intervention (sec-
tion 5.1), followed by a detailed analysis of our findings (section 6)
that elaborates on these points.

5 STUDY DESIGN
At a high level our study had three components, which we applied
slightly differently in each of two courses (section 5.1). Section 5.2
and section 5.4 discuss the specific problems used on the assess-
ments. The three components were:

(1) A pre-assessment (section 5.2) in which students were asked to
produce solutions to 2–3 programming problems. In one course,
which had more time for this, students were also given 2–3 solu-
tions to different problems and asked to rank them (with justifi-
cation) in order of their preference between these solutions.

(2) A single 50-minute lecture (section 5.3) on planning and design
tradeoffs. The lecture used the pre-assessment problems to frame
the discussion, showing different high-level ways to decompose
a planning problem into a collection of list traversals. The same
professor gave the same lecture in both courses.

(3) A post-assessment (section 5.4) in which students were asked
to (a) produce two solutions with different plans to each of 4
programming problems and (b) to preference rank between their
solutions (with justification).
Ideally, we would have asked students to write multiple solutions

with different structures in both the pre- and post-assessments.
This would have let us gauge whether students could construct

different plans even before the lecture, and also given us insight into
which planning strategies students already knew. Unfortunately,
we were unable to find a way to phrase this task that was not
either extremely frustrating to students (because they could not
understand the required task) or that did not essentially give away
the answer. We still gain some insight into their background from
their rankings (section 6.2), but determining how to establish a
baseline more authoritatively remains an open question [R3].

The questions in the pre- and post-assessment were carefully
chosen to introduce some broadly-applicable strategies in multi-
task programming problems. In particular, we exposed students to
problems with the following features:

• Noisy data that could be cleaned prior to performing the main
computation.
• Flattened data that could be parsed (or reshaped) to a structure
that was better suited to the main computation.
• Overly-long data that could be truncated to a prefix of interest
for the main computation.

In addition, the posttest included computations that targeted a
projection of the data (say to a specific field within an object). We
did not emphasize projection in the pre-assessment as students had
experience with this idea from other assignments in both courses.

We used the lecture to discuss cleaning, parsing, and truncating
in the context of the pre-assessment problems. We also discussed
various design tradeoffs that these offered, including impact on run-
time efficiency, ability to adapt the solution to a different dataset,
and readability and maintainability of the resulting code.

5.1 The Host Courses
We conducted the study in two first-year CS courses at different
universities. Each course was taught by one of the authors of this
paper. Students in both courses had some prior programming expe-
rience, but the nature of that experience differed both across and
within the populations. We describe each course in turn.

• CrsA is an acclerated CS1 course that compresses much of the
first year into a semester. Students test into the course after one
month in the department’s regular CS1 course. Though it is open
to all, most students in the course have some prior experience,
usually with imperative or object-oriented programming in Java
or Python. The course is taught in Pyret, a functional language
with syntax reminiscent of Python.
• CrsB is a CS2 course on object-oriented programming and data
structures, taught in Java. Students feed into the course from one
of two introductory courses taught in functional programming:
one feeder (CrsBnvc) course is for novice programmers, while
the other (CrsBexp) is for students with prior programming expe-
rience. Students from CrsBnvc have seen little to no imperative
programming prior to CrsB, while students from CrsBexp have
prior experience similar to that of CrsA.

These descriptions indicate that we actually have three stu-
dent populations within our two courses, with interesting overlaps
among them. This table summarizes these populations:

3



Course Course Prior Prior Used
Lang Exprnc. Imprtv. Iterators

CrsA Pyret maybe more yes yes
CrsBnvc Java 7 weeks no a bit
CrsBexp Java maybe more yes yes

“Prior Exprnc.” estimates students’ programming experience prior
to the current course: courses are 7 weeks long at the CrsB insti-
tution, while most students in CrsA and CrsBexp audiences may
have had a year or more of prior programming. “Prior Imprtv.” in-
dicates whether students had previously programmed imperatively.
“Used Iterators” says how much students had worked with higher-
order functions (such as map and filter) before the pre-assessment.
These constructs featured heavily in CrsBexp and CrsA, but were
introduced more lightly in CrsBnvc.

Both the CS1 course that precededCrsB and the CS1 course from
which students placed into CrsA followed a similar program de-
sign curriculum [5], taught in functional programming with Racket.
While the overall assignments and lectures in these two CS1 courses
were not identical, they taught largely the same concepts and the
same method for developing programs and writing good test suites.
While we cannot control for differences in the pre-university pro-
gramming background of students participating in this study, the
common CS1 foundations provide some degree of a shared baseline.

Prior to the pre-assessment, CrsB had covered both kinds of for
loops for iterating over Java linked lists. In-class examples of for-
loops consisted of simple list traversals that accumulated answers
(such as summing a given field across a list of objects) or filtering out
a subset of elements. The pre-assessment was the first assignment
in the course on programming with lists and for-loops.

Sampled Populations. All in all, there were 75 students in CrsA
and 290 in CrsB. While all students completed the study, our (man-
ual) analysis uses a sample based on final course grade. Acknowl-
edging that overall course performance (as indicated by formal
course grade) could be a relevant factor, we aimed for a sample of
10 students from each passing grade (A, B, and C) in each course.
Since CrsB had two different feeder populations, we sampled sep-
arately from both feeder populations. Some subpopulations had
fewer than 10 students in a grade band who submitted both as-
sessments working individually (CrsB allowed pair work). We had
seven C-range students in each course, eight B-range students in
CrsBexp, and a full 10 students in each other population. In total,
our sample included 27 CrsA students, 27 CrsBnvc students, and
18 CrsBexp students. The different grade bands did not manifest
meaningfully in our analysis, so we do not discuss them further.

5.2 Pre-Assessment
The pre-assessments for both courses contained 2 or 3 program-
ming problems; inCrsA, students were also asked to preference rank
among solutions to 3 additional problems. For the pre-assessment,
we used the problems from Fisler et al.’s recent study [7], as they
had been designed for multi-linguistic contexts such as ours. We
reproduce here the statements of problems that feature in our analy-
sis, but defer descriptions of the other study problems to their paper
or to our study handouts (complete with problem statements and

the solutions given in the ranking questions), which are available
online.1

In CrsA, the pre-assessment consisted of the Palindrome, Sum
Over Table, and Adding Machine problems. Our analysis looks at
Adding Machine:

Design a program called addingMachine that consumes
a list of numbers and produces a list of the sums of
each non-empty sublist separated by zeros. Ignore
input elements that occur after the first occurrence of
two consecutive zeros.

Adding Machine features flattened data that could be parsed into a
list of sublists and a prefix of data (prior to the consecutive zeros)
that could be truncated. Typical solution structures include:
Single Traversal Traverses the input data once, accumulating (a)
the sum of the current sublist and (b) the output, returning the
output when consecutive 0s are detected.

Nested Traversal Like Single Traversal, but an extra inner loop
re-traverses the sublists to compute their sums.

Parse One traversal converts the pre-00 input into a list of sublists;
a second traversal produces the list of sums of each sublist.

Clean One traversal truncates the data prior to 00; subsequent
traversals follow one of the other solution structures.
We did not give the same programming problems in CrsB be-

cause the instructor felt they were beyond what the students were
prepared to do. Students did not know the string- or array-operations
needed for Palindrome. The consecutive-position delimiter inAdding
Machine would also have been new to the students from CrsBnvc.
For CrsB, we instead used two different problems from the Fisler
et al. study, specifically the classic Rainfall problem and Length of
Triples. Rainfall involves noisy data (negative numbers that should
not be averaged) and a single-character delimiter for the relevant
data. Length of Triples asks for the longest concatenation of three
consecutive elements from a list of strings.

For the questions that asked students to rank solutions in CrsA,
students were given multiple solutions to three programming prob-
lems, asked to state their preferences among the solutions, and told
to justify their decision (we did not suggest criteria for the com-
parison). For this component, we used the same ranking problems
as in the Fisler et al. paper [7] (their paper includes a link to their
detailed problem statements; we simply adapted their solutions
to the programming languages used in our courses). The specific
problems were the Rainfall and Length of Triples problems given to
the CrsB students as programming problems, as well as Shopping
Cart problem that asked students to compute the total cost of a
shopping cart after applying discounts when certain volumes of
items were being purchased.

We did not include a ranking problems portion in CrsB due to
time constraints within that course. The programming problems
were given within a larger assignment in that course, and the in-
structor did not feel the students could handle the additional work
of the ranking problems in the time available for the assignment.

5.3 The Lecture Intervention
Within two days after the pre-assessment was due, Fisler lectured
about the problems in each course (guest lecturinging in the course
1https://github.com/franciscastro/koli-2017

4



for which she was not the regular instructor). The lectures were
not identical since the pre-assessment questions were different, but
they covered similar content.

In CrsA, the lecture started with a discussion of the ranking
problems and the tradeoffs students considered. Fisler moderated
discussion among the students, making sure that each of efficiency,
aesthetics, maintainability, and code structure were given due atten-
tion. The instructor showed possible solutions to Adding Machine,
explicitly discussing parsing and truncating as applicable strategies.

In CrsB, Fisler showed multiple solutions to each of Rainfall and
Length of Triples. The former was used to point out cleaning and
truncating as strategies; the latter was used to point out parsing.
These solutions were posted for later reference. Again the instruc-
tor moderated a classwide discussion among the students of the
tradeoffs across these solutions to both problems.

In both lectures, Fisler described planning as the general task
of allocating subproblems to traversals of the data. While this is a
somewhat more code-focused definition that we might otherwise
like, it was designed to give students a way to assess whether their
two solutions would be “different” from the perspective of the post-
assessment, though at this point they did not knowwhat theywould
be asked to do on that assignment. However, the emphasis of the
lecture was not on this definition but on concrete strategies, to help
them build a vocabulary of planning operations.

5.4 Post-Assessment
For the post-assessment, we sought problems that were amenable
to the parsing, cleaning, and truncating strategies discussed in the
lecture. We wanted problems that resembled, but were not identical
to, the pre-assessment problems. The post-assessment contained
four problems; students were required to (a) submit two solutions
(with different structures) for each problem, and (b) state a pref-
erence between their two solutions (with justification). Teaching
assistants in both courses were instructed not to give students much
help in figuring out what a second solution would look like, but
rather to refer them to their notes from each lecture.

This paper focuses on two of the problems, due to their particular
similarities with pre-assessment problems:
Data Smoothing Given a list of health records with a numeric

heartRate field, design a program dataSmooth that produces a list
of the heartRates but with each (internal) element replaced with
the average of that element and its predecessor and successor. E.g.,
given a list of health-recordswith heart rates [95, 102, 98, 88, 105],
the resulting smoothed sequence should be

[95, 98.33, 96, 97, 105]

This problem, like the Length of Triples problem which both courses
saw in the pre-assessment, looks at three-element windows within
an input list. This problem is a good candidate for parsing. Other
viable strategies include first extracting all the heart-rates from the
health records (resulting in a list of numbers to smooth), or simply
doing the entire computation in a single traversal of the input data.
Earthquake Monitor Write a program that takes a month and a
list of readings from an earthquake sensor. In the input, 8-digit
numbers are dates and numbers below 500 are readings for the
preceding date. Produce a list of reports containing the highest

Figure 1: Structures of Adding Machine solutions in CrsA
from the pre-assessment

Figure 2: Structures of EarthquakeMonitor solutions inCrsA
from the post-assessment

reading for each date in the given month. E.g., given this list and
10 for the month,

20151004 200 150 175 20151005 0.002 0.03 20151207
the program should yield [report(4, 200), report(5, .03)]

This problem resembles Adding Machine in having sublists within
the data, which makes it a candidate for parsing. Like both Adding
Machine and Rainfall, it has a sentinel (in the form of data from a
later month). It could be approached with a single traversal that
accumulates the max value per date, a cleaning phase that restricts
the input data to the desired month, or parsing prior to computing
the reports.

6 ANALYSIS
We now discuss our findings. We find it useful to organize our
results by course, first discussing what we observe from CrsA, then
contrasting those results to the data from CrsB. A direct compari-
son of the results from the two courses is not meaningful due to
differences in the students’ backgrounds and the smaller set of ques-
tions used with CrsB. We still find value, however, in seeing how
two groups of students with some similarities in their backgrounds
fared in this experiment. The analysis will show interesting dif-
ferences across the two courses; this gives a much more realistic
picture of the proposed intervention than if we had reported on
one course alone, despite the differences in the details of problem
selection.

5



Figure 3: Criteria CrsA students cited while ranking solu-
tions to Rainfall (pre), Shopping Cart (pre), and Earthquake
Monitor (post)

6.1 The View from CrsA
The data from CrsA suggest that our intervention lecture had a
noticeable impact on students’ planning behavior. Figure 1 and fig. 2
show the structures that CrsA students used in Adding Machine on
the pre-assessment and Earthquake Monitor on the post-assessment,
respectively (appendix A outlines how we coded the solutions). We
contrast these two problems because they have similar attributes:
flattened sequences of structured data, with a computation (sum
or max) to be performed on a delimited subsequence of relevant
data. Students took a variety of approaches in the pre-assessment,
with some using parsing. Usage of parsing jumps significantly (p <
.006 with a McNemar’s test) in the post-assessment: about 70% of
CrsA students used parsing in one of their two Earthquake Monitor
solutions. Even in Data Smoothing, roughly the same number of
students chose to parse as did a single data traversal. Thus, there
is evidence that CrsA students learned and applied the parsing
strategy from the single lecture.

Significant contrasts also arise when we examine CrsA students’
ranking preferences between the two assessments (appendix B
outlines how we coded the solutions). Figure 3 shows the criteria
that students used when ranking the Rainfall and Shopping Cart
problems from the pre-assessment, alongside those for Earthquake
Monitor on the post-assessment (these are for the entire population
of 75 students, not just the sampled subset). The three most common
categories (efficiency, structure, and aesthetics) are the same in the
two pre-assessment problems, though aesthetics is more prominent
on Shopping Cart, which involves more subtasks than Rainfall.
In the post-assessment, efficiency is cited significantly less often
(p < .0001) while maintainability grows significantly (p = .02).
Maintainability is a potential issue for both Rainfall and Shopping
Cart, but particularly the latter (as the store could begin to offer
more or different discounts). Table 1 shows the evolution of these
criteria on a per-student (rather than aggregate) level, summarizing
numbers of CrsA students who raised various criteria in each of

Figure 4: Structures of Earthquake Monitor solutions from
the post-assessment

the assessments. The table shows that many students both dropped
and gained criteria over the course of the study.

Criterion Pre, not
post

Post, not
pre

Pre and
post

Efficiency 31 - 36
Structure 24 9 15
Aesthetics 14 1 35
Maintainability 7 20 3

Table 1: Criteria raised byCrsA students across pre- and post-
assessment rankings

All in all, the lecture had the impact we hoped for in CrsA: stu-
dents showed their ability to produce solutions with multiple plans
(only 4 students had the same high-level plan on Earthquake Mon-
itor and only 5 had the same high-level plan on Data Smoothing;
only one student overlaps these two groups), most students raised
more issues when discussing tradeoffs among solutions, and many
students changed the solution structures that they preferred in
the post-assessment (which is merely a sign that the lecture im-
pacted their thinking, not that their analyses necessarily grew more
accurate [R4]).

6.2 The View from CrsB
Contrasting the CrsA data with those from CrsB paints a more
nuanced picture of the impact of the single lecture. In particular,
taken as a whole, the lecture’s impact is less significant; we also
see interesting differences between the CrsBnvc and CrsBexp sub-
groups ofCrsB. We also see differences betweenCrsA andCrsBexp,
who had been working in different programming languages despite
a fairly common curriculum (and common programming language)
just a month or two prior to the study.

Figure 4 contrasts the Earthquake Monitor solutions across all
three populations in the post-assessment. Two observations jump

6



Figure 5: Structures of Data Smoothing solutions from the
post-assessment

out. First, a significant percentage of students in CrsB were unable
to solve the problem at all (the “No Code” group): of the 45 students
sampled, 11 turned in no solution for Earthquake Monitor (9 from
CrsBnvc, 2 from CrsBexp), while another 6 students turned in only
one solution. Of those who turned in only one solution, half used
parsing while the others did a straightforward loop-based traversal
or nested traversal. In contrast, there was only one case of a “No
Code” solution inCrsA. We suspect that the “No Code” s came partly
from the lack of programming experience in CrsBnvc and partly
from students running out of time (Earthquake Monitor was the last
problem on the assignment, which was due just before students left
campus for Thanksgiving, a mid-course holiday.)

Setting aside the “No Code” students, the dominant solution struc-
tures differ across the three populations: “Parse First” dominates
in CrsA, “Single Traversal” dominates in CrsBnvc, while these two
are fairly even in CrsBexp. This suggests that parsing strategies
may be harder for students to adopt with only novice programming
experience ([R5]).

On Data Smoothing (fig. 5), the two CrsB populations are more
similar to each other, with much heavier use of “Single Traversal”
solutions, especially compared to the dominance of “ExtractFirst”
solutions in CrsA. Here, we strongly suspect that programming
language constructs were a factor. Most of the CrsA students used
a built-in map function to extract the heart rates from the health
records. While Java 8 provides map, it is somewhat clumsy to use and
only a handful of CrsB students had been exposed to it by the class
(in an optional lab for students whowanted a challenge assignment).
A basic Java for loop is straightforward for Data Smoothing, so we
should hardly be surprised that students used it.

Of the 45 CrsB students, 16 produced two Data Smoothing solu-
tions with the same high-level structure. This suggests that many
CrsB students didn’t really understand the idea of multiple program
plans just from the single lecture, or perhaps that the alternate plans
for Data Smoothing were too subtle for many students. Of the strate-
gies provided by the lecture (cleaning, parsing, and truncating), only
parsing applies to Data Smoothing; if parsing was indeed too hard

for students, they would have been left without named strategies to
apply to the problem. Instead, they would have to have understood
the more general point about different structures allocating tasks
differently to traversals of data. The pre-assessment data did not
shed light, as all but one student used a “Single Traversal” structure
to program Rainfall. Prior experience is not the explanation either:
these 16 students were roughly evenly split between CrsBnvc and
CrsBexp. Whether CrsB students would have understood this idea
better had they also done ranking problems on the pre-assessment
is a question for future studies.

6.3 Preference Ranking of Own Post Solutions
Recall from section 5.4 that students were asked not only to generate
two different plans for the solutions, but also to state a preference
between the two. Here we study the outcome of this activity from
both courses (CrsA and CrsB).

All theCrsA students submitted preferences andmentioned some
criteria. Figure 6 shows their preferences for Earthquake Monitor
solutions. For now, we ignore the colors and look at each bar as
a whole. In so doing we notice that students have a significant
preference for parsing first, which suggests at least the ability to
recognize the lecture’s views on structures that better decomposed
plans ([R4]). The Earthquake Monitor bars of fig. 3 also show the
variety of criteria that the students mentioned.

We now contrast this to CrsB. Figure 7 shows which of their
solutions students preferred. Of the 34 students who submitted a
solution for Earthquake Monitor , all but 5 had at least one “Sin-
gle Traversal” or “Nested Traversal” solution, yet half preferred a
parsing- or cleaning-based solution. When we now focus on their
criteria, however, we see something more disturbing. Of the 45
students sampled: only 15 mentioned any criteria at all; 9 didn’t
submit a ranking; the other 21 just described the implementations
(6 of these were from CrsBexp, the rest from CrsBnvc). Among
the 15 CrsB students who did describe criteria, code structure and
aesthetics came up most often (9 and 10 instances, respectively),
while efficiency got only 3 mentions.

The contrast between the courses in students’ ability to discuss
solutions by attributes is striking, and not readily explained. Neither
course had practiced this skill, either explicitly or implicitly that the
instructors can recall. Both courses had covered rudimentary big-O
prior to the pre-assessment, so students at least had “efficiency” in
their vocabulary. Therefore, we do not yet have a proper explanation
for these differences ([R6]).

6.4 Changes in Solution Structures
Changes in the solution structures that students wrote from the
pre- to the post-assessment might indicate that the planning lecture
had impact. Because students were asked to write two solutions in
the post-assessment, it might not be clear which one to compare.
However, given that students were asked to rank their two solutions,
we believe it is reasonable to compare the structure of the pre-
solution with that of the preferred post- one.

We present this comparsion forCrsA, usingAddingMachine from
the pre-assessment and the preferred Earthquake Monitor solution
from the post-assessment. This is a meaningful comparison due to
the similarities in tasks between these two problems: both involve

7



Figure 6: Comparing individual CrsA students’ Adding Ma-
chine structures (pre) to that of their preferred Earthquake
Monitor solution (post)

Figure 7:CrsB students’ preferred EarthquakeMonitor struc-
tures (post)

flattened data, a numeric calculation on subsegments of the data,
and consideration of only a subset of the data.

Figure 6 shows this information. Now we can consider the colors.
Each row shows a structure for the preferred post- solution binned
by their pre- solution structure. The comparisons are per student.
Perhaps the most interesting feature of this graph is its lack of a
clear internal pattern: students from each Adding Machine structure
are dispersed across the Earthquake Monitor bins, and each Earth-
quake Monitor bin is populated with students from multiple Adding
Machine structures. Our key takeaway from this graph is that the
lecture got CrsA students to think about plans and tradeoffs, with
many reconsidering choices that they might have made reflexively
during the pre-assessment.

A similar graph for CrsB is not meaningful, since all but one stu-
dent produced the same structure for Rainfall on the pre-assessment.
However, we do see diversification in students’ preferred solutions
in the post-assessment. While “Single Traversal” solutions remain
the most popular amongCrsB students in both the Earthquake Mon-
itor and Data Smoothing problems on the post-assessment, there
is considerable diversity in the Earthquake Monitor preferences
(which admits more interesting plans). Whether this diversification

was caused by the lecture, or by the relatively greater difficulty of
Earthquake Monitor compared to Rainfall, is open to question.

7 THREATS TO VALIDITY
Students’ prior programming experience, including the kinds of
problems they have been exposed to and in which programming
languages, is a significant factor in studies of planning (section 3).
We have a rough characterization of our participants’ prior experi-
ence: students in CrsBexp and CrsA all took courses designed for
students with non-trivial programming experience prior to starting
at university (for CrsBexp, that course was the one preceding CrsB
itself; novice and experienced students feed into a common CrsB as
a second course). The nature of that experience could vary signifi-
cantly across students (in practice, most students had experience
in at least Java). More careful accounting of the details of prior
background would help refine conclusions in planning studies.

Student motivation to master programmming could affect how
seriously they engage in the task of writing two solutions. All
students in our study courses were likely interested in majoring
in computer science, or at least studying it in some depth. This
might give them greater motivation for understanding the planning
concepts we discussed, and they might also have more aptitude for
computational problem composition and decomposition. It would
be interesting to perform similar studies on non-major populations,
in particular exploring how much training they require before they
appreciate planning. Data on this question will likely evolve in the
next few years, given the growing adoption of computing in middle-
and high-schools in many countries, which might prepare students
for this material.

As noted in section 5.2, we did not use the same questions in both
courses. The questions we gave to CrsA reflected the richness and
parallel structures across pre and post that we would ideally like to
explore, but some of these questions were beyond what theCrsBnvc
students would be able to handle based on the problems presented in
class (for example, they had not yet done any stringmanipulation, so
Palindromewould not have been approachable). The extent towhich
this is a problem depends a bit on the nature of the conclusions
one wishes to draw. Had the study results been positive with all
three groups of students and we drawn conclusions about relative
performance, the variations in questionswould confound the results.
As it were, however, the CrsB students did not fare as well, despite
having arguably easier questions. In this context, the difference in
questions is not as significant.

One reviewer of this work posited that our questions were bi-
ased in favor of functional programming. We drew our questions
from a collection of planning problems [7] that had been curated
by multiple instructors, some of whom vastly prefer functional pro-
gramming and some who vastly prefer imperative programming.
Given this curation, we were confident that our problems were rea-
sonable ones to pose of students working in various programming
styles.

8 DISCUSSION AND FUTUREWORK
We now discuss in some depth the manyRquestions we have
raised throughout the paper.

8



(1) The studies we conducted were roughly near the end of the first
semester (in US terminology). If we could wait another semester
and get students at the end of the first year, we might find that
even those without prior computing are much more sophisticated
programmers. It would be especially interesting to see whether,
at that point, the CrsBnvc group performs like the CrsA and
CrsBexp populations did in our first-semester study.

(2) What if we were to do the same study in an imperative setting?
Would students who have primarily been exposed to for loops,
and not seen higher-level constructs like mapping and filtering,
readily grasp the idea of planning? Clearly, exposure to such
constructs helps students understand planning concepts; but while
sufficient, is it also necessary? This is a topic that needs further
study.
In addition, programming classes may also start changing in
flavor to keep pace with languages. Increasingly, imperative and
object-oriented languages have adopted some of the basic features
of functional programming, such as higher-order functions and
higher-order operators (whether in the form of functions like map

or filter or as syntactic constructs such as comprehensions). The
pedagogy is also catching up: new (editions of some) Java books
provide a thorough discussion of using higher-order functions
and functional style [17]. Therefore, it is no longer necessary to
switch to a functional language to teach a more functional style
of programming. This removes a significant source of friction that
introductory course instructors sometimes feel. Nevertheless, this
does require adopting a new style of programming, which may
be considered a significant intervention in some departments, far
removed from our view of it as a “lightweight” one.

(3) What do students already understand about planning before our
intervention? Can we phrase our “construct two different plans”
task (section 5.4) in a way that meaningfully measures student
knowledge and ability?

(4) The fact that students changed their ranking criteria in the post-
lecture assessment does not mean they genuinely changed their
preference: they may be reflecting what they believe the course
staff want to hear. We can probe their true beliefs by giving them
significant problems that they can decompose in different ways
and checking whether their decompositions match their stated
preferences. In turn, creating multi-part exercises where they
have to create an initial solution and later modify it—so that
issues like maintainability come to the fore—can help reinforce
the value of some plans over others.

(5) When are students ready to understand and adopt a planning strat-
egy like parsing? There are many reasons why several CrsBnvc
students were unable to use it: maybe they didn’t understand it in
the first place; maybe they understood it but didn’t see its value
(especially if they have had no experience building larger sys-
tems, it can be hard to see the benefit of an abstraction); or, having
passed both hurdles, they may have been unable to implement it.

(6) We find puzzling the contrast between CrsA and CrsB students
when it comes to ranking their own solutions. Do the CrsB stu-
dents not appreciate tradeoffs at all? Do they appreciate them but
lack the vocabulary to articulate them? Perhaps they simply did
not understand what the problem was asking for?
There is one important factor that may have played a part. The
CrsA students had to preference-rank in their pre-assessment,

and discussed this during the intervention lecture. Therefore, it is
possible they had already had “training” to think about this issue.
However, given that they already mentioned several criteria—
instead of just describing implementations—in their rankings,
this cannot be the whole explanation. Having the CrsB students
preference-rank in the pre-assessment would clearly help shed
light on this phenomenon.
Going beyond these questions, future studies could include con-

trol groups or find ways to determine what kinds of solutions
students can imagine as part of the pre-test. Given the relationship
between planning and prior exposure to similar problems, control
groups would likely need to come through the same sequence of
courses as study participants. Naturally, this requires a different
intervention design than ours, which covered planning as one of
the regular lectures within the participating courses.

9 ACKNOWLEDGMENTS
This research was partially supported by the US NSF under grant
1116539. Reviewers of submitted versions of this paper provided
helpful comments on content and organization.

A CODING SOLUTION STRUCTURE
We coded individual solution structures by (a) enumerating the
subtasks for each programming problem, and (b) writing a regular
expression to capture the clustering and sequencing of subtasks
within the solution. We grouped the regular expressions into larger
bins based on how they handled the main strategies (parsing, clean-
ing, truncating) covered in this study. ForData Smoothing, for exam-
ple, the subtasks were (E)xtracting the heart-rate, (S)moothing the
data and optionally (P)arsing the data. A code of P;(E+S) captures
a solution that parses the data then extracts the heart-rates and
computes smoothed values in a subsequent traversal. This solution
would be classified as “Parse First” . Section 5.2 outlined four larger
bins that arise for Adding Machine; similar terms describe bins for
the other problems.

B CODING PREFERENCE CRITERIA
Ranking criteria were processed through open-coding. Four main
themes emerged:

(1) Efficiency: Mentions runtime, performance (e.g. Big-O), memory
use, or efficiency of operations used.

(2) Structure: Discusses use of specific operations, constructs, or
clusterings of subtasks

(3) Aesthetics: Readability, comprehensibility, or reflecting the prob-
lem statement in the code; often positive tone.

(4) Maintainability: Mentions ability to maintain, debug, or adapt
the solution to new data

REFERENCES
[1] Michael E. Caspersen. 2007. Educating Novices in the Skills of Programming. Ph.D.

Dissertation. University of Aarhus, Denmark.
[2] Francisco Enrique Vicente Castro and Kathi Fisler. 2016. On the Interplay Between

Bottom-Up and Datatype-Driven Program Design. In Proceedings of the ACM
Technical Symposium on Computer Science Education. ACM, 205–210.

[3] Michael de Raadt, Mark Toleman, and Richard Watson. 2004. Training Strategic
Problem Solvers. SIGCSE Bull. 36, 2 (June 2004), 48–51.

[4] Michael de Raadt, Richard Watson, and Mark Toleman. 2009. Teaching and
Assessing Programming Strategies Explicitly. In Proceedings of the Australasian
Computing Education Conference. Australian Computer Society, Inc., 45–54.

9



[5] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishna-
murthi. 2001. How to Design Programs. MIT Press. http://www.htdp.org/

[6] Kathi Fisler. 2014. The Recurring Rainfall Problem. In Proceedings of the Interna-
tional Conference on Computing Education Research. ACM, 35–42.

[7] Kathi Fisler, Shriram Krishnamurthi, and Janet Siegmund. 2016. Modernizing
Plan-Composition Studies. In Proceedings of the 47th ACM Technical Symposium
on Computing Science Education. ACM, 211–216.

[8] David Ginat. 2009. Interleaved Pattern Composition and Scaffolded Learning.
In Proceedings of the 14th Annual ACM SIGCSE Conference on Innovation and
Technology in Computer Science Education. ACM, 109–113.

[9] S.P. Marshall. 1995. Schemas in Problem Solving. Cambridge University Press.
https://books.google.com/books?id=iKSYrsXe6f0C

[10] Orna Muller, David Ginat, and Bruria Haberman. 2007. Pattern-oriented Instruc-
tion and Its Influence on Problem Decomposition and Solution Construction. In
Proceedings of the ACM Conference on Innovation and Technology in Computer
Science Education. ACM, 151–155.

[11] A. Newell, P.S. Rosenbloom, and J.E. Laird. 1989. Symbolic Architectures for
Cognition. In Foundations of Cognitive Science. MIT Press, 93–131.

[12] Peter L. Pirolli and John R. Anderson. 1985. The Role of Learning from Exam-
ples in the Acquisition of Recursive Programming Skills. Canadian Journal of

Psychology/Revue canadienne de psychologie 39, 2 (1985), 240–272.
[13] Peter L. Pirolli, John R. Anderson, and Robert G. Farrell. 1984. Learning to program

recursion. 277–280.
[14] Ron Porter and Paul Calder. 2003. A Pattern-based Problem-solving Process for

Novice Programmers. In Proceedings of the Australasian Computing Education
Conference. Australian Computer Society, Inc., 231–238.

[15] Robert S. Rist. 1989. Schema Creation in Programming. Cognitive Science (1989),
389–414.

[16] Otto Seppala, Petri Ihantola, Essi Isohanni, Juha Sorva, and Arto Vihavainen.
2015. Do We Know How Difficult the Rainfall Problem is?. In Proceedings of the
Koli Calling Conference on Computing Education Research. ACM, 87–96.

[17] Peter Sestoft. 2016. Java Precisely (third ed.). MIT Press.
[18] Simon. 2013. Soloway’s Rainfall Problem Has Become Harder. Learning and

Teaching in Computing and Engineering (2013), 130–135.
[19] E. Soloway. 1986. Learning to Program = Learning to Construct Mechanisms and

Explanations. Commun. ACM 29, 9 (Sept. 1986), 850–858.
[20] James C. Spohrer and Elliot Soloway. 1989. Simulating Student Programmers.

Morgan Kaufmann Publishers Inc., 543–549.

10

http://www.htdp.org/
https://books.google.com/books?id=iKSYrsXe6f0C

	Abstract
	1 Introduction
	2 Related Work
	3 Cognitive Foundations of Recalling Solutions
	4 Research Questions
	5 Study Design
	5.1 The Host Courses
	5.2 Pre-Assessment
	5.3 The Lecture Intervention
	5.4 Post-Assessment

	6 Analysis
	6.1 The View from CrsA
	6.2 The View from CrsB
	6.3 Preference Ranking of Own Post Solutions
	6.4 Changes in Solution Structures

	7 Threats to Validity
	8 Discussion and Future Work
	9 Acknowledgments
	A Coding Solution Structure
	B Coding Preference Criteria
	References

