

Measuring the Effectiveness of Error Messages
Designed for Novice Programmers

Guillaume Marceau
WPI

100 Institute Road
Worcester, MA, USA
+1 (508) 831-5357

gmarceau@wpi.edu

Kathi Fisler
WPI

100 Institute Road
Worcester, MA, USA
+1 (508) 831-5357

kfisler@cs.wpi.edu

Shriram Krishnamurthi
Brown University
115 Waterman St

Providence, RI, USA
+1 (401) 863-7600

sk@cs.brown.edu

ABSTRACT

Good error messages are critical for novice programmers. Many

projects attempt to rewrite expert-level error messages in terms

suitable for novices. DrScheme's language levels provide a

powerful alternative through which error messages are customized

to pedagogically-inspired language subsets. Despite this, many

novices still struggle to work effectively with DrScheme's error

messages. To better understand why, we have begun using

human-factors research methods to explore the effectiveness of

DrScheme's error messages. Unlike existing work in this area, we

study messages at a fine-grained level by analyzing the edits

students make in response to various classes of errors. Our results

point to several shortcomings in DrScheme's current treatment of

errors; many of these should apply to other languages. This paper

describes our methodology, presents initial findings, and

recommends new approaches to presenting errors to novices.

Keywords

Error message design, Novice programmers, User-studies

1. INTRODUCTION
In a compiler or programming environment, error messages are
arguably the most important point of contact between the system
and the programmer. This is all the more critical in tools for
novice programmers, who lack the experience to decipher a
poorly-constructed error message. Indeed, many research efforts
have sought to make professional compilers more suitable for
teaching by rewriting their error messages [16] or by
supplementing them with hints and explanations [6]. Such efforts
complement more general research on improving error messages
through techniques such as error recovery during parsing.

DrScheme1 [10] reflects a philosophy that programming
languages designed for experts cannot be shoehorned into a
teaching role. Programming courses teach only a few constructs
of a full language; at any time, students have seen only a fragment
of the full language. This creates a mismatch between the
programming language that the students believe they are using—
the subset that they are aware of—and the language the compiler
processes. Students experience this mismatch in two ways: (1)
when they use an advanced construct by mistake and their
program does not fail, but instead behaves in a weird way; and (2)
when their mistakes are explained by the error message in terms
of concepts they do not yet know.

1 Now known as DrRacket.

To address this issue, DrScheme offers several language levels
[15]. Each level is a subset of the next level up. As the course
progresses, students move through five language levels, from
Beginner Student Language (BSL) to Advanced (ASL). Each
level's error messages describe problems by referring only to
concepts the student has learned so far. The levels also rule out
programs that would be legal in more advanced levels; as a
corollary, errors are not preserved as students move up the chain.
Figure 1 illustrates the impact of switching levels on the
messages. Running program (a) in BSL results in the error
message “define: expected at least one argument name after the

function name, but found none”. The same program runs without
errors in ASL, since once students reach ASL they have learned
about side effects, at which point it makes sense to define a
function without arguments; this illustrates point (1). Similarly,
running program (b) in ASL does not raise an error, since placing
a variable in function position is not a mistake for students who
have been taught first-class functions; this illustrates point (2).

The DrScheme error messages were developed through well over
a decade of extensive observation in lab, class, and office settings.
Despite this care, we still see novice Scheme programmers
struggle to work effectively with these messages. We therefore
set out to quantify the problem through finer-grained studies of
the error messages as a feedback mechanism, following HCI and
social science methods [33]. Specifically, we set out to understand
how students respond to individual error messages and to
determine whether some messages cause students more problems
than others. Over the longer term, we hope to develop metrics for
good error messages and recommendations for developers of
pedagogical IDEs that generalize beyond Scheme.

(a) (define (add-numbers)

 (5 + 3))

 define: expected at least one argument name after

the function name, but found none

(b) (define (add-numbers x y)

 (x + y))

 function call: expected a defined name or a

primitive operation name after an open parenthesis,

but found a function argument name

Figure 1. Not an error in ASL (a) Function without

arguments (b) Variable in callee position

This paper presents results from a multi-faceted study of student
interactions with DrScheme’s error messages. We have looked at
student edits in response to errors, interviewed students about
their interpretations of error messages, and quizzed students on
the vocabulary that underlies the error messages in a typical
introductory college course using DrScheme. Our work is novel
in using fine-grained data about edits to assess the effectiveness of
individual classes of error messages. Most other work, in
contrast, changes the IDE and measures student performance over
an entire course. The evaluation rubric we designed, which
measures the performance of error messages through edits, is a
key contribution of this work. We also identify several problems
in DrScheme’s current error messages and recommend changes
that are consistent with our observations.

To motivate the project, Section 2 gives examples of errors that
students made in actual class sessions. Section 3 presents our
methodology in detail. Section 4 describes the rubric and the
evolution of its design. Sections 5 through 7 describe the results
of our analysis thus far, while Section 8 presents initial
recommendations for error message design arising from our
observations. Related work appears in Section 9.

2. RESPONSES TO ERROR MESSAGES
We begin by showing a few examples of student responses to
error messages during Lab #1. When Lab #1 begins, most
students have not had any contact with programming beyond four
hours of course lectures given in the days before and two short
homeworks due the day before and evening after the lab.

Figure 2 (a) shows one function (excerpted from a larger
program) submitted for execution 40 minutes after the start of the
lab. The student is defining a function label, with one argument
name. Most likely the student is missing a closing parenthesis
after name, and another one after "conservative". The nesting
suggests that the student is struggling to remember how to
combine two different Boolean tests into one using the or
operator.

Figure 2 (b) shows the student’s edit in response to that particular
error message. The student inserted name as an argument to the
function call to string=? . There is a logic to this response: the
message says a name is expected, so the student provided a name.
Beginning programmers often make this mistake (confusing a
literal reference with an indirect reference). Learning to reflect
with accuracy about the difference between referent, referee, and
literal references is one of the skills students learn in
programming courses. There is however an ambiguity in the error
message that might have prompted the mistake in the response:
the word “function” in the fragment “for the function's second
argument” can refer to either the function being defined (label)
or the function being called (string=?). DrScheme means the
former, but it seemed that the student understood the latter
(perhaps influenced by the highlighting). We found this kind of
ambiguity common. Specifically, whenever the error messages of
DrScheme use referencing phrases to point at pieces of code, it is
often too vague to be understood well, and it uses technical
vocabulary that impedes clarity rather than helps it. We return to
this subject in Section 6.

Figure 3 shows another example. The program at the top of the
figure was the first of a sequence of programs that each triggered
the same error message. What follows are the student’s first four
attempts to correct the problem. The student never identifies the
actual problem, which is a missing open parenthesis before the
cond. The entire sequence lasts 10 minutes, until the end of the
lab session. A few weeks later, the student participated in this
study's interviews and mentioned how frustrating the experience
had been.

Even with our years of experience teaching with DrScheme, the
state of the programs we collected was often surprising, if not

(a)

(b)

Figure 2. (a) A student's program and its error message,

(b) The student's response to the error message

(define (string-one-of? check-for-match stringOne stringTwo stringThree)

 cond [(and (string=? check-for-match stringOne))]

 [(and (string=? check-for-match stringTwo))])

 define: expected only one expression for the function body, but

found at least one extra part

(define (string-one-of? check-for-match stringOne stringTwo stringThree)

 cond [(string=? check-for-match stringOne)]

 [(and (string=? check-for-match stringTwo))]

 [(and (string=? check-for-match stringThree))])

(define (string-one-of? check-for-match stringOne stringTwo stringThree)

 cond [and ((string=? check-for-match stringOne))]

 [(and (string=? check-for-match stringTwo))]

 [(and (string=? check-for-match stringThree))])

(define (string-one-of? check-for-match stringOne stringTwo stringThree)

 cond [(string=? check-for-match stringOne)]

 [(string=? check-for-match stringTwo)]

 [(string=? check-for-match stringThree)])

(define (string-one-of? check-for-match stringOne stringTwo stringThree)

 cond [(string=? check-for-match)]

 [(string=? check-for-match stringTwo)]

 [(string=? check-for-match stringThree)])

Figure 3. A sequence of responses to an error message

humbling. Students manage to create quite mangled functions,
which the error messages must attempt to help them sort out.

3. METHODOLOGY
To explore how students respond to error messages, we sought a
combination of data from a large number of students and in-depth
data from a handful of students. In the spring of 2010, we set up a
study around WPI’s introductory programming course, which
enrolled 140 students. Our data gathering had four components:

1. We assembled records of students’ programming sessions.
We configured DrScheme to save a copy of each program
each student tried to run, as well as the error message
received (if any) plus any keystrokes that the student pressed
in response to the error message, up to their next attempt at
running the program. Amongst the 140 students registered
for the course, 64 agreed to participate in this data collection.

We collected data during the course’s normal lab sessions,
which ran for an hour per week for six weeks (normal course
length at WPI is seven weeks, so the data covers the entire
course). During labs, students worked on exercises covering
the last week’s lecture material. We also have data from
editing sessions that occurred outside the lab from 8 students
who installed our monitoring software on their laptops.

2. We interviewed four students about their experience with
DrScheme’s error messages. These interviews helped us
interpret the content of the session recordings. These students
ranged from medium to good (we were not able to attract any
of the weaker students). Each interview started with a short
introduction in which we discussed the student’s experience
in the class, and his general impression of the error
messages. Then we gave the student erroneous programs
taken from the session recordings from Lab #1 (some his
own and some from other students) and asked them to fix the
proximate error mentioned in the error message. This
naturally led to a discussion on the strategy the student used
to respond to error messages and how the error messages
could be improved.

3. During the interviews, it became apparent that students often
struggle with the technical vocabulary that DrScheme uses to
describe code (see Section 7). We designed a vocabulary
quiz to quantify this effect. We identified 15 technical words
that appear in the 90th-percentile error messages most
frequently presented to students throughout the semester.
Each student received a quiz with five words amongst those,
and was asked to circle one instance of that vocabulary word
in a short piece of code. We administered the quiz to 90
students (self-selected) at WPI. For calibration, we also
administered it to Brown University undergraduates who had
taken a DrScheme-based course the previous semester and to
freshmen and transfer students in a programming course at
Northeastern University, Boston.

4. We asked the three professors of students who participated in
the vocabulary quiz to describe which vocabulary words they
used in class. We received thoughtful answers from all three,
indicating that they had put much effort in maintaining a
consistent usage of vocabulary throughout their semester.
They could say with confidence which of the 15 vocabulary
word they used often, regularly, seldom, or never, in class.

To date, we have carefully analyzed only the data from the first
lab week. Students’ initial experiences with programming
influence their attitudes towards the course and programming in
general. For many students, the first week determines whether
they will drop the course. Making a good first impression is
critical for the success of a programming course.

4. THE DESIGN OF A CODING RUBRIC
There are many ways one might study the effectiveness of error
messages. A common approach in the literature (as reviewed in
Section 9) is to change the messages or their presentation and
compare the impact on student grades at the end of the course.
We are interested in a more fine-grained analysis that determines
which error messages are effective and in what ways. There is
also no single metric for “effectiveness” of an error message.
Possible metrics include whether students demonstrate learning
after working with messages or whether the messages help novice
programmers emulate experts. We have chosen a narrower
metric: does the student make a reasonable edit, as judged by an
experienced instructor, in response to the error message?

We used two social science techniques to gain confidence that
both our metric and its application to our data were valid. First,
we developed a formal rubric for assessing each student edit.
Then, we subjected the rubric to a test of inter-coder reliability
[5] (where “coder” is the standard term for one who applies a
rubric to data).2 Inter-coder reliability tests whether a rubric can
be applied objectively: multiple coders independently apply the
rubric to data, then check for acceptable levels of consistency in
their results. When tackling subjective topics, good inter-coder
reliability can be quite difficult to achieve. After describing the
evolution of our rubric, we present a standard measurement of
inter-coder reliability and our high scores on this metric.

Our rubric attempts to distinguish ways in which error messages
succeed or fail. Our design starts from a conceptual model of how
error messages intend to help students: if an error message is
effective, it is because a student reads it, can understand its
meaning, and can then use the information to formulate a useful
course of action. This is a three step sequence:

Read ���� Understand ���� Formulate

Students can get stuck at any of these steps. One interesting
question is whether students get stuck earlier in the sequence with
particular kinds of errors. To explore this, we would ideally like a
rubric that identifies how far a student successfully went in the
sequence when responding to a given error message. This would
suggest a rubric with at least four categories: failure-on-read,
failure-on-understand, failure-on-formulate, and fixed-the-error.
Our initial attempts to distinguish failure-on-read from failure-on-
understand were not successful (in that we could not achieve
inter-coder reliability). Our recordings of student editing sessions
lack attention-based data (such as eye-tracking) that indicate
where a student looked or reacted when an error occurred; such
data might have helped distinguish between read- and understand-
failures. We concluded that a more realistic rubric would
combine failure-on-read and failure-on-understand into a single
category separate from failure-on-formulate.

2 This paper uses “coder” exclusively as a social science term; in

particular, it does not refer to programmers.

Figure 4 presents our final rubric for assessing students’ edits.
The [UNR] and [PART] codes capture failure-on-read/understand
and failure-on-formulate, respectively. All the responses in the
sequence shown in Figure 3 were coded [UNR], for example,
since none of the edits tried to change the number of parts in the
function body position of the define, and nothing else suggested
that the student had read or understood the message.

Earlier versions of our rubric attempted to discern two nuances of
failure-on-understand: failure to understand the text as separate
from failure to understand what the message really means in
terms of the code. An error message can use simple words and
simple grammar but still be hard to understand because the
underlying problem is difficult or because the message
inadequately describes the problem. Responding to these error
messages requires students to read beyond the words and
understand that “when DrScheme says X, it really means Y”.
Figure 5 shows an example. On its face, the message contradicts
the text of the code: there definitely is a parenthesis before the
and. To understand the message, one has to realize that the
parenthesis before the and has been attributed to the cond; in the
parser’s view, the and stands on its own without a parenthesis.
Predictably, the student failed to formulate a useful response to
that message (they deleted the parenthesis before the and). Early
versions of the rubric tried to capture how often students failed to
formulate a response according to the deep meaning of the
message (what an expert would understand from the message)
because they were being misled by its literal meaning. However,
coders were not sufficiently reliable when making these
distinctions, and so the final rubric has only one code
corresponding to a failure to formulate, namely [PART].

For the remaining codes in Figure 4, [DEL] captures cases when
students simply deleted error-inducing code rather than attempting
to fix it, [DIFF] captures edits that were useful but unrelated to the
reported error (such as fixing a different error or adding more
code or test cases), and [FIX] captures successful completion of
the read/understand/formulate sequence. These codes and their
precise wordings reflect several design decisions that arose while
developing the rubric:

• The rubric should assess the performance of the error
messages, not the students. Consider a situation in which
a student’s edit corrects a problem that had nothing to do
with the original error message. While this is a positive
outcome, it does not address our primary concern of how
effective error messages are at guiding students through
the read/understand/ formulate sequence. Similarly,

students may experience difficulties with problem solving
or program design that should not be attributed to
shortcomings of the error messages. To keep our coding
focused on the error messages, we include the [DIFF] code
for reasonable edits unrelated to the proximate error.
Unreasonable edits unrelated to the proximate error are
coded [UNR]. Our first rubric design had unified [DIFF]
and [UNR]; we split them after considering when the error
message could be held accountable. Sometimes, students
simply avoid the proximate error by deleting their code
(for example, deleting a test case that yields an error). To
avoid judging the error message (as [UNR] might), we
introduced the separate [DEL] code for such cases. When
deletion is the appropriate action (such as when removing
an extra function argument) and it is performed on a
reasonable code fragment, we code it as [PART] or [FIX]
as appropriate. Together, [DIFF] and [DEL] attempt to
characterize situations in which the student’s action
provides no information about the quality of the error
message.

• Coding decisions have to be made narrowly, strictly in
relation to the proximate error described in the message.
DrScheme’s error messages always describe one particular
problem, regardless of other problems that might be
present. Fixing the problem mentioned in the message
sometimes makes the overall code worse (for example, a
student might delete an extra expression rather than add an
operator to combine it with the rest of the code).
Frequently a student's edit fixes the error mentioned, while
leaving other glaring errors in surrounding code
untouched. We nevertheless code such edits as [FIX]. The
code [FIX] does not imply mastery on the part of the
student, nor does it imply oracle-like accuracy on the part
of the message. Rather, [FIX] means that the student
formulated a reasonable response to the problem
mentioned in the message. If the student is as myopic as
the error message, but no more, they may still receive the
code [FIX]. The text “though other cringing errors might
remain” in the [FIX] case remind the coders to take this
narrow interpretation. In practice, we found that each
coder needed that reminder explicit in the rubric in order
to be self-consistent in their use of [FIX].

• Coding needs a holistic view of multi-faceted error
messages. DrScheme’s error messages have two
components: text and a highlight. In assessing whether a
student had “read” or “understood” an error message, we
had to decide whether it sufficed for students to edit within
the highlight component, even if their action showed no
evidence of considering the text component. As we
discuss in Section 6, some students come to glance first at
the highlight for a quick overview of the error; this should
be a credit to the error message, even though we have a
bias towards the text when assessing “understanding”. At
the same time, students often made random edits in the
highlighted code that were arguably unrelated to the
proximate error. We ultimately decided that location was
not sufficient justification for ascribing [PART] or [FIX].

As computer scientists, not social scientists, we sometimes found
the subjective nature of coding uncomfortable, but ultimately
more successful than decomposing all observations into purely
objective observations. For example, we accepted liberally any
evidence that the student read and understood something from the
message. In some cases, making this determination required

 [DEL] Deletes the problematic code wholesale.

 [UNR] Unrelated to the error message, and does not help.

 [DIFF] Unrelated to the error message, but it correctly

addresses a different error or makes progress in

some other way.

 [PART] Evidence that the student has understood the error

message (though perhaps not wholly) and is trying

to take an appropriate action (though perhaps not

well).

 [FIX] Fixes the proximate error (though other cringing

errors might remain).

Figure 4. Rubric for responses to error messages

human judgment or teaching experience, as was the case with the
“expect a name” example in Figure 2. Because we decided that
the student probably got the idea of inserting “name” from having
read the words “expected a name” in the message, we coded that
response [PART] rather than [UNR]. We found such subjective
decisions surprisingly consistent across the coders.

During the design process, we also ruled out ideas that failed to
survive inter-coder reliability tests or our own evaluation:

• Distinguishing [FIX] codes based on elapsed time: we
considered factoring in students’ response time by having
separate codes for “fixed with hesitation” and “fixed
without hesitation” (we have timestamp data on all edits,
and can replay editing sessions at their original pace). In
theory, errors to which students respond more slowly
might be harder for students to process. We ultimately
ruled this out for two main reasons. First, response time
could be affected by corrupting interferences (such as a
student taking a bathroom break or differences in working
styles across students). Second, we lacked a good metric
for the expected difficulty of each error message; without
that, we would not be able to identify messages that were
performing worse than expected.

• Considering whether the edit yielded a new error message
as a criterion for [FIX]: this is a corollary to our
observation about coding narrowly. In practice, we found
cases in which the student really did fix the error, but had
code of such a form that the same error applied after the
edit. We chose to ignore this criterion in final coding.

The rubric as shown in Figure 4 meets standards of inter-coder
reliability on the data from Lab #1. We used the standard metric
of inter-coder reliability [5], κ, which is defined as

κ � Agreement
 Expected Agreement
1
 Expected Agreement

κ compares the agreement of the human coders to the agreement
that would be expected by chance according to the marginal
probabilities. Because of this, it is a more demanding metric than
the simple proportions of the number of times the coders agreed.
Values of κ usually lie within 1.0 (meaning perfect agreement)
and 0.0 (meaning agreement exactly as good as would be
expected by chance), but values of κ can be negative if the human
coders perform worse than chance. We executed a test of inter-
coder reliability on each version of the rubric. The final version of
the rubric (the one shown in Figure 4) was the first version which
met the κ > 0.8 standard, with κ = 0.84 on 18 different responses.

5. APPLYING THE RUBRIC
Our rubric is designed to identify specific error messages that are
problematic for students. Given that many error messages are
variations on the same underlying problem, however, we found it
more effective to consider messages in thematically-related
categories, such as “parenthesis matching”, “syntax of define”,
and “syntax of cond”. The six categories shown in the leftmost
column of Table 1 cover 423 of the 466 error messages presented
to students during Lab #1.3 Appendix B lists the specific messages
that comprise each category. The second column shows the
number of times students saw an error message of that category.
The third column shows the number of those responses that we
coded; the samples were chosen randomly from responses that
contained at least one keystroke (as opposed to cases in which the
student simply ran the program again with no edit to their
program). The five columns to the right of the vertical line show
how many samples fell under each rubric code. When running the
data samples to ascribe codes, we used Köksal’s edit-replay
software [20]. The Fixed column to the left of the vertical line
attempts to measure the effectiveness of errors in each category.
This number is not simply the ratio of the “FIX” column to the
“Number coded” column. That computation would be misleading
in two ways: first, [DEL] and [DIFF] codes should not count
against the effectiveness of a message; second, it does not account
for differences in how often students attempt to run their
programs. Figure 6 shows the histogram of run attempts in the

3 All errors in Table 1 are syntax errors in BSL. The remaining

errors consisted of 24 run-time errors, 7 syntax errors caused by

illegal characters (periods, commas, hash marks and such), 7

caused by the ordering of definitions, 4 regarding the syntax of

if (which is not taught in the course), and 1 duplicate

definition.

Table 1. Coding results for Lab #1

Category

Number

presented

Number

coded Fixed DEL UNR DIFF PART FIX

paren. matching 129 26 76% 0 3 1 3 19

unbound id. 73 33 84% 1 3 2 2 25

syntax / define 73 32 50% 2 11 4 4 11

syntax / func. call 63 29 36% 1 10 2 7 9

syntax / cond 61 31 49% 2 12 0 4 13

arg. count 24 21 52% 1 5 0 8 7

(define (label-near? name bias word1 word2 word3)

 (cond

 (and (cond [(string=? name word1) "Name Located"]

 [(string=? bias word1) "Bias Located"])

 (cond [(string=? name word2) "Name Located"]

 [(string=? bias word2) "Bias Located"])

 "Mark")

))

 and: found a use of `and' that does not follow an

open parenthesis

Figure 5. A counterfactual error message

Figure 6. Histograms, Lab #1 (50 minutes)

5 15 25 35 45 55

fewer runs ���� ���� more runs

18 students

Histogram of runs attempted

5 15 25 35 45 55

fewer errors ���� ���� more errors

20 students

Histogram of errors received

dataset; note its long right-tail. The mode is 15 to 20 attempts,
with 18 students in this histogram bucket. This corresponds to
about one attempt every 3 minutes. We avoid undue influence of
frequent runs by first computing the ratio of [FIX] against the
denominator ����� � ������ � ����� per individual student.
Specifically, for student s and category c, we compute:

��,! � �����
����� � ������ � �����

Then we take the unweighted average across the n students who
are represented in the selected samples:

�! � "# ��,!$ n%

The column Fixed shows the �! 's.

The data in the Fixed column show some clear trends. Error
messages pertaining to unbound identifiers were easy to fix
(84%), which is no surprise since most of them arise from simple
typos. Parenthesis-matching errors were also relatively easy
(76%), especially when compared to the errors pertaining to the
syntax of define, function calls, and conditionals. Removing (or
adding) the right number of parentheses is not as hard as choosing
which ones to remove. Even though Scheme is often chosen as the
programming language for introductory courses because of its
simple syntax, students still struggle with that syntax. We saw
many editing sequences in which students struggled to manipulate
the parentheses so that their expressions ended up in the right
syntactic locations.

These results support our claim that even in a project that has
spent significant design effort in getting error messages right,
formal human-factors studies are a critical component. Implicitly,
the results emphasize the challenge in textually describing syntax
errors to students with a shaky command of the grammar at hand.
Figuring out how to do this effectively is a promising open
research question.

While the data illustrate where students are having difficulties
with the error messages, they do not suggest concrete changes to
DrScheme’s error message design. For that, we turn to
observations from our one-on-one interviews with students.

6. SEMANTICS OF THE HIGHLIGHT
Whenever DrScheme presents an error message, it highlights at
least one fragment of code that is pertinent to the error message.
In contrast to the more common combination of line number and
column number provided by many compilers, highlights are
presumed clearer for beginners and less likely to be ignored.

Our interviews with students hinted that their interaction with the
highlight is less straightforward than we thought. The following
exchanges were eye-opening. We asked the students about the
meaning that they attribute to the highlight, and received similar
answers from three of them.

Interviewer: When you get these highlights, what do
they mean to you?

Student #1: The problem is between here and here,
fix the problem between these two bars.

Interviewer: You were saying that you pattern match
on the highlight and don't read the
messages at all.

Student #2: I think that in the beginning it was more
true, because the highlight were more or

less “this is what's wrong,” so when I
was a beginning programmer that's
what I saw and that's what I would try to

fix.

Interviewer: When DrScheme highlights something,
what does it highlight?

Student #3: It highlights where the error occurred.

Interviewer: Do you usually look for fixes inside the
highlight?

Student #3: mmm… I think I did at the beginning.

In retrospect, it makes sense. DrScheme never explicates the
meaning of its highlight; students are on their own to deduce what
DrScheme might mean. In fact, the semantics of the highlight
varies across error messages. By manual inspection, we have
found five different meanings for DrScheme’s highlights,
depending on the error message:

1. This expression contains the error

2. The parser did not expect to find this

3. The parser expected to see something after this, but nothing
is there

4. This parenthesis is unmatched

5. This expression is inconsistent with another part of the code

The students’ interpretation of “edit here” applies in at most two
of these cases: the first and the fifth (though the correct edit for
the fifth is often in the other half of the inconsistency). In the
second case, the student must edit around the highlighted code,
perhaps to combine it with another expression. In the third case,
the student may need to add code to the right of the highlight or
adjust parentheses to change the number of expressions within the
surrounding constructs.

Interestingly, highlights do provide visually distinctive patterns
that distinguish certain classes of errors. Mismatched-parenthesis
errors highlight a single parenthesis. Unbound-identifier errors
highlight a single identifier. Students quickly learn the
highlighting semantics of these patterns. Lacking distinctive
patterns for the other cases, however, students default to the
(entirely reasonable) “edit here” interpretation. This is consistent
with students treating DrScheme as an authoritative oracle about
the errors in their programs.

During the interviews we observed multiple patterns of behavior
that can be attributed to the students’ confusion about the meaning
of the highlight.

• In the case of inconsistency between a definition and its
use, DrScheme only highlights one of the two halves of
the problem, typically the use location. Students had
greater difficulty fixing these errors if a correction was
needed in the non-highlighted half of the inconsistency.
The highlight had an over-focusing effect, blinding the
students to the possibility that the problem lay in the other
half.

• Students often look for a recommended course of action in
the wording of the error message. For instance, once the
error message mentions a missing part, students feel
prompted to provide the missing part, though this might
not be the correct fix. This was the case in Figure 2, where
the student took the expression “expected a name” to mean
“insert ‘name’ here”, while the actual fix was to add a
parenthesis. Students who follow the advice of the error
risk adding further erroneous code to their already broken
program. Highlighting the location of the missing part
seems to strengthen this prompting effect, since students
guess that these highlights mean “add something here”.

• Once students recognize the visually-distinctive patterns
described earlier, they seem to develop the habit of
looking at the highlighting first to see if they recognize the
error before consulting the text. This puts additional
responsibility on the highlighting mechanism.

Most students grow out of these patterns of behavior as they
progress into the course and gain more familiarity with the error
messages. But even as they do, their original model still
influences their approach. The best student we interviewed had
learned to avoid the over-focusing effect, and would look around
the highlight for possible causes of the problem. This led to the
following exchange:

Interviewer: Which one was more useful, the

highlight or the message?

Student #2: mmm… I would say the message.

Because then highlight was redirecting
me to here, but it didn't see anything
blatantly wrong here. So I read the error

message, which said that it expected five
arguments instead of four, so then I
looked over here.

Interviewer: Would you say the highlight was
misleading?

Student #2: Yeah. Because it didn't bring me directly
to the source.

A fix was found outside the highlight, but the student described
the highlight as wrong, suggesting that the student maintained a
perception that the intended semantic of the highlight was “the
bug is here”. The student had simply developed some skepticism
about the accuracy of the oracle.

Attempting to explain the different highlighting semantics to
students in their first week of programming is challenging. Each
interpretation has a semantics in terms of the processes that detect
errors (parsing and run-time checking). However, CS1 students do
not have knowledge necessary to make sense of this
interpretation, and they surely cannot be expected to deduce it
from their observation of DrScheme's behavior. Without a
systematic way of understanding the messages given to them,
students learn that programming is a discipline of haphazard
guessing―the very reverse of our teaching objective.

Programming texts frequently present formal grammars (through
syntax diagrams [35] or textual BNF) to help explain language
syntax; some include exercises on deciphering text through
grammar rules [2]. Unfortunately, the highlighting is undermining
this effort by describing syntax rejection in terms of a different
process (parsing) that the students have not been taught, and
which they cannot be expected to understand at this early stage of
their computing education.

7. VOCABULARY
DrScheme’s error messages use precise technical vocabulary to
describe the problem and to refer to the parts of the code that are
involved in the error. Table 2 shows the 15 technical vocabulary
words in the 90th-percentile of the most frequently-presented error
messages over our entire data set (not just Lab #1).

When we reviewed the text of the error messages, we found that
DrScheme is mostly accurate and consistent in its usage of its
technical vocabulary. Yet, throughout all four interviews, we
noticed that the students had only a weak command of that
vocabulary. When describing code, the students misused words,
or used long and inaccurate phrases instead of using the
corresponding precise technical word. This was perplexing, since
the interviews occurred after the students had spent 4 to 6 weeks
reading these technical words in the error messages. Plus, some
exchanges during the interview suggested that the students' poor
command of the vocabulary undermined their ability to respond to
the messages.

What the student wrote:

(define (label-near2? label name word-1

 word-2 word-3))

What DrScheme Says:

define: expected an expression for the function body, but

nothing's there.

What the Student Sees:

define: expected only one rigmarole for the blah's foo, but
nothing's there.

Figure 7. Message vs perception

Table 2. Vocabulary words

Primitive name

Procedure

Primitive operator

Field name

Procedure application

Predicate

Defined name

Type name

Identifier

Function body

Function header

Argument

Clause

Expression

Selector

The following exchange happened after the student had
and a half minutes trying to formulate a response to the error
message shown in Figure 7. After observing that the student was
not making progress, the interviewer decided to provide a hint.

Interviewer: The error message says “the function
body.” Do you know what “function
body” means?

Student: Nah… The input? Everything
as a piece of input?

Interviewer: Actually, it's this. When DrScheme says
“function body” it means this part.

Student: Oh man! I didn't…

The student then proceeded to fix the error successfully
the student, it was sufficient to provide a non
meaning for the expression “function body”, by pointing
function body of a different function.

To measure students’ command of the vocabulary, we developed
a short quiz that asked them to circle instances of
words from Table 2 in a simple piece of code.
contains one version of this quiz. We administe
three different universities: WPI, Brown, and Northeastern
received 90, 32, and 41 responses respectively.
university, students had used DrScheme for at least a couple of
months before taking the quiz.

The results are roughly similar across all three universities (see
Figure 8). Some words are harder than others
data are slightly stronger, while WPI’s are slightly weaker. More
importantly, only four words were correctly identified by more
than 50% of the students. These results do not necessarily imply
that vocabulary underlies students’ difficulties responding to
errors; students could have conceptual understanding of the
messages without the declarative understanding of the vocabulary.

Figure 8. Average percent correct per word

on the vocabulary quiz

The following exchange happened after the student had spent two
trying to formulate a response to the error

. After observing that the student was
to provide a hint.

The error message says “the function
Do you know what “function

verything that serves

Actually, it's this. When DrScheme says
it means this part.

to fix the error successfully. To help
the student, it was sufficient to provide a non-definitional

, by pointing at the

To measure students’ command of the vocabulary, we developed
of five vocabulary

piece of code. Appendix A
contains one version of this quiz. We administered the quiz at

Northeastern. We
received 90, 32, and 41 responses respectively. At each

for at least a couple of

The results are roughly similar across all three universities (see
s. Northeastern’s

slightly weaker. More
were correctly identified by more

hese results do not necessarily imply
that vocabulary underlies students’ difficulties responding to

; students could have conceptual understanding of the
eclarative understanding of the vocabulary.

Nonetheless, these results question whether students are able
make sense of the error messages
anonymous, we were not able to correlate quiz performance to our
coding data on the recorded editing sessions.

We asked the professors which of the terms from Table 2
used in class to describe code. Table 3
Whenever a word used by DrScheme was not used in class, the
professors either elected to use a different wor
was not necessary to introduce the concept in class. For instance,
the two professors who did not use the term
term “function” instead.

Studies frequently use control groups to quantify the effect of an
intervention. While we did not create control groups around the
usage of terms in class, by happenstance 11 of the 15 words were
used at some universities but not others. These words formed
controlled trials (a technical term), in which
quantify the effect of a word being used in class on the students'
understanding of that word. To help factor out the effect of
uninteresting variability, namely the variability in university
strengths and in word difficulty, we fitted a linear model to the
data. The model had 17 variables total. The first 14 variables were
configured to each capture the intrinsic difficulty of one word,
relative to a fixed 15th word, the next two variables were
configured to capture relative university strength. The last
variable was set to capture the influence of a word's use in class.
The fit on this last variable indicated that using a word in class
raises its quiz score by 13.8% (95% confidence inte
24.7%), a result which is statistically significant at the 0.05
(p=0.0147).

These results raise many interesting research questions

• We know that students struggle to respond to error
messages. Can we quantify the extent by which this is
caused by their poor command of the vocabulary?

 Brown

Function body

Expression �

Type name

Argument �

Identifier �

Procedure �

Primitive operator �

Procedure

application

�

Selector �

Field name

Function header

Predicate �

Primitive name �

Defined name

Clause �

���� = Used in Class

Table 3. In-class word use

nt correct per word

whether students are able to
make sense of the error messages. As the quizzes were
anonymous, we were not able to correlate quiz performance to our

editing sessions.

of the terms from Table 2 they had
le 3 presents their answers.

Whenever a word used by DrScheme was not used in class, the
s either elected to use a different word or simply found it

was not necessary to introduce the concept in class. For instance,
s who did not use the term “procedure” used the

Studies frequently use control groups to quantify the effect of an
on. While we did not create control groups around the

usage of terms in class, by happenstance 11 of the 15 words were
used at some universities but not others. These words formed
controlled trials (a technical term), in which it was possible to

the effect of a word being used in class on the students'
understanding of that word. To help factor out the effect of
uninteresting variability, namely the variability in university
strengths and in word difficulty, we fitted a linear model to the

The model had 17 variables total. The first 14 variables were
configured to each capture the intrinsic difficulty of one word,

word, the next two variables were
configured to capture relative university strength. The last

was set to capture the influence of a word's use in class.
The fit on this last variable indicated that using a word in class

% (95% confidence interval, 2.93% to
, a result which is statistically significant at the 0.05 level

These results raise many interesting research questions:

We know that students struggle to respond to error
messages. Can we quantify the extent by which this is
caused by their poor command of the vocabulary?

 NEU WPI

� �

� �

 �

� �

 �

�

� �

�

� �

�

 �

� �

class word use

• Using a word in class raises the students' understanding of
the word relatively little. How are they learning the
vocabulary, then? If they are learning it by reading error
messages that they do not understand well, what are they
learning?

• Some error messages make statements where ev
words are used in a technical sense, such as
or “parenthesis” (which DrScheme sometime uses to refer
to a square bracket, since the parser considers them
equivalent). Are these words a problem as well?

The results also raise pedagogic questions about good approaches
to teach the technical vocabulary of programming. Should
courses use specialized vocabulary training tutors
[28])? Lecture time is limited, as are homework contact hours
could the error messages help teach the vocabulary?

All three professors agreed that the mismatch between their
vocabulary usage and DrScheme's was contrary to their efforts to
use consistent language in class. Moreover, once the iss
pointed out to them, they all agreed that adjustments were needed.
In general, we suspect professors tend to forget about the content
of errors and other IDE feedback when designing lectures; the
connection between curricula and IDEs needs to be ti

8. RECOMMENDATIONS
The results presented in Sections 5 through 7 point to three broad
issues: students’ difficulties working with syntax in the first week
of class, inconsistent semantics of highlighting, and s
command of the vocabulary used in the error messages. In
recommending solutions, we considered three key principles

• Many developers contribute to DrScheme.
message conventions need to be easy for multiple
developers to follow.

• Error messages should not propose solutions.
though some errors have likely fixes (missing close
parentheses in particular places, for example), those
fixes will not cover all cases. Given students’
tendencies to view DrScheme as an oracle, proposed
solutions could lead them down the wrong path
error systems designed for experts sometimes follow
this principle [8]. This principle directly contradicts
requests of the students we interviewed, w
learned common fixes to common errors
the messages to propose corrections.

Figure 9. Colored-coded error message

the students' understanding of
the word relatively little. How are they learning the
vocabulary, then? If they are learning it by reading error
messages that they do not understand well, what are they

make statements where everyday
words are used in a technical sense, such as “indentation”

(which DrScheme sometime uses to refer
the parser considers them

). Are these words a problem as well?

questions about good approaches
to teach the technical vocabulary of programming. Should

lary training tutors (such as FaCT
ework contact hours;

vocabulary?

mismatch between their
vocabulary usage and DrScheme's was contrary to their efforts to
use consistent language in class. Moreover, once the issue was
pointed out to them, they all agreed that adjustments were needed.
In general, we suspect professors tend to forget about the content
of errors and other IDE feedback when designing lectures; the
connection between curricula and IDEs needs to be tighter.

The results presented in Sections 5 through 7 point to three broad
issues: students’ difficulties working with syntax in the first week
of class, inconsistent semantics of highlighting, and students’ poor
command of the vocabulary used in the error messages. In

three key principles:

Many developers contribute to DrScheme. Error-
message conventions need to be easy for multiple

messages should not propose solutions. Even
though some errors have likely fixes (missing close
parentheses in particular places, for example), those
fixes will not cover all cases. Given students’
tendencies to view DrScheme as an oracle, proposed

ions could lead them down the wrong path; even
error systems designed for experts sometimes follow

. This principle directly contradicts
requests of the students we interviewed, who had
learned common fixes to common errors and wanted

• Error messages should not prompt students towards
incorrect edits. This is related to, yet distinct from, the
previous principle.

The first is particularly pertinent to addressing problems with the
highlighting semantics. One could propose changing the color of
the highlight based on its semantics. This would violate the first
constraint, as it requires developers to interpret those semantics
(additional problems make the proposal a poor choice). The
second warns against proposing corrections to syntax errors. The
third reminds us to carefully consider how students might
interpret a highlight.

With these principles in hand, we have three recommendations:

Simplify the vocabulary in the error messages
messages often try too hard to be thorough, such as
between selectors and predicates in error messages that expect
functions. The semantic distinctions between these terms are
irrelevant to students, particularly in the early weeks. We have
simplified the terminology in Beginner Language messages and
will be testing it on students in the fall. If this simplification is
effective, the DrScheme developers may want to consider
breaking Beginner Language into sublanguages based on error
terminology, in addition to provided constructs.

Help students match terms in error messages to code
fragments. Error messages contain many definite
such as “the function body” or “found one
instructors, we often help students by connecting these
to the corresponding pieces of code. Sometimes, DrScheme’s
highlighting achieves this effect, too (as with unbound identifiers
or unmatched parentheses). However, message
multiple terms, while DrScheme currently highlights only one
code fragment.

Treat error messages as an integral part of course design
IDE developers should apply the common curricular concerns of
consistency, complexity and learning curv
messages. Professors must ensure their curriculum aligns with the
content of the error messages, just like math professors ensure
their notation matches that of the textbook.

The second recommendation suggests a new presentation
messages: highlight every definite reference
Figure 9 shows a preliminary mockup of this idea. Each definite
reference in the message uses color to point to a specific code
fragment (colors are outlined with different lin
and-white viewing). This design has several benefits: it resolves
the ambiguity about highlighting (since highlights correspond
exactly to terms in the message), it eliminates ambiguous
references (as seen in Figure 2), and it gives stu
learn the vocabulary by example (in Figure 9, the meaning of the
word “clause”). This design naturally highlights both the
definition and the use on an inconsistency error (since both are
referred to by the text of the error messages), w
triggering the over-focusing behavior we observed.
versions of this design heavily influenced our stated principles.
For example, we briefly considered highlighting indefinite
references (such as “question” in Figure 9
violated the third principle. We are currently refining this design
with intent to deploy it experimentally next year.

coded error message

Error messages should not prompt students towards
incorrect edits. This is related to, yet distinct from, the

nent to addressing problems with the
highlighting semantics. One could propose changing the color of

semantics. This would violate the first
constraint, as it requires developers to interpret those semantics

s make the proposal a poor choice). The
second warns against proposing corrections to syntax errors. The

reminds us to carefully consider how students might

With these principles in hand, we have three recommendations:

fy the vocabulary in the error messages. DrScheme’s
messages often try too hard to be thorough, such as distinguishing
between selectors and predicates in error messages that expect

The semantic distinctions between these terms are often
, particularly in the early weeks. We have

simplified the terminology in Beginner Language messages and
will be testing it on students in the fall. If this simplification is
effective, the DrScheme developers may want to consider

Beginner Language into sublanguages based on error
terminology, in addition to provided constructs.

Help students match terms in error messages to code
Error messages contain many definite references,

found one extra part”. As
instructors, we often help students by connecting these references
to the corresponding pieces of code. Sometimes, DrScheme’s

(as with unbound identifiers
or unmatched parentheses). However, messages often contain
multiple terms, while DrScheme currently highlights only one

an integral part of course design.
IDE developers should apply the common curricular concerns of
consistency, complexity and learning curves to the design of error
messages. Professors must ensure their curriculum aligns with the
content of the error messages, just like math professors ensure
their notation matches that of the textbook.

The second recommendation suggests a new presentation for error
reference with a distinct color.

Figure 9 shows a preliminary mockup of this idea. Each definite
reference in the message uses color to point to a specific code

(colors are outlined with different line styles for black-
. This design has several benefits: it resolves

about highlighting (since highlights correspond
exactly to terms in the message), it eliminates ambiguous
references (as seen in Figure 2), and it gives students a chance to
learn the vocabulary by example (in Figure 9, the meaning of the
word “clause”). This design naturally highlights both the
definition and the use on an inconsistency error (since both are
referred to by the text of the error messages), which should avoid

focusing behavior we observed. Early
versions of this design heavily influenced our stated principles.
For example, we briefly considered highlighting indefinite

Figure 9) until we realized it
We are currently refining this design

with intent to deploy it experimentally next year.

In addition, we intend to develop vocabulary conventions for
talking about Beginner Student Language code. This convention
will cover both the needs of the error messages and the needs of
educators. The convention document will help maintain
consistency across all the authors of libraries intended to be used
in BSL, as well as between the classroom and the error messages.

Our recommendations about color-coded highlights and consistent
vocabulary are not specific to Scheme. They should apply just as
well in any other programming language used for teaching,
including those with graphical syntaxes, to the extent that they
have error messages.

9. RELATED WORK
The principles of HCI frame general discussions on the design of
pedagogic programming languages [27], as well as on the design
of error messages specifically [33]. These reflections informed
our work.

Alice [23] and BlueJ [13] are two widely used pedagogic IDEs.
Both environments show students the error messages generated by
full-fledged Java compilers. In independent evaluations involving
interviews with students, the difficulty of interpreting the error
messages fared amongst the students' primary complaints [13]
[31]. These difficulties have led professors to develop
supplemental material simply to teach students how to understand
the error messages [1]. One evaluation of BlueJ asked the students
whether they found the messages useful [34]. Most did, but it is
unclear what this means, given that they were not offered an
alternative. The students we interviewed were similarly
appreciative of the error messages of DrScheme, despite their
struggles to respond to them. That said, our study shows that
DrScheme’s errors are still a long way from helping the students,
and other recent work [7] also presents evidence of this.

There are still relatively few efforts to evaluate the learning
impact of pedagogic IDEs [29]. Gross and Powers survey recent
efforts [12], including, notably, those on Lego mindstorms [9] and
on Jeliot 2000 [22]. Unlike these other evaluations, we did not
evaluate the impact of the IDE as a whole. Rather, we attempted
to tease out the effect of individual components.

A number of different groups have tried to rewrite the error
messages of professional Java compilers to be more suitable for
beginners. The rewritten error messages of the Gauntlet project
[11], which have a humorously combative tone, explain errors and
provide guidance. The design was not driven by any observational
study; a follow-up study discovered that Gauntlet was not
addressing the most common error messages [17]. The Karel++
IDE adds a spellchecker [3], and STLFilt rewrites the error
messages of C++; neither has been evaluated formally [36].

Early work on the pedagogy of programming sought to classify
the errors novice programmers make when using assembly [4] or
Pascal [32]. More recent work along the same lines studies BlueJ
[30] [18], Gauntlet [17] Eiffel [25], and Helium [14]. Others have
studied novices’ behavior during programming sessions. This
brought insight on novices’ debugging strategies [24], cognitive
inclination [19], and development processes [20]. Our work
differs in not studying the students' behavior in isolation; rather,
we focus on how the error messages influence the students'
behavior.

Coull [6], as well as Lane and VanLehn [21] have also defined
subjective rubrics, though they evaluate the students’
programming sessions rather than the success of individual error
messages. In addition, vocabulary and highlighting were not in the
range of considered factors affecting student responses to errors.
Coull also added explanatory notes to the error messages of the
standard Java compiler based on their observations. These notes
made experimental subjects significantly more likely to achieve
an ideal solution to short exercises.

Nienaltowski et al. [26] compared the impact of adding long-form
explanation to an error message, and of adding a highlight on
three different error messages, in a short web-based experiment.
They found that the former has no impact, while the later impairs
performance slightly. Unfortunately, the experiment’s design has
many threats to validity, some of which the paper acknowledged.

10. ACKNOWLEDGMENTS
Fatih Köksal generously provided his recording and playback

software. Nate Krach, Janice Gobert, and Ryan S. de Baker

offered extensive advice about social science methodology,

analysis, and study design. Tamara Munzner discussed study

design and provided useful references. Jesse Tov, Glynis Hamel,

and Amy Greenwald generously gave class time and followup

information for our vocabulary quiz. Matthias Felleisen offered

valuable discussion and comments on an early version of the

paper. Several U.S. National Science Foundation grants

supported the research leading up to and including this project.

11. REFERENCES
[1] Ben-Ari, M.M. 2007. Compile and Runtime Errors in Java.

http://stwww.weizmann.ac.il/g-cs/benari/oop/errors.pdf,

accessed June 15, 2010.

[2] Bloch, S. Picturing Programs. College Publications

(publication pending).

[3] Burrell, C. and Melchert, M. 2007. Augmenting compiler error

reporting in the Karel++ microworld. Proceedings of the

Conference of the National Advisory Committee on

Computing Qualifications (2007), 41–46.

[4] Chabert, J.M. and Higginbotham, T.F. 1976. An Investigation

of Novice Programmer Errors in IBM 370 (OS) Assembly

Language. Proceedings of the ACM Southeast Regional

Conference (1976), 319-323.

[5] Cohen, J. 1960. A coefficient of agreement for nominal scales.

Educational and Psychological Measurement. 20, 1 (1960),

37–46.

[6] Coull, N.J. 2008. SNOOPIE: development of a learning

support tool for novice programmers within a conceptual

framework. PhD Thesis, School of Computer Science,

University Of St. Andrews.

[7] Crestani, M. and Sperber, M. 2010. Experience Report:

Growing Programming Languages for Beginning Students.

Proceedings of the International Conference on Functional

Programming (2010).

[8] Culpepper, R. and Felleisen, M. 2010. Fortifying Macros.

Proceedings of the International Conference on Functional

Programming (2010).

[9] Fagin, B.S. and Merkle, L. 2002. Quantitative analysis of the

effects of robots on introductory Computer Science

education. Journal on Educational Resources in Computing.

2, 4 (2002), 1-18.

[10] Findler, R.B., Clements, J., et al. 2002. DrScheme: A

programming environment for Scheme. Journal of Functional

Programming. 12, 02 (2002), 159–182.

[11] Flowers, T., Carver, C., et al. 2004. Empowering students

and building confidence in novice programmers through

Gauntlet. Frontiers in Education. 1, (2004), T3H/10 -

T3H/13.

[12] Gross, P. and Powers, K. 2005. Evaluating assessments of

novice programming environments. Proceedings of the

International Workshop on Computing Education Research.

(2005), 99-110.

[13] Hagan, D. and Markham, S. 2000. Teaching Java with the

BlueJ environment. Proceedings of Australasian Society for

Computers in Learning in Tertiary Education Conference

(2000).

[14] Hage, J. and Keeken, P.V. Mining Helium programs with

Neon. Technical Report, Department of Information and

Computing Sciences, Utrecht University.

[15] Holt, R.C., Wortman, D.B., et al. 1977. SP/k: a system for

teaching computer programming. Communications of the

ACM. 20, 5 (1977), 301–309.

[16] Hristova, M., Misra, A., et al. 2003. Identifying and

correcting Java programming errors for introductory

computer science students. Proceedings of the Symposium on

Computer Science Education (2003), 153–156.

[17] Jackson, J., Cobb, M., et al. 2005. Identifying top Java errors

for novice programmers. Proceedings of the Frontiers in

Education Conference (2005), T4C–24.

[18] Jadud, M.C. 2005. A First Look at Novice Compilation

Behaviour Using BlueJ. Computer Science Education. 15, 1

(2005), 25–40.

[19] Jadud, M.C. 2006. Methods and tools for exploring novice

compilation behaviour. Proceedings of the International

Workshop on Computing Education Research (2006), 73–84.

[20] Köksal, M.F., Başar, R.E., et al. 2009. Screen-Replay: A

Session Recording and Analysis Tool for DrScheme.

Proceedings of the Scheme and Functional Programming

Workshop, Technical Report, California Polytechnic State

University, CPSLO-CSC-09-03 (2009), 103-110.

[21] Lane, H.C. and VanLehn, K. 2005. Intention-based scoring:

An approach to measuring success at solving the composition

problem. ACM SIGCSE Bulletin. 37, 1 (2005), 373-377.

[22] Levy, R.B., Ben-Ari, M., et al. 2003. The Jeliot 2000

program animation system. Computers & Education. 40, 1

(2003), 1-15.

[23] Moskal, B., Lurie, D., et al. 2004. Evaluating the

effectiveness of a new instructional approach. Proceedings of

the Symposium on Computer Science Education. 35, (2004),

75-79.

[24] Murphy, L., Lewandowski, G., et al. 2008. Debugging: the

good, the bad, and the quirky — a qualitative analysis of

novices' strategies. ACM SIGCSE Bulletin. 40, 1 (2008), 163-

167.

[25] Ng Cheong Vee, M., Mannock, K., et al. 2006. Empirical

study of novice errors and error paths in object-oriented

programming. Proceedings of the Conference of the Higher

Education Academy, Subject Centre for Information and

Computer Sciences (2006), 54-58.

[26] Nienaltowski, M., Pedroni, M., et al. 2008. Compiler Error

Messages: What Can Help Novices? Proceedings of the

Technical Symposium on Computer Science Education. 39,

(2008), 168-172.

[27] Pane, J., Myers, B.A., et al. 2002. Using HCI Techniques to

Design a More Usable Programming System. Proceedings of

the Symposia on Human Centric Computing Languages and

Environments (2002), 198-206.

[28] Pavlik, P.I., Presson, N., et al. 2007. The FaCT (fact and

concept) system: A new tool linking cognitive science with

educators. Proceedings of the Conference of the Cognitive

Science Society (2007), 397-402.

[29] Pears, A., Seidman, S., et al. 2007. A survey of literature on

the teaching of introductory programming. ACM SIGCSE

Bulletin. 39, 4 (2007), 204-223.

[30] Ragonis, N. and Ben-Ari, M. 2005. On understanding the

statics and dynamics of object-oriented programs. ACM

SIGCSE Bulletin. 37, 1 (2005), 226-230.

[31] Rey, J.S. 2009. From Alice to BlueJ: a transition to Java.

Master's thesis, School of Computing, Robert Gordon

University.

[32] Spohrer, J.C. and Soloway, E. 1986. Novice mistakes: are the

folk wisdoms correct? Communications of the ACM. 29, 7

(1986).

[33] Traver, V.J. 2010. On compiler error messages: what they

say and what they mean. Technical Report, Computer

Languages and Systems Department, Jaume-I University

(2010).

[34] Van Haaster, K. and Hagan, D. 2004. Teaching and Learning

with BlueJ: an Evaluation of a Pedagogical Tool. Information

Science + Information Technology Education Joint

Conference (2004).

[35] Wirth, N. 1971. The Programming Language Pascal. Acta

Informatica. 1, (1971), 35-63.

[36] Zolman, L. 2005. STLFilt: An STL error message decryptor

for C++. http://www.bdsoft.com/tools/stlfilt.html, accessed

June 10, 2010 (2005).

12. APPENDIX A — VOCABULARY QUIZ

Circle one instance of each vocabulary term on the code below. Label each circle with the question number. For example, the circle labeled Q0Q0Q0Q0 is an
instance of the term “Return Type”.

If you do not know what a term means, write a big “X” on it (in the left column). The right column gives examples of each term as used in
DrScheme’s error messages. The errors are irrelevant otherwise.

Vocabulary term Sample usage

Q1. Argument >: expects at least 2 arguments, given 1

Q2. Selector this selector expects 1 argument, here it is provided 0 arguments

Q3. Procedure this procedure expects 2 arguments, here it is provided 0 arguments

Q4. Expression expected at least two expressions after `and', but found only one expression

Q5. Predicate this predicate expects 1 argument, here it is provided 2 arguments

;; (make-book number string string number number bst bst)

(define-struct book (isbn title author year copies left right))

;; this-edition?: bst number number -> boolean

;; Consumes a binary search tree, an ISBN number, and a year, and produces true

;; if the book with the given ISBN number was published in the given year

(define (this-edition? a-bst isbn-num year)

 (cond [(symbol? a-bst) false]

 [(book? a-bst)

 (cond [(= isbn-num (book-isbn a-bst))

 (= year (book-year a-bst))]

 [(< isbn-num (book-isbn a-bst))

 (this-edition? (book-left a-bst) isbn-num year)]

 [else (this-edition? (book-right a-bst) isbn-num year)])]))

Q0Q0Q0Q0

13. APPENDIX B — ERROR MESSAGE DETAILS FOR TABLE 1

Read:

 read: bad syntax `#1\n'

 read: expected a closing '\"'; newline within string suggests a missing '\"' on line 20

 read: illegal use of \".\"

 read: illegal use of backquote

 read: illegal use of comma

Definitions / duplicate:

 babel: this name was defined previously and cannot be re-defined

Definitions / ordering:

 "reference to an identifier before its definition: liberal

Unbound id.:

 "~a: name is not defined, not a parameter, and not a primitive name

Argument count:

 and: expected at least two expressions after `and', but found only one expression

 check-expect: check-expect requires two expressions. Try (check-expect test expected).

 ~a: this procedure expects 3 arguments, here it is provided 1 argument

 or: expected at least two expressions after `or', but found only one expression

 string?: expects 1 argument, given 2: \"bob\" \"m\"

Syntax / function call:

 =: this primitive operator must be applied to arguments; expected an open parenthesis before the primitive operator name

 and: found a use of `and' that does not follow an open parenthesis

 cond: found a use of `cond' that does not follow an open parenthesis

 function call: expected a defined name or a primitive operation name after an open parenthesis, but found a function argument name

 function call: expected a defined name or a primitive operation name after an open parenthesis, but found a number

 function call: expected a defined name or a primitive operation name after an open parenthesis, but found something else

 function call: expected a defined name or a primitive operation name after an open parenthesis, but nothing's there

 or: found a use of `or' that does not follow an open parenthesis

 political-label: this is a procedure, so it must be applied to arguments (which requires using a parenthesis before the name)

 string-one-of?: this is a procedure, so it must be applied to arguments (which requires using a parenthesis before the name)

 string=?: this primitive operator must be applied to arguments; expected an open parenthesis before the primitive operator name

 string?: this primitive operator must be applied to arguments; expected an open parenthesis before the primitive operator name

 word01: this is a procedure, so it must be applied to arguments (which requires using a parenthesis before the name)

Parenthesis matching:

 read: expected `)' to close `(' on line 19, found instead `]'; indentation suggests a missing `)' before line 20

 read: expected `)' to close `(' on line 31, found instead `]'

 read: expected `)' to close preceding `(', found instead `]'

 read: expected a `)' to close `('

 read: expected a `)' to close `('; indentation suggests a missing `]' before line 20

 read: expected a `]' to close `['

 read: expected a `]' to close `['; indentation suggests a missing `)' before line 20

 read: missing `)' to close `(' on line 20, found instead `]'

 read: missing `)' to close `(' on line 39, found instead `]'; indentation suggests a missing `)' before line 41

 read: missing `)' to close preceding `(', found instead `]'

 read: missing `)' to close preceding `(', found instead `]'; indentation suggests a missing `)' before line 20

 read: missing `]' to close `[' on line 21, found instead `)'; indentation suggests a missing `)' before line 22

 read: missing `]' to close `[' on line 33, found instead `)'

 read: missing `]' to close preceding `[', found instead `)'

 read: missing `]' to close preceding `[', found instead `)'; indentation suggests a missing `)' before line 27

 read: unexpected `)'

 read: unexpected `]'"))

Syntax / if:

 if: expected one question expression and two answer expressions, but found 1 expression

 if: expected one question expression and two answer expressions, but found 2 expressions

Syntax / cond:

 cond: expected a clause with a question and answer, but found a clause with only one part

 cond: expected a clause with one question and one answer, but found a clause with 3 parts

 cond: expected a clause with one question and one answer, but found a clause with 4 parts

 cond: expected a question--answer clause, but found something else

 else: not allowed here, because this is not an immediate question in a `cond' clause

Syntax / define:

 define: expected a function name, constant name, or function header for `define', but found something else

 define: expected a name for a function, but found a string

 define: expected a name for a function, but found something else

 define: expected a name for the function's 1st argument, but found a string

 define: expected a name for the function's 1st argument, but found something else

 define: expected an expression for the function body, but nothing's there

 define: expected at least one argument name after the function name, but found none

 define: expected only one expression after the defined name label-near?, but found at least one extra part

 define: expected only one expression after the defined name label-near?, but found one extra part

 define: expected only one expression for the function body, but found at least one extra part

 define: expected only one expression for the function body, but found one extra part

Runtime / cond:

 cond: all question results were false

Runtime / type:

 and: question result is not true or false: \"true\"

 or: question result is not true or false: \"conservative\"

 string=?: expects type <string> as 1st argument, given: 'french; other arguments were: 'spanish

 string=?: expects type <string> as 1st argument, given: 2; other arguments were: 1 1 1 3

List of unbound identifiers:

 /1.0

 ==

 >label-near1?

 >label-near?

 Define

 Edit

 Ryan

 Smith

 activity-type

 actvity-type

 bable

 celsis->fahrenheit

 celsius->fhrenheit

 celsius-fahrenheit

 celsius>fahrenheit

 celssius->fahrenheit

 dedfine

 dfine

 ele

 els

 flase

 hallo

 j

 label-near1

 label-near?

 label

 labelwordwordwordname

 land

 liberal

 love

 me

 name1

 political-label

 political

 senate

 str=?

 string-locale=?

 sybol=?

 symbol-?

 symbol=2

 synbol=?

 temp

 test-expect

 to-look-for

 true

 ture

 tv

 word-to-look-for

 word1

 word1orword2orword3

 word1word2word3

 word

 yes

