
On the Interplay Between Bottom-Up and
Datatype-Driven Program Design

Francisco Enrique Vicente Castro
Department of Computer Science

Worcester Polytechnic Institute
100 Institute Road, Worcester, MA, USA

fgcastro@wpi.edu

Kathi Fisler
Department of Computer Science

Worcester Polytechnic Institute
100 Institute Road, Worcester, MA, USA

kfisler@wpi.edu

ABSTRACT
When students are faced with a programming problem un-
like any they have solved before, prior research suggests that
they develop code backwards from essential computations
in the problem. Some curricula, however, teach students
to first write scaffolding code based on the type of the in-
put data. How do these two approaches interact? We gave
CS1 students who were taught to write scaffolding code a
programming problem unlike any they had seen before. We
found that while students put essential computations into
the scaffolds, they often overuse affordances of the scaffolds
in ways that lead to plan-composition errors. We propose
that steering students away from on-the-fly decomposition
while programming could help avoid some of these errors.

Keywords: Novice programmers; models of code develop-
ment; plan composition

1. INTRODUCTION
Most models of how novices program suggest that they use

previously learned examples or solutions as starting points
for new programs [3, 4, 10]. What happens, however, when a
new problem is sufficiently different that previously-learned
examples don’t apply?

In studies with students learning Pascal, Rist [5, 6] de-
termined that novices write down a statement or expression
that captures the essence of some program task (the focus),
then work backwards to integrate this into the overall pro-
gram. In contrast, pedagogic approaches such as How to De-
sign Programs (henceforth htdp) aim to be more systematic,
teaching students to first write scaffolding code that exploits
the structure of input data. These two perspectives, one a
model developed from observing students programming pro-
cedurally and one a process designed to scaffold traversal of
recursively-defined datatypes (as taught in some CS1 courses
that use functional languages), could either complement or
interfere with one another. What role does each play in
helping students develop correct solutions to new problems?
What hindrances does each introduce?

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGCSE ’16, March 02 - 05, 2016, Memphis, TN, USA
© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-3685-7/16/03. . . $15.00

DOI: http://dx.doi.org/10.1145/2839509.2844574

This paper explores the interplay of bottom-up program-
ming and datatype-driven design, using Rist’s model and
htdp as concrete instances of each. We report on a study
in which htdp students were given a problem that required
program structures they had not yet learned. We video-
recorded their sessions, looked for how students used each of
focal-expressions and htdp scaffolds in attempting to solve
the problem, and extract insights on the affordances and
limitations of each approach. In part, this work explores
how bottom-up programming manifests in functional pro-
gramming. In part, it tries to identify ways to leverage each
perspective towards developing pedagogic techniques that
help students tackle new programming problems.

2. BACKGROUND

2.1 Rist’s Focal Expansion Model
Several papers from the mid 1980’s proposed models of

how students create new programs by adapting known so-
lutions to similar problems (we review these in section 2.3).
Rist’s focal-expansion model [5, 6] expanded on these to
cover situations in which students lacked similar problems
on which to build. His model identifies two states that stu-
dents can enter when encountering a programming problem:

1. Plan Retrieval: If a novice knows a solution to a
similar problem, she will retrieve it (from memory)
and reproduce the code in a top-down fashion.

2. Plan Creation: If a novice does not know a solu-
tion to a similar problem, she will start from a small
code fragment for an identified computation within the
problem. This code fragment is called the focus or fo-
cal computation. She will then expand the code around
the focus in bottom-up fashion to integrate the new
code into the rest of the program.

When a known solution applies to a more difficult problem,
the model predicts that students switch to bottom-up cre-
ation mode after retrieval. As a programmer’s experience
increases, she makes heavier use of retrieval.

Intuitively, the focus is the essential computation for an
identifiable task within the program. For the task to sum
a sequence of numbers, an expression like sum := sum + n

would be the focus (where n would be defined subsequently,
perhaps by reading the next input from the sequence). In
the problem of averaging a sequence of numbers, there are
three focal expressions, one for each of the required tasks of
summing the elements, counting the elements, and dividing

the sum by the count. Rist’s model does not address which
focal a student would handle first. Rather, it claims that
one of the expressions sum := sum + n, count := count + 1,
or average = sum / count would be written and expanded
upon first, rather than more generic code such as“iteratively
read input” (which would only occur first in retrieval mode).

Rist developed this model from watching students pro-
duce code (in Pascal) for problems such as calculating the
volume of a box-like house or sorting weights into ascending
order. The essence of the model lies in (a) new plan creation
starting from a focal computation, and (b) the construction
of code being either top-down or bottom-up, depending on
whether a plan is being created or retrieved.

2.2 How to Design Programs
How to Design Programs (htdp) is a CS1 curriculum that

teaches a step-by-step “recipe” for designing programs [2].
Its two core ideas are write test suites first and design pro-
grams from the shape of the input data. A student trained
in htdp first writes down the input and output types of
a function, followed by several examples (test cases) of the
function’s behavior (including both inputs and outputs), fol-
lowed by a template for the function. The template captures
code that is dictated by the shape of the data, leaving holes
to fill with problem-specific computations.

As an example, consider a function to determine whether a
list of strings contains “pie”. A student would first write the
type signature (as a comment) and several examples (a.k.a.
check-expects). We present code in Racket, as that is the
language used in both our study and the htdp textbook
(though the principles apply more generally).

; containsPie? : list-of-string -> boolean
(check-expect (containsPie? empty) false)
(check-expect (containsPie? (list "apple" "pie")) true)
(check-expect (containsPie? (list "bread" "tea")) false)

Next, the student would write the template: code that ex-
hausts what is known about the shape of the input data (in
this case a list of strings):

; containsPie? : list-of-string -> boolean
(define (containsPie? alst)

(cond [(empty? alst) ...]
[(cons? alst) ... (first alst)

... (containsPie? (rest alst))]))

The template has a conditional that checks whether the list
is empty. If it is, the template simply contains a hole for
the function’s result in that case. If not, then the list must
have both a first element and the subsequent elements (rest).
The latter is itself a list of strings, and hence should also be
processed by containsPie?. The template therefore includes
a recursive call on the rest of the list. The template has holes
in place of concrete code for combining the first element
with the result from the recursive call. Note that nothing
in the template is specific to the computation required for
containsPie?: the template simply traverses the input data.

To finish the function, the student fills in the holes with
details specific to containsPie?. The student can leverage
the test cases to do this (details of how to do this are not
relevant to this paper). The next box shows the final code:
the student filled in false, a comparison to the string "pie",
and the or operator to complete the function.

; containsPie? : list-of-string -> boolean
(define (containsPie? alst)
(cond [(empty? alst) false]

[(cons? alst) (or (string=? "pie" (first alst))
(containsPie? (rest alst)))]))

Templates are at the heart of the difference between htdp
and Rist’s model. They scaffold development of code, giv-
ing students systematic rules to follow to get beyond a blank
page when starting a programming problem (in Rist’s cre-
ation state). htdp teaches students concrete rules (not de-
scribed here) for creating templates from datatypes; these
rules scale to rich data structures including binary and n-ary
trees, graphs, and other mutually-recursive data. This set
of uniform rules across datatypes provides a detailed process
for designing programs, particularly on new datatypes. As
students write multiple functions over the same datatype,
templates can also serve as schemas for other programs over
that datatype. Many students appear to internalize these
schemas, without having to use the rules to create templates
afresh each time.

2.3 Other Related Work
Early studies by Pirolli et al. on novices learning recursive

programming observed that people rely heavily on known so-
lutions when developing new programs [3, 4]. Novices mod-
ify already-learned solutions to fit the context of the new
problem. Spohrer and Soloway’s studies of the end-product
programs of students and their talk-aloud protocols (verbal
reports of planning, implementation, and debugging steps
taken in programming a solution) echo this [10]. They sug-
gest that students, when writing code for a problem, either
(1) use previously learned programming knowledge (pro-
gramming plans) to write the code, or (2) translate relevant
non-programming knowledge (non-programming plans) into
code. Students then proceed to a testing phase where they
detect problems (or impasses) within their code, then enter
a debugging phase to repair these impasses.

Spohrer and Soloway observed that most novice program-
ming mistakes are due to difficulties with plan composition,
the putting together of program fragments to form a work-
ing program [9]. They analyzed buggy programs in terms of
their goals relative to their plans (groups of code that work
together [7, 8]). Goals and plans are cognitively plausible,
deep structure knowledge that programmers have, based on
knowledge of working programs. For example, programmers
do not perceive an expression like sum += sum merely as an
assignment statement (code-specific: surface structure), but
as part of a plan for a running sum (deep structure). Reason-
ing through a goal/plan perspective, and not merely through
surface-structure language constructs, considers chunks of
code as single units. Spohrer and Soloway identified sev-
eral issues that make plan composition difficult for novices,
including cognitive load problems, unexpected cases, and
optimization problems, among others [9].

3. AN EXPLORATORY STUDY
By design, htdp templates should defer entry into Rist’s

“creation” mode, giving students a schema to retrieve based
solely on the type of input to a function. If students have not
solved a similar problem to the overall function, Rist’s model
predicts that students would then write focal computations.
However, Rist’s notion that students write the focal compu-

tation then build context around it differs from the htdp
process, in which students would place focal computations
either in template holes or in auxiliary (a.k.a. helper) func-
tions. Seeing what htdp students do after writing templates
should give insights into whether and how Rist’s model, and
the general idea of bottom-up programming, play out in the
context of data-traversal schemas for recursive programs.

To better understand the interplay between Rist’s model
and htdp, we conducted a study in a single htdp-based
CS1 class at a university in the USA. We gave students a
programming problem over an input datatype they knew (a
list of numbers), but that required additional programming
techniques that they had not yet seen. This combination
should have put students into Rist’s creation mode (per-
haps after retrieving the template). We video-captured the
students’ programming sessions, then analyzed the videos to
see when students wrote each of htdp templates and Rist’s
focal computations, and how they edited around these pieces
to complete the program.

In particular, we sought insight on the following questions:

1. When do htdp-trained students use templates?
2. How does Rist’s idea of focal computations manifest

in htdp programs?
3. How and when do htdp students integrate focal com-

putations into existing code?

Our questions attempt to avoid bias in favor of either Rist’s
model or htdp’s claimed benefits. While we expected stu-
dents to follow htdp’s process (as this was a key part of
the course), we did not assume that students had internal-
ized that process enough to actually do so. This is an ex-
ploratory study, asking whether (a) Rist’s focal-expansion
theory applies to functional programming through htdp and
(b) htdp provides useful scaffolding to students on problems
that require significantly different programming techniques
than what they have already seen.

3.1 The Problem: Adding Machine
Our study used a programming problem called Adding

Machine that consumes and produces a list of numbers:

Design a program called adding-machine that
consumes a list of numbers and produces a list
of the sums of each non-empty sublist separated
by zeros. Ignore input elements that occur after
the first occurrence of two consecutive zeros.

Example:
(adding-machine (list 1 2 0 7 0 5 4 1 0 0 6))

should produce (list 3 7 10)

Adding Machine involves four tasks:

a) Ignoring data after the double-zero
b) Identifying sublists separated by single zeros
c) Summing the elements in each sublist
d) Building the output list from the sums of the sublists

Students trained in functional programming would write
a recursive solution. Viable recursive approaches include:

• Reshape the data first: The sublists in the input are
embedded in a flat list of elements delimited by zeros.

The input could be reshaped into a list of lists that
omits the zeros. For example, the input (list 1 2 0

7 0 5 4 1 0 0 6) could be reshaped as (list (list 1

2) (list 7) (list 5 4 1)). Separate functions would
iterate over this list and sum each individual sublist.

• Accumulate sums in a parameter: The recursive
function could take an additional parameter for the
sum of the current sublist. When a 0 is detected at
the front of the input list, this parameter would be
concatenated onto the result of processing the rest of
the input list with the sum parameter initialized to 0.

• Recur on a new list containing the sublist sum:
Since the recursive function takes the list to process
as an input, the first position of the list can be used
to store the running sublist sum. For example, the
call (adding-machine (list 1 2 0 5)) would generate
the call (adding-machine (list 3 0 5)). This approach
is distinctly functional, as imperative solutions rarely
modify a list mid-iteration. Special care is required,
however, if a sublist can sum to 0.

• Recur on a new list that skips the first sublist:
A function could recur on the suffix of the list without
the first sublist, using a separate function to produce
the sum of the prefix corresponding to the first sublist.

Detecting the consecutive-zero termination pattern adds
a bit of complexity, as solutions must check both the length
of the remaining input (an input that doesn’t contain the 00
pattern might have only one element) and the values of the
first two elements. Solutions can either truncate the input
data at the double-0 in a separate pre-traversal, or integrate
checking for the pattern into the core computation.

This problem seems excellent for studying the interactions
between Rist’s model and htdp. Lists of numbers are a fa-
miliar datatype to htdp students: many will have already
internalized the schema for flat lists. Each of the high-level
solutions outlined above, however, uses some more-advanced
programming concepts: parameters that accumulate data or
recur on something other than the rest of the list are cov-
ered after trees in htdp. While basic mastery of lists would
suffice to reshape data, students would not be exposed to
the idea of doing so until much later. Thus, if htdp stu-
dents are given this problem after a couple of weeks of pro-
gramming with lists, they will have a schema that appears
to apply (the basic list template), but no experience with
“similar” solutions that draw on these more advanced con-
cepts. Many students should end up in the plan-creation
state while working on this problem, even if they initially
retrieve the list-of-numbers template.

3.2 Data Collection and Logistics
We collected data in Spring 2015 in a CS1 course taught

using htdp in Racket. Neither author was on the course
staff. Students were given roughly 40 minutes to work on
Adding Machine during a weekly lab session. Each stu-
dent used the SnagIt video-capture tool to record all activity
within the window for the course IDE (DrRacket). Students
uploaded both the video and their final source-code file at
the end of the lab session. In total, 138 students submitted
data; we randomly sampled 25 to analyze in this study. In
terms of final course grades, the sampled population earned

1 Test AM 3

2 Template-list AM

3 AM buildsumlist (cons (helper1 first-L)

(AM rest-L))

4 Template-list helper1

5 helper1 sumelts (+ first-L (helper1 rest-L))

6 helper1 singlezero (= 0 first-L (AM rest-L))

7 AM singlezero (= 0 first-L)

8 Test helper1 3

;; ListofNumber->ListofNumber
;; adds together elements of a sublist and returns

them as a list
(check-expect

(adding-machine (list 1 2 0 7 0 5 4 1 0 0 6))
(list 3 7 10))

(check-expect (adding-machine empty) empty)
(check-expect

(adding-machine (list 5 15 22 0 7 0 8 1))
(list 42 7 9))

(define (adding-machine lon)
(cond [(empty? lon) empty]

[else (cons (findzero (first lon))
(adding-machine (rest lon)))]))

Figure 1: Sample coding sequence (top) and the ac-
tual program code (bottom)

5 As, 13 Bs, 3 Cs, 3 fails, and 1 incomplete. We thus had
a good mix of students relative to mastery of the material
and likelihood of needing help.

We conducted the study five weeks into the academic
term, after students had roughly 16 lectures (50-minutes
each), 4 labs (50 minutes each), and 4 multi-exercise pro-
gramming assignments for homework. Before this point, the
course had covered defining and calling functions, compos-
ing functions, conditionals, recursive functions over lists, and
the htdp design process (including test-first development of
functions and templates, as described in section 2.2). The
students had written several functions over lists of numbers,
strings, and records prior to doing the study. The course had
not yet covered trees, accumulating results of computations
in additional parameters, or recursive calls on an argument
other than the rest of the list.

3.3 Coding Programming Edits
When analyzing the videos, we recorded several events:

1. Template use: Students wrote an htdp-prescribed
template for a new function.

2. Task-specific computation: Students wrote code
related to one of the four problem tasks. We recorded
the actual code, the task it belongs to, and the func-
tion in which students put the code. The tasks were
recorded with the following labels:

- singlezero: handling single-zero delimiters
- doublezero: handling the double-zero sentinel
- sumelts: summing elements (of a sublist)
- buildsumlist: building the list of sublist sums

3. Test case use: Students wrote test cases for a specific
function. We recorded the function name and number
of tests written for it before the next event occurred

4. Other: Students made edits that did not fall into one
of these categories

Figure 1 shows an example of our analysis summary, along
with its corresponding Racket program (the program shows
the code as of step 3 in the summary). In the summary, AM
refers to the Adding Machine function. The student wrote
another function named findzero, replaced with the alias,
helper1, in the summary. Names for helper functions were
replaced with aliases with the format helper<number> to
facilitate consistency in the coding as the students would
sometimes change the names of helpers as they programmed
their solutions. We produced a summary such as this for
each of the 25 sampled programs.

4. ANALYSIS AND INTERPRETATION
None of the sampled students produced working solutions

for Adding Machine, despite evidence that they used tem-
plates, developed focals, and tried to decompose the prob-
lem. Plan composition was the main hurdle, particularly
when students tried to reuse template code inappropriately
in multiple smaller-scale plans.

All but one student (24 of 25) used the list-of-numbers
template (same as the containsPie? template in section 2.2).
From there, students took many approaches. Table 1 shows
two examples of the directions students took: the student
on the left created a helper function to handle both single-
zero delimiters and computing the sum of sublists, while the
student on the right tried to handle both the double-zero and
sum tasks within the template for Adding Machine. Both
show plan-composition errors which we will explain as we
describe general patterns in our data.

4.1 Focals After Templates?
We hypothesized that students would enter creation mode

after retrieving the template. As such, we looked at what
code students wrote immediately after the template and
where they put it, checking whether it captured focals. As
Table 2 shows, all but 3 students wrote expressions that took
on specific tasks. Most (19) students put this new code into
the template for the Adding Machine function. This matches
focal-expansion theory, as well as htdp pedagogy. Most
template holes get filled by focal-like expressions, though
some decomposition (through helpers) also goes there.

Whether students had entered creation mode, however,
isn’t clear. Summing a list is a standard htdp programming
problem; students may have retrieved the + code as done
in Table 1 (right). The single- and double-zero tasks are
about termination of computations. As such, they resemble
base cases of recursive functions (even though the usual base
case of a recursive function on a list handles the empty list).
Students may have retrieved the pattern of terminating a
traversal, adapting it to recognize patterns of zeros. The
left student in Table 1 wrote base-case-like code to catch
the single-zero in the adder function.

Overall, 21 students who started with templates immedi-
ately filled in holes in that template with focal expressions
for a specified program task and 2 began to decompose the
problem by creating a helper function (in both cases to han-
dle Double zero). Of the remaining 4, one wrote a focal
computation (Single zero) within a non-template function,
and 3 wrote something not clearly linked to a problem task.

4.2 Plan Composition
Whether students retrieved or created plans for the prob-

lem tasks, they still had to compose them into an overall

Table 1: Code samples: (Left) A task identified is pulled out into a separate function; (Right) Interleaving
function calls within one function without decomposition.

(define (adding-machine lon)
(cond [(empty? lon) empty]

[else (cons (adder lon)
(adding-machine (rest lon)))]))

(define (adder lon)
(cond [(empty? lon) 0]

[(= 0 (first lon))
(adding-machine (rest lon))

[else (+ (first lon) (adder (rest lon)))]))

(define (adding-machine lon)
(cond
[(empty? lon) 0]
[else
(if (and (= (first lon) 0) (= (second lon) 0))

(list 0)
(+ (first lon)

(adding-machine (rest lon))))]))

Table 2: First tasks coded, with location
(Note: T = within template, NT = not in template)

Task Within AM New Helper
Sum sublist 6 0
Output list 3 0
Single zero 9 (T) + 1 (NT) 0
Double zero 1 2
None/Other 3

program. Here, students displayed significant difficulties.
Each solution in Table 1 illustrates one of these challenges.

The solution on the right tries to integrate the plans for
sum and double-zero by sharing template code: the template
base-case (the empty? check) returns a 0 as in the sum plan,
while the “new” base case for double-zero returns a list (the
output type of the overall function). In attempting to share
the recursive call (which would be syntactically identical in
both the sum and truncate-at-00 plans), the student created
an inconsistency in the output type of the program. Only
5 students even wrote both the sum and double-zero tasks;
3 of these put these tasks in the same function. Six stu-
dents put both the single-zero and double-zero tasks in the
same function, missing that each terminates a different other
task (processing a sublist and identifying input to process,
respectively).

In the solution on the left, the student tried to decom-
pose the problem via a helper function. The output task
stayed in the main template, while the sum and single-zero
tasks moved into the helper. This approach was on the right
track, but had two key errors (aside from the missing plan
for double-zero): the single-zero detection needed to be a
base case (and return 0) in the helper, and the recursive call
in the main function needed to take the suffix without the
first sublist as input (rather than the entire rest of the list).
Despite these flaws, this student at least had a largely consis-
tent view of the output type of each function (the erroneous
single-zero base case answer notwithstanding). This reflects
an understanding (missed in the solution on the right) that
one use of template code can return only one type of output.

Eleven students moved the sum-sublist task into a helper
(as in the solution on the left). None modified the portion of
the list passed on the recursive call, instead using the recur-
sive call verbatim from the template. Overall, 16 students
created a helper function that took a list of numbers as input
and included some program tasks. Table 3 summarizes the
number of students who covered each task in each of helper
functions, the main Adding Machine function, or both.

Even when students realized to create helpers, they often
failed to effectively decompose the problem around those

Table 3: Where code for each task appears
Task Just in Main Just in Helper Both
Single zero 7 3 10
Double zero 4 1 2
Sum sublist 9 5 6
Output list 8 0 0

helpers: 12 of 25 created helpers that they never called from
their main function. These helpers attempted combinations
of the single-zero, double-zero, and sum-sublist tasks. This
seems a different manifestation of thinking through focals:
rather than integrate a focal computation into an existing
function (their original templates), students tried to put
them in separate functions. This is not unreasonable, as
each of these three tasks involves traversing a list, and stu-
dents had been taught to use recursive functions to tra-
verse lists. Of the students who created helper functions,
8 used templates in writing all helper functions (2 more did
so sometimes), again suggesting a strong htdp influence.
These observations suggest that upon entering the creation
state (after setting up templates), students resort to building
their functions with a characteristic tinkering behavior [1]
by patching up the holes in the template with familiar con-
structs and function calls, even when these result in output
inconsistencies and essentially, plan composition problems.

Several students put the same tasks in both the main and
helper functions (last column of Table 3). Task-replication
seems to depart from Rist’s focal model, which suggests that
students would write the focal computations once within
their existing code, then build around them. This again
reflects students’ difficulties in decomposing the problem
around the tasks.

4.3 Advanced Techniques
Both accumulating intermediate data in parameters and

reshaping the data into a list of sublists are advanced pat-
terns that students had not seen in the course (and thus
could not have retrieved). Only 1 student attempted to add
a parameter for the running sublist sum. Only 3 attempted
to reshape the data; none did so successfully. The coding
sequences for the latter students suggests that as soon as
students pulled out tasks to attempt to reshape the data,
they proceeded into tinkering in and around these helpers.
Students who tried this step (which would have been valu-
able had it worked) were clearly not thinking through focals,
as data reshaping is not a computational task suggested in
the problem statement (even though the problem hints at
the flattened state of the data).

5. DISCUSSION AND FUTURE WORK
The study in this paper was motivated by an apparent un-

derlying tension between htdp templates and Rist’s model
of bottom-up programming. Rist’s work suggests a cognitive
process that students follow on new programming problems:
write a core computation for a problem task (the focus), then
augment the program to produce the data needed for the
focal computation. The potential tension with htdp lies in
the sub-expressions that templates introduce: these provide
a context into which students will place focal computations.
That context could either help or interfere with students’
thinking as they integrate focals into a larger program.

Our data suggest that students largely work through prob-
lem tasks: they write focal computations on the front ele-
ments of the input list, or create new functions for problem
tasks. They often appear to retrieve plans, in the form of
individual recursive functions, for individual tasks (such as
summing a list). As such, our students often introduced fo-
cals as entire functions, not small expressions (as in Rist).
This may have deferred students’ entry into creation mode,
shifting more burden to plan composition.

Our students struggled to compose plans: some failed to
adjust the portion of the list being recurred over, others
tried to perform two tasks with different output types (sum-
ming and building lists) within the same recursive traversal
(rather than accumulating the sum or creating a helper). In
both cases, our students used template expressions verba-
tim, rather than adjust them to the need of the computation
at hand. Given that they had not seen programs that ad-
justed template code, this behavior is not particularly sur-
prising. More generally, they lacked schemas for composi-
tion, instead retrieving insufficient, lower-level, plans.

Does this mean that templates, and the context they pro-
vide, interfere more than help students? Not necessarily.
The recursive calls are still needed, even if on slightly differ-
ent inputs in some (but not all!) cases. Students had simply
not learned when to decompose problems into multiple in-
stances of templates, and the templates failed to help them
discover or resolve the issue. Given prior work on the impor-
tance of retrievable schemas, htdp’s templates fit squarely
within known results on how people program.

Arguably, the key issue is that students are decomposing
the problem on the fly around code they have already written.
This arises whether students use htdp (which prescribes the
context) or bottom-up programming (in which students’ ex-
isting code provides the context). If the prior context isn’t
well-suited to the problem at hand, students will struggle
with composition. Decomposing the problem up front, into
tasks that can be composed cleanly into a solution, should
make the actual coding less error prone.

Can we teach students to effectively decompose problems?
Both Rist’s work and ours show that students think in terms
of core program tasks. Decomposing problems (rather than
code) is about grouping the tasks of a problem into chunks
that can reasonably be handled together. What if we could
teach students to use concrete examples to work out prob-
lem decompositions? In the case of Adding Machine, for
example, a student could start with

(adding-machine (list 1 2 0 7 0 5 4 1 0 0 6))

then write that this should produce the same answer as
(list (+ 1 2) (+ 7) (+ 5 4 1))

Realizing this might suggest specific functions that a stu-
dent could write to transform the first expression into the

second. Something systematic such as this seems prefer-
able to expecting students to just keep experimenting until
their bottom-up process hits on a workable solution. Just as
students currently internalize schemas for writing code, we
might expect they can learn to internalize schemas for de-
composing problems through concrete examples. The ques-
tion at least warrants further study.

We suspect that some tension between Rist’s model and
htdp arises from differences between functional and impera-
tive programming. Deciding what Rist’s model might mean
within functional programming took considerable discussion
among the authors. Rist’s description of “bottom up” ref-
erences code organization typical of imperative programs:
variable declaration and initialization at the top, computa-
tion in the middle, and results and output on the bottom.
Functional programs are organized differently: variables are
initialized when functions are called, and outputs are typi-
cally composed from nested expressions within the middle of
a function. For this project, we chose to interpret “bottom
up” as “write contextual code after the focus”. Functional
programs also tend to decompose problems into several func-
tions, whereas imperative solutions for CS1-level programs
often live within a single procedure. This changes the de-
composition patterns that students need for problems such
as Adding Machine. This raises various questions for how
cognitive behavior in creation mode might differ based on
the (affordances of the) programming language at hand.

Acknowledgments.
We thank Joe Beck for letting us collect data in his course

and Mike Clancy for pointing us to the Adding Machine
problem. This research is partially funded by the US NSF
under grant number CCF1116539.

6. REFERENCES
[1] M. Berland, T. Martin, T. Benton, C. P. Smith, and

D. Davis. Using learning analytics to understand the
learning pathways of novice programmers. Journal of the
Learning Sciences, 22(4):564–599, Oct 2013.

[2] M. Felleisen, R. B. Findler, M. Flatt, and S. Krishnamurthi.
How to Design Programs. MIT Press, 2001.

[3] P. L. Pirolli and J. R. Anderson. The role of learning from
examples in the acquisition of recursive programming skills.
Canadian Journal of Psychology/Revue canadienne de
psychologie, 39(2):240–272, 1985.

[4] P. L. Pirolli, J. R. Anderson, and R. G. Farrell. Learning to
program recursion, pages 277–280. 1984.

[5] R. S. Rist. Schema creation in programming. Cognitive
Science, pages 389–414, 1989.

[6] R. S. Rist. Knowledge creation and retrieval in program
design: A comparison of novice and intermediate student
programmers. Hum.-Comput. Interact., 6(1):1–46, Mar
1991.

[7] B. Shneiderman. Exploratory experiments in programmer
behavior. International Journal of Computer and
Information Sciences, 5(2):123–143, June 1976.

[8] E. Soloway and K. Ehrlich. Empirical studies of
programming knowledge. IEEE Transactions on Software
Engineering, SE-10(5):595–609, September 1984.

[9] J. C. Spohrer and E. Soloway. Novice mistakes: Are the
folk wisdoms correct? Commun. ACM, 29(7):624–632, July
1986.

[10] J. C. Spohrer and E. Soloway. Simulating Student
Programmers, pages 543–549. IJCAI ’89. Morgan
Kaufmann Publishers Inc., 1989.

