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How much can preprocessing help in solving graph problems? In this paper, we consider the problem of reachability in a
directed bipartite graph, and propose a model for evaluating the usefulness of preprocessing in solving this problem, We give
tight bounds for restricted versions of the model that suggest that preprocessing is of limited utility.
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1. Introduction

The directed reachability problem is as follows:
given an n-node graph G and a set S of nodes of
G, determine the set of nodes T that are reachable
from nodes of S. This problem can trivially be
solved in time proportional to the number of
edges in G, or O(n?) in the worst case. Moreover,
this bound is tight to within a constant factor. If
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we are given G in advance, however, we could
conceivably construct a representation of G that
allows solution of the problem for any given S in
much less time. We show that, for restricted mod-
els, this is not the case.

We prove our bounds for the special case in
which G is a bipartite graph with all edges di-
rected from one block of the bipartition to the
other. Note that such a bipartite graph can repre-
sent the reachability relation of an arbitrary di-
graph. That is, given any r-node digraph, we can
construct a 2n-node directed bipartite graph in
which the existence of a path in the digraph from
v to w is represented by an edge from v to w’ in
the bipartite graph.

We investigate the tradeoff between the space
required for a representation of G, and the worst-
case time required to answer a query of the form
“given S, find the neighbor set T”. Our measure
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of time is that of Yao [7], namely the number of
cells of memory that must be read to determine
the output. The problem of determining the
space-time tradeoffs for specific kinds of queries
has been studied previously, e.g., [2-5,7-9]. The
authors of [1] considered a related issue, the trade-
off between the time for preprocessing and the
time for answering queries.

2. The problem

We consider the set ¢ of bipartite graphs con-
sisting of input nodes x,,...,x,, output nodes
Yi»---» Y, and edges between input and output
nodes. Let [n] denote {1,...,n}. We may inter-
pret a graph G € % to be a subset E(G) < [n] X
[n]. Suppose we preprocess a graph G in ¥. We
investigate the time complexity of the following
problem: for any guery consisting of a subset S of
input nodes, determine the output set T of output
nodes adjacent to nodes of § in the graph G.
Without preprocessing, the worst-case time com-
plexity of this problem is clearly ©(n?).

One may interpret this problem as the problem
of representing an n X n Boolean matrix A4 in
such a way that for any Boolean n-vector x, the
product Ax over the AND-OR semiring can be
determined quickly.

3. Our model for preprocessing

A representation for ¥ is a sequence F=
{(fi»---» f;) of Boolean functions on ¥, called
“cells”. For a given graph G € ¢, the values f,(G)
are intended to give information about the graph
G. We may also interpret the cells f; as functions
of n? Boolean variables corresponding to the pos-
sible edges of G, where a variable is 1 if the
corresponding edge is present in G. For example,
one trivial representation uses n”> functions f; 5
where f;.(G) is 1 if the edge (x,, y;) is present in
G, and 0 otherwise. To “probe” a cell is to de-
termine its value for a specific (unknown) graph
G. The size of a representation is the number s of
cells.
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A query scheme is, informally, a method for
answering queries by probing cells of a representa-
tion. A scheme is said to be oblivious if the choice
of cells probed is determined solely by the input
set S, and does not depend on the values of the
probed cells. Formally, an oblivious query scheme
for a given representation is a set

0={q’(u,...,u,): i€[n], Sc[n]}

of Boolean functions of Boolean s-vectors. For
each graph G € ¢ and each query S, the value of
q5(fi(G), ..., £.(G)) must be 1 iff the output node
y; is adjacent to some input node in S. In general,
the functions ¢° should not depend on the values
of all cells; for a fixed query S, we say a cell f is
probed by Q if q° depends on f for some 1 <i<
n. The time ¢ for a given query S is defined to be
the number of cells probed by Q for that query.
This kind of scheme is called “oblivious” in con-
trast to schemes in which cells are probed one by
one and their values may influence the choice of
the next cell to probe; such nonoblivious schemes
may be defined formally by associating a decision
tree with each input set S. In either case, we are
interested in the worst-case time over all queries S
and all graphs G€ 9.

4. Our results

Clearly, there is a tradeoff between the space
for a representation angd the (worst-case) time for
an associated query scheme. At least n? size is
required, since there are 2" graphs to be repre-
sented. The trivial representation discussed above
meets this size lower bound and achieves time n?.
Since there are n bits of output, at least n time is
required. A scheme with n cells for each possible
input set S achieves this time bound, but at the
expense of n2" size. We wish to determine the
shape of the time-size tradeoff curve between these
two extreme points. In particular, what time can
be achieved if size must be polynomial?

The above naive representations share three
properties:

monotonicity: each cell is a monotone function
of edge presence; ‘
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separability: each cell is a function only of
edges entering a single output node;

simplicity: each cell is an or of edge presence.

Indeed, these seem natural properties for repre-
sentations. Note that simplicity implies mono-
tonicity.

We call a query scheme monotone (separable,
simple) if its associated representation is mono-
tone (separable, simple).

Our results are as follows.

(1) For oblivious monotone schemes, and for
separable schemes, r = #(n?/log s) is optimal, and
can be achieved using a simple, oblivious scheme.

(2) For nonoblivious, nonseparable simple
schemes, ¢ = 8(n?/log?s) is optimal.

For any positive constant ¢, the upper bound in
result (1) holds for n?*< < s < n2", and the upper
bound in result (2) holds for n2*< < s < 2",

Two implications are:
® for oblivious schemes, monotonicity and sep-
arability are essentially equivalent restrictions;
® for separable schemes, there is a simple oblivi-
ous scheme that is as good as any nonoblivious
scheme.

The first thing to notice is that the lower bounds
support our belief that preprocessing can help
very little if size is restricied to be polynomial. For
the restricted classes of schemes for which we have
results, preprocessing reduces the time by at most
a polylogarithmic factor.

Second, it is interesting (though not surprising)
that nonobliviousness helps, at least for monotone
schemes. It is not clear by how much it helps; our
nonoblivious lower bound only holds for simple
schemes. One might hope to extend this lower
bound to hold for monotone schemes. However,
using slice functions it is easy to show that given a
nonoblivous nonmonotone scheme with size s and
time ¢, one can obtain a nonoblivious monotone
scheme with size n?(s+ 1) and time 7+ 2 log n.
Consequently, a good lower bound for nonoblivi-
ous monotone schemes would yield a good lower
bound for nonoblivious nonmonotone schemes.

We leave as an open problem the characteriza-
tion of the time-space tradeoff curve for unre-
stricted schemes.

In the remainder of this paper, we prove the
results (1) and (2). Our proof for result (1) pro-
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ceeds as follows: we first prove that from an
oblivious monotone scheme, one can obtain an
oblivious separable scheme. Second, we prove a
lower bound for separable schemes. Third, we give
an oblivious separable simple scheme that meets
the lower bound. To prove result (2), we first give
a simple, nonoblivious scheme that achieves the
stated bound; then we prove a lower bound for
simple schemes.

4.1. An oblivious monotone scheme might as well be
separable

In this section, we prove that an oblivious
monotone scheme might as well be separable. !

We define n subsets 9,,...,%, of 4. The sub-
set &, consists of the graphs in ¢ such that the
output node y; is connected to every input node if
J <k and to no input node if j > k. Every graph
G € ¢ corresponds to a graph in ¢,, namely the
graph obtained from G by adding all edges (x;, ¥i)
where j < k and removing all edges (x;, ¥;) where
J > k. Let G® denote this graph. The graphs G*
and G agree on which edges enters output node
Y-
For k=1,...,n, let G, be the graph in ¥,
such that the output node y; is connected to every
input node if j < k and to no input node if j > k.

Fix a monotone representation F = (f,,..., f.)
and a corresponding query scheme Q= {g%: i e
[n], Scnl]}. To each cell f€ F we assign an
element a( f) of [n] by

a(f)=min{k € [n]: f(G,)=1}. (1)

Since G, is the graph with all edges present and f
is a monotone function of edge presence, if f(G,)
# 1, then f is identically 0. Such cells are clearly
useless, and we may assume they do not occur in
the representation scheme. Therefore, we assume
that every cell f is assigned a number a( f) by (1).

Lemma 4.1. For any cell f,
® fis identically O on graphs in 9, if k < a(f);
® fis identically 1 on graphs in 9, if k> a(f).

1 Independently, Noam Nissan found a related proof of a
result of Galbiati and Fischer [6] that monotone circuits for
computing two functions from the same inputs need not
share gates.
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Proof. Suppose k < a(f). By definition of a(f),
f(G,) = 0. But each graph G € %, can be obtained
from G, by removing some edges entering output
node y,. Therefore, by monotonicity, f(G)=0.

Suppose k > a(f). By definition of a(f),
f(G,_;) =1. But each graph G€ ¥, can be ob-
tained from G,_, by adding some edges entering
output node y,. Therefore, by monotonicity, f(G)
=1. O

We now construct a separable representation F
by modifying the cells of F. The query scheme
associated with F probes the same cells as the
query scheme associated with F. The idea is as
follows: in determining whether y, is in the out-
put set, we might as well consider G'*) instead of
G, because these graphs agree on the edges enter-
ing output node y,. But G'*) is a graph in ¥,; for
such graphs, by Lemma 4.1, the cells whose a-
numbers are not k give us no information about
the edges entering y,. The new query scheme
determines whether y, is in the output set from
only those cells whose a-number is k.

More formally, we construct the new represen-
tation F=(f,,..., f.) as follows: Let £, be a cell
of F, and let a = a( f, ). The corresponding cell f;
is a projection of f,, obtained by substituting 1 for
all edges (x,, y;) with j < a and substituting 0 for
all edges (x;, y;) with j > a. The new representa-

tion F is separable, and has the following proper-

ties:

1) f; agrees with f, on graphsin ¥,.

_ (2) On graphs in &, where j # «, both f, and
£, are either identically O or identically 1, depend-
ing on whether j<a or j> a.

(3) Hence f, and f; agree on all graphs in

U, %.

We construct a query scheme QO =
{§7(uy,...,u,)} for F as follows: each function
47 (uy, ..., u,) is a projection of g7(uy,..., u;) ob-

tained by substituting 1 for each u, where a(f,)
<j and substituting 0 for each u, where a(f,)>J.
Thus §7 depends only on cells f, such that a(f;)
=j.

. We need only check that the new query scheme
QO works correctly for each graph G, each query S,
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and each output node y,. We assume that Q
works, so the value of

4;(£i(G),.... £(G)) (2)

is correct, i.e., its value is 1 iff y; is in the output
set. Since G and G/’ agree on edges entering y;,
this value of (2) must equal that of

@’ (£(GD),..., £(GV)). (3)

The value of a cell f; on G/ is guaranteed to be 1
if a(f,)<j and O if a(f;)>J, so by construction
of 4}, the value of (2) must equal

G (H(GD),..., £(GY)). 4)

Since f; and f: agree on graphs in ¢, the value of
(4) must equal

F(H(GD),..., f(GD)). (5)

Finally, since G) and G agree on edges entering
;> and since §; depends only on cells that are
functions of the edges entering y;, the value of (5)
must equal

33(£(G),.... £(G)). (6)

This shows that the new query scheme Q works
correctly, and completes the proof that an oblivi-
ous monotone scheme might as well be separable.

4.2. A lower bound for separable schemes

We next prove a lower bound of ¢=
Q(n?*/log s) for separable schemes, using a fool-
ing-set argument. The proof does not depend on
monotonicity or even obliviousness. A separable
scheme can be divided into » independent
schemes, each for a graph with »n input nodes but
only one output node. It is therefore sufficient to
prove a lower bound of ¢ = Q(n/log s) for such a
one-output-node scheme. We adapt the notation
to one-output-node schemes in a natural way.
Assume that »n is even. To prove the lower bound,
we consider only queries S such that |S|=n/2.
For each such query S, let G(S) be the graph
(with » input nodes x,,...,x, and one output
node y) containing the edges {(x;, y): i€ S}. If
the query is S and the graph is G(S), then y is
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not in the output “set”—no edge in G(S) leads
from an input node in the query to y.

Let S; and S, be distinct queries of size n/2.
Suppose query S, with graph G(S,;) probes the
same set of cells and sees the same value for each
probed cell as query S, with graph G(S,). Then
query S; with graph G(.S,) would also probe these
cells and see the same values, and would therefore
give the same answer as S, with graph G(.S;). For
query S; with graph G(S,), node y is in the
output set, whereas for query S; with graph G(S,),
node y is not in the output set. One of the
answers must be wrong,.

We have shown that the information gathered
in answering any query S of size n/2 must be
sufficient to distinguish the query from every other
query of size n/2. The number of such queries is
(4%2)- The number of ways of choosing ¢ cells out
of the s possible cells, and assigning Boolean
values to each, is ()2’ It follows that

H A g

Using the fact that (,%,) = (2"/Vn), we obtain
the desired lower bound ¢ = Q(n/log s).

4.3. A matching upper bound for separable schemes

We next describe a simple, separable, oblivious
scheme that shows that the lower bound of Sec-
tion 4.2 is tight for n2*¢ < s < n2". It is sufficient
to describe a one-output-node scheme that
achieves time ¢ = O(n/log s) and space s/n; con-
structing one copy of this scheme for each of the n
output nodes yields a scheme achieving space s
and O(n%/log s) time.

For any n?<s<n2", let p=|log(s/n*+1)|.
Partition the set of input nodes into n/p groups
A,..., A, ,, of size p. We define the representa-
tion scheme as follows: For each group A4, and
each nonempty subset X C 4,, there is a cell f,.
For a one-output-node graph G, the value of f,(G)
is 1 if G contains an edge (x;, y) such that x, € X.
This representation scheme is simple and has size
(n/p)(2? —1) < s/n. To determine whether y is
in the output set for a given query S, we let
X;=SNA;fori=1,..., n/p. We output the value
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Q1 Let S be the query.
Q2 To initialize, let T:=4.
Q3 Fori=1ton/p,
Q4 For j=1,...,n/p,
Q5 probe the cell fgr 4, BT
Q6 If the cell’s value is 1,
Q7 For each y, € B, - T,
Q38 probe fsnA,.,(y,,)
Q9 If the cell’s value is 1, add y, to T.

Fig. 1. A nonoblivious procedure for handling queries.

of V/Z{fx (G). The number of cells probed is n/p,
which is O(n/log s) for s > n?*.

4.4. A simple, nonseparable, nonoblivious scheme

Next we describe a simple, nonseparable scheme
that does better than separable schemes. We shall
show that for n®*<<s<2"”, there is a scheme
that achieves ¢t = O(n”/log?s), beating the lower
bound of Section 4.2. Let p = log(Vs /n). We par-
tition the input nodes into n/p groups 4,,...,4, ,
of size p, and also partition the output nodes into
n/p groups B,..., B, , of size p. For each group
A;, each subset X of A,, each group B;, and each
subset Y of B;, we have a cell f,, that is 1 iff
there is some edge from an input node in X to an
output node in Y. The space required for this
representation scheme is ((n/p)27)? < s.

To describe the nonoblivious query scheme for
this representation, we use the procedure in Fig. 1.

The total number of executions of step Q5 is
(n/p)*. I fon 4 57 is 1, there must be some
output node y, € Bj — T that is connected to an
input node in S. Therefore, at least one output
node is added to T during the execution of the
loop consisting of steps Q7 through Q9. This loop
has at most |B;| =p iterations, and at most n
nodes are added to T during the entire process, so
the total number of executions of step Q8 is np.
The total number of cells probed during the ex-
ecution of the procedure of Fig. 1 is thus (n/p)?
+ np, which is O(n?/log?s) when n?*<<s<2"”.
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4.5. A lower bound for simple schemes

In this section, we show that no simple scheme
is asymptotically better than that of Section 4.4.
Fix a simple representation scheme F consisting of
s cells, and an associated query scheme Q (not
necessarily oblivious). Each cell f of F is the or of
a collection E(f) of possible edges of G. Let
in(f) be the set of input nodes with incident
edges in E(f), and let out(f) be the set of output
nodes with incident edges in E(f). We say f is
tall if |in(f)| >2log s, and is wide if |out(f)|
> 2 log s. We say f is small if f is neither tall nor
wide. If f is small, then |E(f)| <4 log%s. As-
sume that n is even.

Claim. There is an n/2-element subset A of the
input nodes such that for every tall fin F, in(f)N A
is nonempty.

Proof. We use the probabilistic method. The num-
ber of ways of choosing an n/2-element subset A
of the input nodes is (,7;). For any tall f, the
number of ways of choosing A4 such that in(f)N
S =4 is at most

n—2log s
"0n")

Hence the probability that a randomly chosen A
fails to intersect in( f) is at most

(n—:/l;gs) ~ (%)---(%—210gs+1)

(n;2) ~ (n)---(n—2logs+1)

< 2—2]ogs
=s"2,
Since there are at most s tall f’s, the probability
that there exists even one f such that in(f)N4 =
disatmostl/s. O

By the same argument, there exists an n/2-ele-
ment subset B of the output nodes intersecting
every wide f in F. Let G be the graph with edges
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{(xi, ¥;): x;€E A or y; € B}. For every tall or wide
cell f, among the edges E(f) of which f is the or,
at least one is present. Thus every tall cell and
every wide cell has value 1 for G. Let A4 be the set
of input nodes not in A4, and let B be the set of
output nodes not in B.

Lemma 4.2. For every possible edge (x;, y;) € A X

B, some small cell f<€ F’ that depends on (x;, y;)
must be probed for the query S = A.

Proof. For the query S =A, the output set is
T = B. Consider a possible edge (x;, y;) € AXB,
and let G’ be the graph obtained from G by
adding the edge (x;, y;). For the same query S =4,
the output set 7' is now BU {y;}. Since the
appropriate output has changed, the correctness of
the query scheme demands that the value of one
of the probed cells must change. But each of the
tall and wide cells still has value 1 for G’, so one
of the small probed cells must depend on the edge

(x;, y,) o

Each small cell depends on fewer than 4 log?s
possible edges, and there are n?/4 possible edges
in AXB. It follows that Q(n?/logs) cells are
probed for query S = A. This completes the proof
of the lower bound for simple query schemes.
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